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Abstract
Starting from the Kramers equation for the phase-space dynamics of the N-body probability
distribution, we derive a dynamical density functional theory (DDFT) for colloidal fluids
including the effects of inertia and hydrodynamic interactions (HI). We compare the resulting
theory to extensive Langevin dynamics simulations for both hard rod systems and
three-dimensional hard sphere systems with radially symmetric external potentials. As well as
demonstrating the accuracy of the new DDFT, by comparing with previous DDFTs which
neglect inertia, HI, or both, we also scrutinize the significance of including these effects. Close
to local equilibrium we derive a continuum equation from the microscopic dynamics which is
a generalized Navier–Stokes-like equation with additional non-local terms governing the
effects of HI. For the overdamped limit we recover analogues of existing configuration-space
DDFTs but with a novel diffusion tensor.

(Some figures may appear in colour only in the online journal)

1. Introduction

In fluid dynamics it is often sufficient to model the individual
fluid particles as a continuum, for example by employing
the Navier–Stokes equation. However, for colloidal fluids
where mesoscopic particles (typically of size 1 nm–1 µm) are
suspended in a bath of many more, much smaller and much
lighter particles, one is interested in the dynamics on length
scales comparable to the size of the colloidal particles [1]. In
this case, a continuum, macroscopic formalism is insufficient.

Since the experimental observations of the Brownian
motion of pollen particles in water in the 19th century [2], the
study of classical fluids (systems of particles at sufficiently
high temperature that quantum effects can be neglected), such
as colloidal systems, has been fundamental not only to the
development of statistical mechanics starting from the work

of Einstein [3], Langevin [4] and Smoluchowski [5], but also
to many other fields in physics, chemistry and engineering.
Examples include the evolution of microscopy over the last
century [6–8], recent advances in biophysical research [9]
and the rapidly growing field of microfluidics [10–12].
Such colloidal systems are important model ones for both
theoretical and experimental scrutiny. Many of the forces
governing their structure and behaviour govern also the
structure and behaviour of molecular matter, whilst the
sufficiently large physical size of colloidal particles enables
them to be accessed experimentally.

The full dynamics of the system are described by
the deterministic Newtonian dynamics of the positions and
momenta of both the colloidal and the bath particles.
However, since the bath particles are much lighter than the
colloidal particles, their typical velocities are much higher
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than those of the colloidal particles. Hence, if one is interested
in only the dynamics of the colloidal particles, the multi-scale
nature of the problem enables one to average out the rapid
fluctuations in the positions and momenta of the bath particles.
Such a description is valid on timescales t � τb, where τb is
the typical time between collisions of the bath particles. In
this coarse-grained model, only the positions and momenta
of the colloid particles are treated explicitly. The need for
such an approximation can be seen from the fact that a
colloidal particle of diameter 1 µm occupies the same volume
as of the order of 1010 water molecules. A typical collision
timescale for the water molecules is 10−15 s, whilst a typical
colloid particle will take about 1 s to diffuse a distance
comparable to its diameter. Hence, modelling the full system
is computationally intractable due both to the large number
of particles and the wide range of timescales which must be
considered.

A further complication of colloidal systems compared to
molecular fluids arises from the interaction of the colloidal
and bath particles. The motion of the colloidal particles causes
flows in the bath, which in turn cause forces on the colloidal
particles. These hydrodynamic interactions (HI), along with
thermally induced collisions of bath particles with colloidal
particles, are modelled via stochastic Langevin equations for
the particle positions and momenta, or the corresponding
Fokker–Planck equations for the probability distributions.
However, for large numbers of particles, these equations
become computationally prohibitive and a reduced model is
required.

One technique for obtaining such reduced models is
the dynamical density functional theory (DDFT) approach.
This is a statistical mechanics approach in which one aims
to reduce the full dynamics to closed equations for the
dynamics of one-body quantities, such as the one-body
position distribution ρ(r, t). A typical DDFT is a continuity
equation for the density ∂tρ(r, t)+∇r ·J([ρ], r, t) = 0, where
J is a functional of the density. The main computational
advantage of such DDFTs over the full N-body dynamics is
that of dimensionality. The full description of N particles in d
dimensions requires the study of 2dN variables (dN positions
and dN momenta), whilst DDFTs are PDEs in only the d
spatial variables and one time variable. This is independent of
the number of particles N, allowing arbitrarily large numbers
of particles to be studied for constant computational cost.
Whilst it has been shown rigorously that the full N-body
distribution is a functional of the one-body distribution [13],
the functional itself is unknown. For computations this
functional, or a good approximation to it, needs to be known
explicitly. Due to the large body of work and success of
equilibrium density functional theory (DFT) (see [14, 15] for
early work and [16, 17] for recent reviews), this functional
is usually based upon the free energy functional of a related
equilibrium system. This approach also ensures that the
DDFT reduces to the correct static DFT at equilibrium. In this
sense DDFT is a direct generalization of DFT.

Beyond the separation of colloidal and bath dynamics de-
scribed above, there are several additional natural timescales
associated with the colloidal particle dynamics [18], of which

we consider only τB, the typical relaxation time of the
colloidal particle momenta due to friction with the bath.
A typical value is τB = 10−7 s [19]. For times t � τB,
the momenta of the colloidal particles are at equilibria, and
interest lies in the dynamics of their positions.

DDFT formulations for the colloidal position density
were first obtained phenomenologically by Evans [14] and
Dietrich et al [20]. There has since been an effort to more
rigorously derive such a result from the Smoluchowski
equation: in this way Marconi and Tarazona [21, 22]
derived a DDFT for pairwise potentials. ∂tρ(r, t) = ∇r ·

[ρ(r, t)∇rδF[ρ(r, t)]/δρ(r, t)], where F[ρ] is the free energy
functional for an equilibrium system with the same one-
particle density. This is commonly called the adiabatic
approximation. Later Archer and Evans [23] obtained the
analogous result for general N-body interaction potentials,
including the incorporation of a mobility constant. Español
and Löwen [24] derived an analogous result using projection
operator techniques.

All of these results ignore HI. In contrast, Rex and
Löwen [25] derived a DDFT from the Smoluchowski equation
with a two-body diffusion tensor and interparticle potential
to include HI. Attempts have also been made to model
hydrodynamic interactions via a density-dependent friction
coefficient [26, 27].

Despite the typical timescale separation discussed earlier,
there are a wide range of applications in which the
momenta of the particles are important. Examples include
wetting phenomena [28–30], aerosol deposition and cloud
formation [31–35], and the transport and coagulation of
nanoparticles in pulsatile flow, such as in the cardiovascular
system and oscillatory flow mixing [36]. In many of these
applications HI also play a crucial role, strongly affecting flow
patterns and clustering effects.

In order to incorporate the effect of inertia into DDFTs,
two different approaches have been considered. The first,
introduced by Marconi, Tarazona and co-workers [37–41],
uses a multiple-timescale approach. The second approach,
that of Archer [42], takes momentum moments of the
Kramers equation, giving a DDFT coupled to an evolution
equation for the one-body velocity distribution. This is the
approach that we will adopt here. As with the majority of the
configuration-space DDFTs mentioned above, none of these
previous approaches includes HI. A first stab at the problem
of deriving a general DDFT was the recent study in [43].
In the high-friction limit, and neglecting HI, this reduces to
the configuration-space DDFT of Marconi and Tarazona as
was shown in the recent study in [44] which also includes
a schematic synopsis of many previous DDFTs. Under
additional assumptions on the form of the friction tensor, it
also recovers the result of Rex and Löwen, including HI, but
in general results in a novel diffusion tensor. Here we build on
this initial work, outlining in detail the methodologies, both
existing (e.g. Grad’s moment approach) and novel, required
for the derivation of a general DDFT, discussing the various
approximations as well as extending the numerical validation
and experiments to time-dependent external potentials for
both 3D hard spheres and 1D hard rods. In addition, we
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demonstrate the connections between our DDFT and the
Navier–Stokes equation (close to local equilibrium) and
existing, overdamped DDFTs (in the high-friction limit).

