Introduction to Rheology of complex fluids Brief Lecture Notes

Linear Viscoelasticity

Contents

- Introductory Lecture
- Simple Flows
- Material functions & Rheological Characterization
- Experimental Observations
- Generalized Newtonian Fluids
- Generalized Linear viscoelastic Fluids
- Nonlinear Constitutive Models

Maxwell Model

- Constitutive modelling is the art and science of finding appropriate tensorial expressions for the stress as a function of the deformation to match observed material behavior
- The Maxwell model is empirical (like Newton's and Hooke's laws) and its validity depends on how well it predicts material behavior

Maxwell Model

Differential approach, based on "additivity" ideas of elasticity, which hold for small deformations

Viscoelastic Material

Viscous fluid no memory of past events

t << 1

Elastic Solid Remembers where it was at t_o

Hook's Law for elastic solids Valid for infinitesimally small displacements

$$\underline{\underline{\tau}}(t) = G\underline{\underline{\gamma}}(t_o, t)$$

Newton's Law for viscous fluids Valid for arbitrarily large displacement gradients

$$\underline{\underline{\tau}}(t) = \eta \dot{\underline{\gamma}}(t)$$

Maxwell Model
$$\begin{cases} \dot{\gamma}_{xy}(t) = \frac{\partial}{\partial t} \gamma_{xy}(t_o, t) \\ \gamma_{xy}(t_o, t) = \int_{t_o}^{t} \dot{\gamma}_{xy}(t') dt' \end{cases}$$

Maxwell model combines the viscous and the elastic behavior in series.

Use of Spring (elastic behavior) and dashpot (fluid behavior) in <u>series</u>.

Initial State: No Force Imposed

Final State: Force, f, resist to the displacement

The (small) displacements can be added

The total displacement is:

$$