In the following we will derive a DDFT from the Kramers
equation with a general friction tensor and interparticle
potential. We will show that, under suitable assumptions, we
obtain many existing DDFTs as special cases. In section 2 we
discuss the standard underlying N-body equations of motion
and compute explicitly the first two equations in an infinite
hierarchy for the dynamics of the momentum moments of the
density. In section 3 we make three approximations, allowing
us to derive our DDFT, which we then verify numerically in
section 4. In section 5 we assume in addition that the system
is close to local equilibrium and derive a Navier–Stokes-like
integro-differential equation. In section 6 we show that in
the high-friction regime we recover a position-space DDFT,
which under additional assumptions reduces to that of Rex
and Löwen [25]. Finally, concluding remarks are offered in
section 7 where we also discuss some of the many open
problems in this rapidly emerging field.

2. Equations of motion

We consider a system with N identical, spherically symmetric
colloidal particles in a bath of many more, much smaller and
lighter solvent particles. As described in the Introduction, it
is assumed that the dynamics of the bath particles relaxes on
a much shorter timescale than that of the colloidal particles,
and hence the intra-bath interactions may be treated via
coarse-graining. Interest then lies in the positions rN

=

{r1, . . . , rN} and momenta pN
= {p1, . . . ,pN} of the colloidal

particles.
The underlying dynamics of the colloidal particles are

described by the Langevin equations

ṙi =
pi

m
,

ṗi = −∇riV(r
N, t)−

N∑
j=1

Γij(rN)pj +

N∑
j=1

Aijfj(t) (1)

where fi(t) =
(
ξ x

i (t), ξ
y
i (t), ξ

z
i (t)

)T is a Gaussian white noise
term with 〈ξa

i (t)〉 = 0 and 〈ξa
i (t)ξ

b
j (t
′)〉 = 2δijδ

abδ(t − t′).
Along with the gradient of the potential V , there are two
additional sets of forces due to the bath. Firstly, the motion
of the colloidal particles causes fluid flows in the bath, which
in turn cause forces on the colloidal particles. This coupling
of momenta and forces, already referred to as HI, is governed
by Γ, the 3N × 3N positive-definite friction tensor Γ(rN) =

(Γij(rN)) formed from the 3 × 3 matrices Γij. Secondly,
forces are generated by random collisions of the bath particles
with the colloidal particles. The strength of these forces is
given by A, which is coupled to Γ through the generalized
fluctuation-dissipation relation A =

√
mkBTΓ [45]. Here m

is the particle mass, kB is Boltzmann’s constant and T is the
temperature, which we assume to be constant since the bath
acts also as a heat bath.

The corresponding Fokker–Planck equation for the
evolution of the phase-space distribution function, known as

the Kramers equation (see e.g. [46]), is

∂tf
(N)(rN,pN, t)+

1
m

N∑
i=1

pi ·∇ri f
(N)(rN,pN, t)

−

N∑
i=1

∇riV(r
N, t) ·∇pi f

(N)(rN,pN, t)

=

N∑
i,j=1

∇pi ·

[
Γij(rN)

(
pj + mkBT∇pj

)
f (N)(rN,pN, t)

]
. (2)

Here, f (N)(rN,pN, t) is the probability of finding each particle
j at position rj with momentum pj at time t. We note that
in the above we have used the notation rN

= r1, . . . , rN
and analogously for pN . In the following we generalize this
notation to rn

= r1, . . . , rn and drN−n
= drn+1 . . . drN , with

corresponding expressions in p.
Since the solution of the Langevin equations (1) requires

finding the square root of Γ, a standard time-stepping
algorithm will require O(N3) operations at each time step,
and quickly becomes computationally intractable. For large
N, solving Kramers’ equation (2) is no simpler as it is a
high-dimensional partial differential equation (PDE), which
must be solved via Monte Carlo methods, with the same
difficulties as for the solution of (1). One way to overcome
this limitation is to ignore HI by setting Γ = γ 1 for some
constant γ . Whilst this reduces the computational scaling to
O(N), it also ignores many important physical effects. We now
describe a reduced, computationally tractable model which
retains the full HI.

A standard approach for both classical (e.g. the
Navier–Stokes equations) and quantum (e.g. density func-
tional theory) systems is to average over the degrees of free-
dom of all but a few particles, leading to a lower-dimensional
problem. In both the classical [13] and quantum [47] cases
it is known rigorously that the full N-particle probability dis-
tribution is a functional of the one-body position distribution
ρ(r1, t) =

∫
drN−1dpN f (N)(rN,pN, t). Hence, in principle,

the solution of (2) can be determined by solving a (3 +
1)-dimensional PDE. The difficulty lies in the fact that the
functional relating ρ(r1, t) to f (N)(rN,pN, t) is unknown. In
fact, the equilibrium functional relating ρ(r, t) to f (N)(rN,pN)

is also unknown for all but the simplest one-dimensional
(1D) cases [48]. The challenge is therefore to find suitable
approximate closures for the dynamics of ρ(r1, t), i.e. to
derive a DDFT.

We now make our first approximation, namely that the
potential may be written as a linear combination of n-particle
interactions:

V(rN, t) =
N∑

i=1

V1(ri, t)+
N∑

n=2

1
n!

N∑
i1 6=...6=in=1

Vn(ri1 , . . . , rin),

(3)

where we have assumed that the interparticle potentials
depend on time only through the time-dependent particle
positions, whilst the external potential may be explicitly time
dependent. For ease of notation, we write the friction tensor as

Γij = γ δij1+ γ Γ̃ij, (4)
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where γ is the friction coefficient for a single, isolated particle
and the Γ̃ij are the HI tensors. Furthermore, when γ = 0,
this reduces to the Liouville equation, i.e. the dynamics in
the absence of a bath. In this way, the discussions below
also apply to molecular fluids, but it is more difficult,
except in very special cases, to justify the local-equilibrium
approximation discussed in section 3.2.

We now define the set of reduced phase-space distribution
functions

f (n)(rn,pn, t) =
N!

(N − n)!

∫
drN−ndpN−nf (N)(rN,pN, t),

and corresponding configuration-space distributions

ρ(n)(rn, t) =
∫

dpnf (n)(rn,pn, t),

where for ease of notation we denote ρ(1) by ρ. Our strategy
is to determine the momentum moments of the Kramers
equation (2), giving an infinite hierarchy of equations which
must then be truncated. We begin by integrating (2) over
all but one-particle position (N

∫
drN−1dpN (2)), giving a

continuity equation

∂tρ(r, t)+∇r · j = 0, (5)

where, as before, ρ is the one-body density and j is the current
j(r, t) =

∫
dp p

m f (1)(r,p, t).
At this stage, the HI have no effect (as they conserve

mass). However, they enter the equation for the current, which
we obtain by multiplying (2) by Np1/m and again integrating
over all but r1, giving (after some integration by parts and use
of the divergence theorem in the HI term)

∂tj(r1, t) + ∇r1 ·

∫
dp1

p1 ⊗ p1

m2 f (1)(r1,p1, t)

+
1
m
ρ(r1, t)∇r1V1(r1, t)

+
1
m

N∑
n=2

∫
drn−1

∇r1Vn(rn)ρ(n)(rn, t)+ γ j(r1, t)

+
γN

m

N∑
j=1

∫
drN−1dpNΓ̃1j(rN)pjf

(N)(rN,pN, t)=0,

(6)

where ⊗ denotes the dyadic or tensor product.
Whilst we could compute higher momentum moments of

(2), we instead now aim to close the hierarchy and derive a
DDFT involving only functionals of the density. The three
terms in (6) which need to be approximated are (i) the term
involving the dyadic product, which is reminiscent of the
divergence of a kinetic pressure tensor, (ii) the many-body
potential terms, and (iii) the HI terms.

In the next section, we will first remove the dependence
on ρ(n) of the terms containing the potential via the widely
used adiabatic approximation originally suggested in [21]. We
then consider the dyadic product term by decomposing f (1)

into a sum of local equilibrium and non-equilibrium terms.
Finally, we discuss how to deal with the f (n) in the HI terms,
with particular emphasis on two-body interactions. This will

allow us to derive a general DDFT containing both inertia
and HI. By setting Γ = γ 1 we recover the DDFT derived by
Archer [42], which neglects HI. In the large-γ limit, we obtain
a DDFT analogous to that of Rex and Löwen [25], but with a
modified HI term. See [44]. This in turn, by neglecting HI,
recovers the original DDFT of Marconi and Tarazona [21].
The passage to the overdamped limit was treated rigorously
in [44].

3. Derivation of the DDFT

3.1. The adiabatic approximation

For non-equilibrium systems, little is known about appropriate
choices of functionals required to close the hierarchy
discussed above. However, in equilibrium systems, these
functionals have received much attention and are well
understood. For example, hard sphere systems are well
approximated by fundamental measure theory (FMT) [49–52]
whilst mean-field theory [53, 54] becomes exact for soft
interactions at high densities [55]. Hence, Marconi and
Tarazona [21, 22] suggested approximating the higher-body
correlations by those of an equilibrium fluid with the same
density ρ. This is known as the adiabatic approximation.

To proceed, we consider the Helmholtz free energy
functional F[ρ] = kBT

∫
drρ(r, t)

[
ln
(
33ρ(r, t)

)
− 1

]
+

Fexc[ρ] +
∫

drρ(r, t)V1(r, t), which is minimized at
equilibrium. Here 3 is the de Broglie wavelength, which will
turn out to be irrelevant. F contains an ideal gas term, a term
which depends on the external potential, and an excess over
ideal gas term Fexc[ρ], which is generally unknown but by
definition satisfies the equilibrium sum rule

ρ(r1, t)∇r1

δFex[ρ]

δρ

=

N∑
n=2

∫
dr2 . . . drn∇r1Vn(rn)ρ(n)(rn, t). (7)

We now assume that the n-body densities in the true
non-equilibrium system are well approximated by the n-body
densities in the corresponding equilibrium system with the
same density, i.e. that (7) also holds out of equilibrium. Using
the definition of F along with equations (6) and (7) gives

∂tj(r1, t) + A(r1, t)+
1
m
ρ(r1, t)∇r1

δF[ρ]
δρ
+ γ j(r1, t)

+
γN

m

N∑
j=1

∫
drN−1dpNΓ̃1j(rN)pjf

(N)(rN,pN, t)=0,

(8)

where we have defined a kinetic pressure term

A(r, t) := ∇r ·

∫
dp
(p⊗ p

m2 −
kBT

m
1
)

f (1)(r,p, t). (9)

Note in particular that A is zero at equilibrium, when f (1) is
a Maxwell–Boltzmann distribution. Furthermore, the kernel
of the integral in (9) is now orthogonal to 1 and p in the
Maxwell–Boltzmann weighted inner product; see section 3.2.
We now discuss how to treat A away from equilibrium.
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3.2. Expansion of the one-body distribution

One common approximation in statistical mechanics is to
assume that the one-body distribution is at local equilibrium,
i.e. that the system may be divided into cells sufficiently
small that the thermodynamic quantities such as density,
momentum and temperature can be assumed to be constant
on each cell, but also sufficiently large to be treated
as macroscopic thermodynamic subsystems [56]. For a
general one-body distribution, these quantities correspond
to moments of the momentum. Defining

∫
dpf (1)(r,p, t) =

ρ(r, t),
∫

dppf (1)(r,p, t) = ρ(r, t)mv(r1, t), and
∫

dp|p −
mv(r, t)|2f (1)(r,p, t) = ρ(r, t)mkBT, we have a local-
equilibrium approximation to the true distribution

f (1)le (r,p, t) =
ρ(r, t)

(2πmkBT)3/2
exp

(
−
|p− mv(r, t)|2

2mkBT

)
. (10)

Here, we go beyond local equilibrium by expanding
f (1)(r,p, t) = f (1)le (r,p, t) + f (1)neq(r,p, t), where the local
equilibrium and non-equilibrium parts satisfy∫

dpf (1)le (r,p, t) = ρ(r, t), (11)∫
dpf (1)neq(r,p, t) = 0, (12)∫

dppf (1)le (r,p, t) = ρ(r, t)mv(r, t), (13)∫
dppf (1)neq(r,p, t) = 0 (14)∫

dp|p− mv(r, t)|2f (1)le (r,p, t) = ρ(r, t)mkBT, (15)∫
dp|p− mv(r, t)|2f (1)neq(r,p, t) = 0. (16)

Note that an analogous partition of f is used in
lattice–Boltzmann theory, where the integral restrictions
are replaced by sums due to the discreteness of the
lattice–Boltzmann model. See e.g. [57].

Physically, as seen above, f (1)le determines local quantities,

such as density, velocity and temperature. In contrast, f (1)neq
determines transport processes such as the pressure tensor
and heat flux. For example, the heat flux is given by
q(r, t) = 1

2

∫
dp|w|2wf (1)(r,p, t) = 1

2

∫
dp|w|2wf (1)neq(r,p, t),

where w = p − mv(r, t) [58, (3.15)]. The contribution from
f (1)le vanishes due to symmetry of the integral. Whilst higher
moments of p may be treated theoretically, for practical
purposes they are of less interest as they are rarely investigated
experimentally.

Returning for a moment to (8), it is trivial to see from
(13) and (15) that j(r, t) = jle(r, t) = ρ(r, t)v(r, t) and using
the definition of A (9),

A(r, t) = ∇r ·
[
ρ(r, t)v(r, t)⊗ v(r, t)

]
+ ∇r ·

∫
dp

p⊗ p
m2 f (1)neq(r,p, t), (17)

where the matrix given by the integral in the second term is

trace-free. Using the identity

∂t
(
ρ(r, t)v(r, t)

)
+∇r ·

[
ρ(r, t)v(r, t)⊗ v(r, t)

]
= ρ(r, t)∂tv(r, t)+

(
v(r, t) ·∇r

)
v(r, t) (18)

(see e.g. [42, (27)–(31)]) in (8) produces the evolution
equation

ρ(r1, t)∂tv(r1, t)+ ρ(r1, t)
(
v(r1, t) ·∇r1

)
v(r1, t)

+ ∇r1 ·

∫
dp1

p1 ⊗ p1

m2 f (1)neq(r1,p1, t)

+
1
m
ρ(r1, t)∇r1

δF[ρ]
δρ
+ γρ(r1, t)v(r1, t)

+
γN

m

N∑
j=1

∫
drN−1dpNΓ̃1j(rN)pjf

(N)(rN,pN, t) = 0.

(19)

There are a number of standard approaches to
approximating the non-equilibrium term. We will focus
on two, namely the Chapman–Enskog [59] and Grad [58]
approximations. Both approximations make an expansion
around the local-equilibrium distribution as f (1) = f (1)le [1 +

φ1 + φ2 + · · ·] = f (1)le + f (1)neq. The difference lies in the choice
of the φi. The aim is to construct a ‘normal solution’ for which
all space and time dependence is implicitly described in terms
of the hydrodynamic variables ρ, v and T [56].

In the Chapman–Enskog method, it is assumed that the
solution is close to local equilibrium, and f (1) is expanded in
the gradients of ρ, v and T . This expansion is then truncated
at a finite order. In Grad’s model, the non-equilibrium term
is expanded in moments (in p) of the distribution function,
i.e. in terms of projections onto Hermite polynomials. It is
then standard to truncate the expansion such that only thirteen
moments remain [58].

In this section, we take our lead from Grad’s method for
two reasons: (a) we wish to consider distributions which are
not ‘close’ to local equilibrium and (b) the terms in (19) are
naturally expressed as projections onto Hermite polynomials.
In section 5 we will demonstrate that the Chapman–Enskog
method allows us to connect (19) with the Navier–Stokes
equation.

We begin with the generalized Hermite polynomials of
one variable, H[α]n = H[1]n

(
x/
√
α
)
/
√

n!, which are orthonor-
mal with respect to the weight (2πα)−1/2 exp(−x2/(2α)),
giving a basis of R. An orthonormal basis of Rd is then
given, for n ∈ N ∪ {0} and β a vector of non-negative
integers, by P[α]n,β(x1, . . . , xd) = H[α]β1

(x1) . . .H
[α]
βd
(xd),

∑
βi =

n (see e.g. [60]; this follows from Rd being a product
space). For reference, in three dimensions and with ej

the standard unit vectors for R3, the first few P[α]n,β are

given by P[α]0,(0,0,0) = 1, P[α]1,ej
= xj/

√
α, and P[α]1,(ej+ek)

=

xjxk/α − δjk. We now set α = mkBT and write f (1)(r,p, t) =

f (1)le (r,p, t)
(
1+8(r,p, t)

)
with fle as in (10) and8(r,p, t) =∑

n,βBn,β(r, t)P[α]n,β(p − mv(r, t)). The requirements on f (1)neq
imposed by (11)–(16) then reduce to B0,{0,0,0} = B1,ej = 0, j=
1, 2, 3, and

∑
jB2,2ej = 0. Furthermore, by the orthonormality

5
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of the Hermite polynomials,
[∫

dp (p ⊗ p)f (1)neq(r,p, t)
]

i,j =

mkBTρ(r, t)B2,ei+ej , irrespective of whether the expansion in
Hermite polynomials is truncated or not.

In particular, the kinetic pressure term need not be
small out of local equilibrium as the B2,ei+ej are completely
independent of ρ, v and T . To understand the evolution of this
term, it would be necessary to consider the energy equations
(found by multiplying (2) by pipj and integrating). To do so
would require knowledge of the terms in f (1) proportional
to P3,β , again leading to an infinite hierarchy of equations,
which must be truncated. In section 6 we show that the kinetic
pressure term may be neglected in the limit of large friction,
i.e. γ � 1; see [44] for a rigorous study of this regime.
Assuming for the moment that we may approximate or neglect
the term containing f (1)neq, in order to obtain a DDFT, it remains
to treat the friction tensor term in (19).

3.3. Two-body friction and the Enskog closure

For this section we restrict our analysis to the case where Γ̃ij
are given by linear combinations of two-body interactions.
This is analogous to the two-body restriction on the diffusion
tensor in [25]. However, it is not in general the case that if
D contains only two-body interactions then so does Γ. This
can be seen from the definition D = kBT/mΓ−1, noting that
each element of the inverse will include the inverse of the
determinant, which contains all entries of D, and hence will
in general be an N-body form. This restriction to two-body
terms can be lifted if one can obtain accurate approximate
functional relationships between f (n) and f (1), n = 3, . . .N,
as we now discuss for f (2) (see (20)). We note that, for
unbounded, Stokes-flow baths, general two-body expansions
are available for both the diffusion and friction tensors, which
are valid for all separations [61]. It is worth noting that the
two-body formulation of the friction tensor is generally more
accurate than that of the diffusion tensor, which can lead to
unphysical effects [62].

After the restriction to two-body HI, (19) contains only
f (2)(r1,p1, r2,p2, t). We make the Enskog approximation

f (2)(r1,p1, r2,p2, t)

= f (1)(r1,p1, t)f (1)(r2,p2, t)g(r1, r2, [ρ]), (20)

where in particular we have defined there to be no explicit
momentum correlation [63–65]. Despite this, as we will
see, the DDFT (23) still retains momentum correlations
through the HI tensor. Going beyond this approximation
introduces additional coupling between the momentum
moment equations, analogous to the term in (19) containing
fneq, which must then also be approximated. The functional
dependence of f (2) on ρ can be rigorously justified from
the fact [13] that the full time-dependent N-body distribution
is a functional of ρ [13], and hence so are all the reduced
distributions. However, as with the excess over the ideal gas
term, the exact form of this functional is unknown.

We now assume that we know g exactly, or have a good
approximation for it (see the end of this section for further

details) and write

Γ̃ij(rN) = δij

∑
`6=i

Z1(ri, r`)+ (1− δij)Z2(ri, rj), (21)

which is the most general form of Γ̃ij under the assumptions
that Γ is invariant under interchange of particle labelling, that
there are only two-body interactions, and that the force on
particle i caused by the momentum of particle j is independent
of the positions of the remaining particles. Inserting (21) into
(19) and performing the remaining p integrations in the HI
term gives

ρ(r1, t)∂tv(r1, t)+ ρ(r1, t)
(
v(r1, t) ·∇r1

)
v(r1, t)

+ ∇r1 ·

∫
dp1

p1 ⊗ p1

m2 f (1)neq(r1,p1, t)

+
1
m
ρ(r1, t)∇r1

δF[ρ]
δρ
+ γρ(r1, t)v(r1, t)+ γρ(r1, t)

×

∫
dr2
[
Z1(r1, r2)v(r1, t)+ Z2(r1, r2)v(r2, t)

]
× ρ(r2, t)g(r1, r2, [ρ]) = 0. (22)

Finally, neglecting the f (1)neq term as described in the previous
section and dividing throughout by ρ(r1, t), we obtain

∂tv(r1, t)+
(
v(r1, t) ·∇r1

)
v(r, t)

+
1
m

∇r1

δF[ρ]
δρ
+ γ v(r1, t)

+ γ

∫
dr2
[
Z1(r1, r2)v(r1, t)+ Z2(r1, r2)v(r2, t)

]
× ρ(r2, t)g(r1, r2, [ρ]) = 0. (23)

This, combined with the continuity equation

∂tρ(r1, t)+∇r1 ·
(
ρ(r1, t)v(r1, t)

)
= 0, (24)

gives a DDFT for ρ, which is our main result. In particular,
we recover the DDFT of [42] by setting Z1 = Z2 ≡ 0.

We now discuss the physical interpretation of the terms
depending on the Zi. The first term in the integral in (23)
may be combined with the γ v to give a density-dependent
effective friction coefficient. If Z2 ≡ 0 then this is the only
additional term, and the equation is non-local in ρ and local
in v, which is expected, as it is the off-diagonal terms in Γ that
couple the momenta of different colloid particles. A non-zero
Z2 introduces non-localities in v representing, at a mean-field
level, the coupling of velocities of different particles, which
is retained despite making the Enskog approximation (20). As
shown in [44], since Γ is positive-definite,

v(r1, t) · γ
[
1+

∫
dr2 [Z1(r1, r2)v(r1, t)

+ Z2(r1, r2)v(r2, t)]

× ρ(r2, t)g(r1, r2, [ρ])
]
> 0, (25)

and the overall effect is a friction-like retardation of velocity.
It is well known that hydrodynamic interactions (here

described by the Zi) are long range, typically decaying as the
inverse of the particle separation. This calls into question the
convergence of the integrals in (23), the integrand of which,

6
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for arbitrary v, ρ and g, does not have sufficiently rapid
decay. However, we assume (as is done in the derivation of
the Rotne–Prager tensor) that the velocity and density have
sufficient decay as |r| → ∞ for the integrals to be well
defined. This is certainly physically reasonable for systems
with a finite number of particles. In particular, for confined
systems the density and velocity are both zero outside some
finite volume.

It remains to determine the correlation function
g(r1, r2, [ρ]), i.e. to explicitly close (23). Under the adiabatic
approximation, it is determined by the Ornstein–Zernike
equation [14] g(r1, r2) = 1+ c(2)(r1, r2)+

∫
dr3
[
g(r1, r3)−

1
]
ρ(r3)c(2)(r2, r3), where c(2)(r1, r2) =

δ2 Fexc[ρ]
δρ(r1,t)δρ(r2,t)

. We
recall that, in general, Fexc[ρ] is not known explicitly. The
exception is for hard rods in one dimension, in which case g
may be computed (numerically) with no further assumptions.
Whilst in principle one can obtain g from these two equations,
in practice it is useful to assume that g(r1, r2, [ρ]) may be
well approximated by some known g̃(|r1 − r2|, η), where η
is a scalar parameter such as the average packing fraction.
This additional approximation neglects anisotropies of the
system, both in the averaging procedure and in the reduction
to dependence on particle separation. The advantage for a
hard sphere fluid is that an analytic expression for g̃ has
been derived via the Percus–Yevick equation. We also note
that the density dependence of g introduces an implicit time
dependence. However, as we will see in the next section, it
is often sufficient to choose a simple approximation to g.
We further note that it is possible to derive an equation of
motion for g by integrating (2) over all but two positions.
However, this doubles the dimension of the resulting problem,
and requires additional closure schemes.

Before discussing approximations to fneq in (22), we
verify our DDFT via numerical experiments under the
assumption that fneq = 0.

4. Verification and numerical experiments

The purpose of this section is twofold. Firstly we demonstrate
that, at least for the model systems investigated here, the
unconstrained approximations made in deriving (23) produce
an accurate DDFT. Secondly, the numerical implementation
of such DDFTs is non-trivial, but must be performed for the
DDFT to be more than a theoretical tool.

We consider four pairs of simulations, which contrast
various DDFTs with the underlying stochastic dynamics, and
the effects of inertia and HI. The first pair of simulations
accounts for both inertia and HI and consists of our DDFT
(23) and (24) and the Euler–Maruyama [66] solution of the
full Langevin equations (1). The second pair of simulations
includes inertia but neglects HI by solving the same two sets
of equations but with the HI tensor Γ̃ ≡ 0. This is the special
case previously derived by Archer [42]. The third pair neglects
inertia but retains HI in the form of a two-body diffusion
tensor, with the DDFT derived by Rex and Löwen [25]
compared to the Ermak–McCammon [45] solution of the
corresponding configuration-space stochastic equations. The
final pair neglects both inertia and HI by choosing the

diffusion tensor to be a scalar multiple of the identity in
the DDFT and stochastic equations. This corresponds to the
original DDFT of Marconi and Tarazona [21].

For the whole of this section we non-dimensionalize the
equations with the units of length, mass and energy being σ , m
and kBT , respectively. We also fix the dimensionless friction
coefficient γ = 2 but note that we have tested the formalism
for a wide range of γ and choice of potentials. The specific
choice of γ is relatively unimportant. For increasingly larger
values of γ , the dynamics approach those of the more standard
overdamped DDFTs, whilst for increasingly smaller values
the effects of inertia are more obvious, but the approximation
of neglecting fneq can lead to numerical instabilities for very
small values. These numerical issues suggest that the DDFT
presented here is not applicable for molecular fluids which
have γ = 0.

We choose the colloidal particles to be hard spheres,
with V2(|r − r′|) = ∞ for |r − r′| < 1 and zero otherwise.
For the stochastic calculations, where the potential must be
differentiable, we use a slightly softened potential V2(|r −
r′|) = |r − r′|−48

− |r − r′|−24
+ 1/4 if |r − r′| <

21/24 and zero otherwise. For the DDFT calculations,
we choose F to be either the exact 1D hard rod
functional first derived by Percus [48], or the approximate
three-dimensional FMT functional of Rosenfeld [49] as
appropriate. Whilst, as discussed above, it is possible to
obtain the equilibrium correlation functional g from the
Ornstein–Zernike equation [14], we choose g to be the
simplest possible hard sphere approximation, g(|r − r′|) =
0 for |r − r′| < 1 and unity otherwise. This significantly
simplifies the DDFT calculation and, as we will see, has little
effect on the quality of the results. This approximation is more
accurate for diffuse systems, and is likely to break down when
the particles are tightly packed.

For the diffusion tensor in the configuration-space
calculations, we choose the same Rotne–Prager two-body
approximation as was used in [25], i.e. D = (Dij) with

Dij(rN) = γ−1

[
δij1+ δij

N∑
`6=i

D11(ri − r`)

+ (1− δij)D12(ri − rj)

]
. (26)

We also introduce a hydrodynamic diameter σH < σ which
allows us to neglect lubrication forces present when particles
are close to each other. In addition, this parameter increases
the accuracy of the two-body approximation for the friction
tensor that we shall discuss shortly. Such an effective diameter
is appropriate for many commonly studied colloidal particles
which consist of a hard core with a layer of polymer; see
e.g. [67]. We choose σH = 0.5, but good agreement was found
between the DDFTs and stochastic calculations containing HI
for σH . 0.75. The DDFTs without HI are independent of this
choice. Our choice for the diffusion tensor is

D12(r) =
3
8

(σH

|r|

)[
1+

r⊗ r
|r|2

]
+

1
16

(σH

|r|

)3[
1− 3

r⊗ r
|r|2

]
(27)

and D11 = O(1/r4) and so, for diffuse systems, is negligible.
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Figure 1. Comparison of four different DDFTs (lines) and the corresponding underlying stochastic simulations (symbols) for eight hard
rods in an oscillating potential (see the text). Full phase space with (blue, solid, circles) and without (red, long dashes, squares) HI and the
overdamped approximation with (green, short dashes, triangles) and without (purple, dotted, stars) HI. The left column shows particle
distribution as a function of position at three representative times. The right column shows the corresponding velocity distributions for the
phase-space calculations. Insets show the external potential as a function of z at each time. Note the excellent agreement between the DDFT
and stochastic calculations, as well as the qualitative differences introduced by the inclusion of inertia and/or HI.

The full tensor D is positive-definite (which is required
for the stochastic equations) and two-body. In contrast, there
is no such standard formulation for the friction tensor. We
therefore choose Γ = D−1, which is also positive-definite. For
the two-body approximation required by the DDFT, we use
the eleven-term expansion given by Jeffrey and Onishi [61],
under the assumption that σH/|ri − rj| is small. We will see
that although not strictly equivalent, these two approximations
are in good quantitative and excellent qualitative agreement,
but exact agreement should not be expected.

As mentioned previously, the Langevin equations are
solved using the Euler–Maruyama scheme [66] for phase-
space calculations and the Ermak–McCammon scheme [45]
for the configuration-space calculations. We average over
5000 simulations where the step size is chosen such that
halving it produces no appreciable change in the results.
The DDFTs are solved using spectral methods [68], suitably
extended to integro-differential equations along with a
fifth-order implicit Runge–Kutta method with step size
control [69].

We first consider a 1D system consisting of eight hard
rod particles initially at equilibrium in a confining quadratic
external potential V1(z) = 0.01z2, which is not strong enough
to force layering effects. Thus, the difference between
the grand canonical DDFT formalisms and the canonical
stochastic equations is minimized; cf figure 1 of [21] where
the difference for strongly confining potentials is large. At
time t = 0 the external potential is instantaneously switched to
one of the form V1(z, t) = 0.01z2

+ 20 exp
(
−(z− z0(t))2/40

)
where z0(t) = 12 sin(tπ/8), which consists of the original
quadratic potential and a Gaussian bump, the mean position

of which oscillates in time. The precise external potentials
chosen in this section are unimportant; we have found
very good agreement between the DDFTs and stochastic
simulations for a wide range of potentials. They are chosen
to (exponentially) confine the density, but without hard walls,
which drastically increase the complexity of the HI and which
will be the focus of future work. These can be thought of as
simple models for physical systems such as particles confined
by an optical trap, as in [25]. Dynamics are then induced by a
time dependence of the external field.

In figure 1 we show the position ρ(z) and velocity v(z)
distributions for various times. The agreement between the
DDFT and stochastic simulations is very good in all four
cases. In addition, there are qualitative differences between
the four pairs of simulations, demonstrating the importance of
both inertial effects and HI. Quantitatively, we note that in this
case HI appear to reduce the overall friction of the system.
Whilst the velocity profiles with and without HI are similar,
those when HI are included have higher absolute velocities. In
figure 2 we plot the change in the number of particles between
z = −8 and z = 8 (i.e.

∫ 8
−8 dzρ(z, t)) over time. Recall that

the system is unconfined, but the density decays exponentially
quickly to zero. Once again, the agreement between DDFT
and stochastic calculations is very good and one sees the large
quantitative differences produced by including HI.

We next study a 3D radially symmetric system where, for
r = |r|, V1(r, t) = 0.1r2(1− h(r, t))− β exp[(r− r0(t))2/α2

]

where h(r, t) = (1/2)[erf[(r+ r0(t))/α] − erf[(r− r0(t))/α]]
is a smooth cut-off function. Hence, the density depends only
on the radial coordinate and the DDFT may be reduced to
a 1D calculation. We consider first fifty particles with α = 4,

8
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Figure 2. Change in the number of particles in [−8, 8] from four
DDFTs (lines) and corresponding stochastic simulations (symbols)
for eight hard rods in an oscillating potential (see the text). The lines
and symbols are as in figure 1.

β = 10 and r0(t)= 3+sin(tπ), where the particles are initially
at equilibrium under potential V1(r, 0). Figure 3(a) shows the
evolution of the mean radial position and velocity for the
four pairs of simulations. In contrast to the apparent reduction
in friction when including HI in the 1D system above, here
the HI introduce damping effects. As can be seen, including
inertia results in a slower initial motion of the centre of mass
and also affects the period of the dynamics.

To further illustrate these effects, in figure 3(b) we
consider the same system but with r0(t) = 4 for t > 0,

i.e. evolution towards equilibrium. Again we observe a
qualitatively different behaviour of the dynamics, as well
as the retardation effects of HI. Once again, the agreement
between the DDFT and stochastic simulations is very good.

Having established the very good agreement between
each of the DDFTs and appropriate underlying stochastic
equations, and demonstrated the importance of including
both inertia and HI, we now demonstrate the computational
convenience of applying DDFT to a large number of particles.
We consider the same dynamics for 1000 particles with α = 9,
β = 10 and r0(t) = 14 + sin(tπ), which are chosen such
that the maximum density is approximately the same as that
for the fifty-particle system. In particular, it is important to
note that the computational cost for solving the system with
1000 particles is identical to that for solving the one with
fifty particles, whereas solving the stochastic equations would
be O(103) times more expensive. Figure 4 demonstrates
that the behaviour of the larger system is similar to that
of the fifty-particle system. One quantitative difference to
be noted is the greater relative impact of HI. From this
we would expect HI to become increasingly significant in
systems with a macroscopic number of particles. However,
it is important to note that the HI models used here neglect
effects such as screening and finite propagation time, which
may become important for large macroscopic systems. For
further demonstrations of the effects of inertia and HI in 3D
hard sphere systems, see [43].

5. Connection to the Navier–Stokes equation

For this section, we restrict our attention to the case where
the potential includes at most two-body terms and assume
that V2 depends only on the separation of the two particles,
V2(r1, r2) = V2(|r1 − r2|). We return to (22) and suppose, in

Figure 3. Comparison of four DDFTs (lines) and corresponding stochastic simulations (symbols) for fifty hard spheres in two different
radially symmetric potentials (see the text). The top plots show the mean radial position of the fifty particles against time, the bottom plots,
the corresponding mean radial velocity. The lines and symbols are as in figure 1. Insets in (a) show the external potential as a function of the
radial position at times 0.5, 1.5, 2.5 and 3.5. Those in (b) show the external potential for time 0 (top left) and all positive times (bottom
right). Note the excellent agreement between the DDFT and stochastic calculations, as well as the qualitative differences introduced by the
inclusion of inertia and the quantitative damping effects of HI.
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the spirit of the Chapman–Enskog expansion, that the system
is close to local equilibrium and so f (1)neq and ρ(2) can be
expanded in powers of ∇rv. Our analysis follows [56, section
7.4.1]. Enforcing (11)–(16) and noting that the system is
isotropic, we have the truncated Taylor expansion

f (1)(r,p, t) = f (1)le (r,p, t)

+ A1(|p− mv|)
[
(p− mv) ·Λ · (p− mv)

|p− mv|2
−

1
3
∇r · v

]
(28)

where Λα,β =
1
2

(
∂vα
∂rβ
+

∂vβ
∂rα

)
and f (1)le is given by (10). Using

(11)–(15) gives

A(r, t) = Ale(r, t)+
1

m2 ∇r ·

∫
dp (p⊗ p)A1(|p|)

×

[
p ·Λ · p
|p|2

−
1
3
∇r · v(r, t)

]
, (29)

where Ale is given by (17) with fneq = 0.
We now use the identity [56]∫

p ·
(

F(|p|)−
1
3

Tr(|p|)1
)
· p

p⊗ p
|p|2

dp

=
2

15

∫ (
F(|p|)− 1

3 Tr(|p|)1
)
|p|2dp, (30)

which is easy to prove using spherical polar coordinates, to
rewrite (29) as

A(r, t) = ∇r ·
(
ρ(r, t)v(r, t)⊗ v(r, t)

)
−

2
m
η(K)∇r ·

[
Λ−

1
3
∇r · v

]
, (31)

where η(K) := − 1
15m

∫
dpA1(|p|)|p|2. This corresponds to the

kinetic part of the viscosity in the Navier–Stokes equation. We
now derive the potential part by considering corrections to the
two-body density.

Consider the term in (6) that depends on V2, which me
may write as 1

m

∫
dr2∇r1V2(r1, r2)ρ

(2)(r1, r2, t) =: ∇r ·P(V),
where, following [56, Section 7.3.2] or [70], we find, for
r′12 = r′1 − r′2, r′12 = |r

′

12|,

P(V) = −
1

2m

∫
dr′n2(r1, r′, t)

r′ ⊗ r′

r′
d

dr′
V2(r

′), (32)

with n2(r1, r′12, t) =
∫ 1

0 dλ ρ2(r1+ (1−λ)r′12, r1−λr′12). We
now use the expansion [56, (7.77)] corrected to

n2(r1, r′12, t) = n(0)2 (r′12, t)

+ B1(r
′

12, t)
(r′12 ·Λ · r

′

12

r′212

−
1
3
∇r1 · v

)
+ B2(r

′

12)∇r1 · v, (33)

where there are no restrictions on B1 or B2. These coefficients
B1 and B2 are, respectively, the coefficients of the trace-free
and trace contributions to the first-order Taylor expansion in
∇rv of n2. These are essentially arbitrary functions of r12 and
t; as we will see below, this prohibits direct calculation of
the viscosities in the resulting Navier–Stokes-like equation.

Figure 4. Mean radial position and velocity for 1000 hard sphere
particles, as computed for four different DDFTs. The lines are as in
figure 1. The insets show the external potential as a function of the
radial position at times 0.5, 1.5, 2.5 and 3.5.

Inserting (33) into (32) and using that [
∫

drf (|r|)r ⊗
r/|r|2]α,β = 1/3 δα,β

∫
drf (|r|) (where [M]α,β denotes the

(α, β) entry of the matrix M) along with (30) gives

∇r1 · P
(V)
=

1
m

∇r1 ·
[(

p(V) − ζ∇r1 · v
)
1

− 2η(V)
(
Λ− 1

3 1∇r1 · v
)]
, (34)

where

p(V) := −
1
6

∫
dr′12n(0)2 (r′12, t)r′12

d
dr′12

V2(r
′

12)

η(V) :=
1

30

∫
dr′12B1(r

′

12, t)r′12
d

dr′12
V2(r

′

12)

ζ :=
1
6

∫
dr′12B2(r

′

12, t)r′12
d

dr′12
V2(r

′

12).

We now define the pressure tensor to be (see (31) and
(34)) P := 1

m

[
−2(η(K)+η(V))

(
Λ− 1

3∇r ·v
)
+p(V)1−ζ1∇r ·v

]
.

Using the identity ∇r · Λ = 1
21rv + 1

2∇r(∇r · v) gives the
out-of-equilibrium corrections as ∇r ·P = − 1

mη1rv− 1
m (ζ +

1
3η)∇r(∇r · v), where η = η(K) + η(V).

Finally, we insert these corrections into (22), which along
with (18) gives

mρ(r1, t)(∂tv(r1, t)+ v(r1, t) ·∇rv(r1, t))

= η1rv(r1, t)+

(
ζ +

1
3
η

)
∇r(∇r · v(r1, t))

− ρ(r1, t)∇r1

δF[ρ]
δρ
− mγρ(r1, t)v(r1, t)

− mγρ(r1, t)
∫

dr2[Z1(r1, r2)v(r1, t)

+ Z2(r1, r2)v(r2, t)]ρ(r2, t)g(r1, r2, [ρ]).
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This is a generalization of the Navier–Stokes equation for
a compressible colloidal fluid, which was stated in [42]
for the case with no HI. It is worth reiterating Kreuzer’s
comment [56] that although we have formally derived a
Navier–Stokes-like equation, the expressions for p, η and
ζ are not useful unless they can be evaluated explicitly. In
addition, these quantities are constant in space as the system
has been assumed to be isotropic; more realistic models would
require dependence on ρ. In contrast to the Navier–Stokes
equation, the above is an integro-differential equation for v,
non-local in both ρ and v. The effects of these non-localities,
which contain the HI, are analogous to those discussed in
section 3.3. The term involving the free energy functional
plays the role of the pressure and, at least under the square
gradient approximation, it can be written as the divergence of
a (Korteweg) stress tensor [71].

We note that the expansion in gradients of the velocity
differs from the more standard expansion in gradients of
the density in that it retains the full Helmholtz free energy
functional, and thus, as in standard DFT, captures the correct
microscopic structure. This is not true of expansions in the
density, which leads to a mesoscopic theory.

An important addition to the equation obtained by
going beyond the local-equilibrium approximation is the
introduction of the Laplacian of v. This provides a dissipative,
smoothing effect in the evolution, which is missing from (23).
This is a common feature of theoretical models that fail to
take certain effects (in this case the effective viscosity of
the colloidal particles) into account. True physical systems
should contain at least a small dissipative component, which
smooths out any discontinuities. In contrast, approximate
models can exhibit undesirable effects such as unphysical
shocks or finite-time blow-up.

6. Reduction to dynamics of the density

As discussed in the introduction, when γ is large, the
system is said to be overdamped and the evolution of the
momentum becomes trivial. In this case, it can be shown
rigorously [46] that the N-body Kramers equation reduces to
the N-body Smoluchowski equation, depending only on the
particle positions. An analogous result holds for the evolution
of the one-body density [44], although the one-body diffusion
tensor is now time dependent. In this section we give a
more heuristic derivation, similar in spirit to that of [42], but
including HI and using some recent rigorous results [44].

As a first step, we assume that, in the high-friction limit,
the local-equilibrium approximation

f (N)le (rN,pN, t) =
ρ(N)(rN, t)

(2πmkBT)3N/2

×

N∏
i=1

exp
(
−
|pi − mv(ri, t)|2

2mkBT

)
(35)

holds. Taking the divergence of (8), using the continuity
equation (5) and its time derivative to replace the terms
containing ∇r1 · j with time derivatives of the density, and

inserting the local-equilibrium approximation gives

∂2
t ρ(r1, t)+ γ ∂tρ(r1, t)−∇r1 · Ale(r1, t)

=
1
m

∇r1 ·

(
ρ(r1, t)∇r1

δF[ρ]
δρ

)
+ γN∇r1 ·

N∑
j=1

∫
drN−1Γ̃1j(rN)v(rj, t)ρ(N)(rN, t), (36)

where Ale is given by (17) with fneq = 0. If we were to
now neglect HI and make a local-equilibrium assumption,
we would recover the standard DDFT [21] with the addition
of a second-order time derivative. Whilst this term can be
heuristically neglected in the high-friction limit, its effect
could be important when interest lies in the microscopic
dynamics, i.e. on short timescales. Physically, this term
introduces a finite-propagation speed, which can also be
derived by including memory effects [72]. For the present
analysis, we will restrict our attention to systems in which
the second derivative is negligible in order to compare with
existing DDFTs.

To obtain a closed equation for ρ, it remains to treat the
term ∇r1 ·Ale and the HI terms. We first use the results of [44],
which show that, at least for two-body potential and friction
terms and under the Enskog approximation, terms containing
A are negligible in the high-friction limit. At this point we
have recovered the corresponding result of [42], but using the
rigorous results of [44]. To treat the HI terms, is necessary to
find a closure relation, expressing v as a functional of ρ.

To do so, we assume that the material derivative of the
velocity is negligible, i.e. that the velocity changes only due
to transport of the flow, and (8) becomes

1
m
ρ(r1, t)∇r1

δF[ρ]
δρ
+ γρ(r1, t)v(r1, t)

+ γN
N∑

j=1

∫
drN−1Γ̃1j(rN)v(rj, t)ρ(N)(rN, t) = 0. (37)

Since ρ(N) is a functional of ρ, (37) in principle determines
v as a functional of ρ. However, this functional is in no
way explicit and we cannot make a simple connection to the
Smoluchowski limit. We now consider two cases in which we
can treat this issue. The first demonstrates a difference in the
definition of the diffusion tensor (which is also present in the
rigorous derivation [44]), whilst the second recovers the result
of [25] under an additional assumption.

6.1. Γ is 3× 3 block diagonal

We assume that Γ is block diagonal with 3 × 3 blocks,
i.e. Γ̃ij = 0 for i 6= j. Whilst for the unconfined systems studied
here, the leading order terms occur in Γ̃ij, i 6= j, for confined
systems in which the particles are well separated but close to
walls, the diagonal blocks Γ̃ii are expected to dominate [73].
In addition, this regime allows us to more clearly demonstrate
the connection between Γ and D by allowing an explicit
solution of (37).
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Setting Γ̃ij = 0 for i 6= j in (37) and using the identity∫
drN−1ρ(N)(rN, t) = ρ(r1, t)/N gives

γ v(r1, t) = −
ρ(r, t)

mN

(∫
drN−1Γ11(rN)ρ(N)(rN, t)

)−1

× ∇r1

δF[ρ]
δρ

, (38)

where we have recalled the definition Γ11 = 1 + Γ̃11. Since
Γ11 is a principal minor of a positive-definite matrix, it is also
positive-definite. Using that ρ(N) ≥ 0 and not zero everywhere
shows that, for any non-zero w(r1),

w(r1) ·

[∫
drN−1Γ11(rN)ρ(N)(rN, t)

]
w(r1)

=

∫
drN−1w(r1) · Γ11(rN)w(r1)ρ

(N)(rN, t) > 0, (39)

and the integral in square brackets is a positive-definite matrix
and thus invertible on functions of r1.

For ease of notation, we define M̂(r1, t) =
∫

drN−1M
(rN)ρ(N)(rN, t). Recalling that Γ̃ij = 0 for i 6= j and using (38)
to replace v(r1, t) in the final term of (36), which can be taken
out of the integral, gives

∂2
t ρ(r1, t)+ γ ∂tρ(r1, t)−∇r1 · Ale(r1, t)

=
1
m

∇r1 ·

(
ρ(r1, t)1− N1̂(r1, t)̂̃Γ11(r1, t)Γ̂11

−1
(r1, t)

)
× ∇r1

δF[ρ]
δρ

.

We now demonstrate the connection to the generalization of
[25, (14)], with ω11 = D̃11 and ω12 = 0, i.e.

kBT

D0
∂tρ(r1, t) = ∇r1 ·

(
ρ(r1, t)1+ N̂̃D11(r1, t)

)
∇r1

δF[ρ]
δρ

.

We assume that in the large-γ limit, inertia effects are
negligible, and thus we may ignore the ∂2

t ρ term. Using the
standard definition D0 = kBT/(mγ ), we find that̂̃D11(r1, t) = −̂1(r1, t)̂̃Γ11(r1, t)Γ̂11

−1
(r1, t). (40)

Using the standard definition D = kBT/mΓ−1 would give
D = D0(1 + D̃) with D̃ii = −1Γ̃ii(Γii)

−1 (where we have
kept 1 to mirror (40)) and Dij = 0 for i 6= j. Hence, (40) is
reminiscent of the standard formulation, except that each of
the terms must be averaged against ρN over all but one spatial
coordinate.

It is noteworthy that the novel form of the relationship
(40) results from the non-commutativity of the two processes
of integrating over N − 1 particles and taking the large-γ
limit; see [44] for further discussions. If we repeat the analysis
described above, but do not integrate over rN−1 until after
taking the large-γ limit, we obtain the standard definition of
the diffusion tensor. It would be interesting to investigate the
differences between these two formulations.

6.2. Existence of a small parameter

As discussed previously, assuming that D contains only
two-body terms is not equivalent to assuming the same of

Γ. In this section we wish to investigate what happens when
the Γ̃ij are of the form εΓ̃′ij, where Γ̃′ij is of O(1) and ε

is a small parameter (independent of γ , N, r) such that
Γ̃ijΓ̃k` is negligible when compared to Γ̃ij. We note that
this is equivalent to D̃ij being of the form εD̃′ij with the
same assumptions. This can be seen by setting Γ = γ (1 +
Γ̃) and D = D0(1 + D̃); we have D̃ = −Γ̃(1 + Γ̃)−1

=

−Γ̃
∑
∞

n=0(−Γ̃)n ≈−Γ̃. Hence, by symmetry of the argument,
the Γ̃n

ij for n ≥ 2 are negligible if and only if the D̃n
ij

are negligible. An example is given by the Rotne–Prager
(27) two-body expansion (26) with the assumption that the
interparticle distances are large compared to σH, for example
in a dilute fluid where the repulsive forces are long range
compared to σH. Then σH/|r− r′| is a small parameter.

From (37) we see that γ Γ̃1jv(rj, t) = −Γ̃1j∇rj
δF [ρ]
δρ
+

O(ε2) and hence, up to errors of O(ε2), (36) becomes

γ ∂tρ(r1, t) =
1
m

∇r1 ·

(
ρ(r1, t)∇r1

δF[ρ]
δρ

)
−

N

m
∇r1 ·

N∑
j=1

∫
drN−1Γ̃1j(rN)∇rj

δF[ρ]
δρ(rj, t)

ρ(N)(rN, t),

where we have once again chosen to neglect the ∂2
t ρ

and ∇ · A terms. Using Γ̃ij = −D̃ij recovers the DDFT
previously derived by Rex and Löwen [25]. As these authors
discussed, and as with the velocity equation (23) (see the
end of section 3.3), it is necessary to close this equation by
determining ρ(2), or equivalently g, in terms of ρ. When HI
are neglected by setting D̃ij = 0, this DDFT reduces to that of
Marconi and Tarazona [21].

7. Discussion and open problems

We have derived a general DDFT (equations (5) and (23)) for
systems of colloidal particles, including the effects of inertia
and hydrodynamic interactions. The derivation requires three
approximations: (i) the adiabatic approximation that the
n-body correlations are equal to those of an equilibrium
system with the same one-body distribution and we thus
employ the sum rule (7), which holds exactly in equilibrium;
(ii) that the contributions from the part of the one-body
distribution which is not captured by the local-equilibrium
approximation may be neglected or approximated by a known
functional of ρ and v; and (iii) that the n-body distributions
governing the HI terms may be well approximated by
functionals of ρ and v. For two-body HI, it was demonstrated
that the widely used Enskog approximation is sufficient for
obtaining accurate dynamics. By neglecting HI we recover the
DDFT derived by Archer [42].

We have demonstrated the very good quantitative and
qualitative agreement between the DDFT and the full
underlying Langevin dynamics for both 1D hard rod and 3D
hard sphere systems. In both cases, the inclusion of both
inertia and HI is crucial in obtaining the correct dynamics.
We further demonstrated the advantages of the DDFT by
computing the dynamics of 1000 particles, the Langevin
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calculations for which are prohibitively computationally
expensive.

Close to local equilibrium, we obtain a generalized
Navier–Stokes-like equation. This integro-differential equa-
tion contains non-local terms describing HI effects. In the
high-friction limit we recover the DDFTs of Marconi and
Tarazona [21] and Rex and Löwen [25]. However, in the latter
case, unless we make an additional assumption on the form of
the HI, we obtain a different definition of the diffusion tensor,
the effects of which are worth further study.

There are many promising extensions to the theory
formulated here including the extension to multiple-
particle species, anisotropic particles, self-propelled particles,
confined geometries, and the inclusion of an external flow.
Such extensions would allow the study of many systems
of physical interest including the delivery of drug-laden
nanoparticles in the circulatory system, cloud formation
and wetting phenomena. As discussed in the Introduction,
both inertia and HI are expected to play important roles in
the dynamics of these and many other related systems. In
addition, we plan to extend our numerical implementation of
the various DDFT formalisms to two dimensions, allowing the
study of the effects of inertia and HI in a much wider range of
systems, such as the HI-induced symmetry breaking of driven
colloidal particles [74].
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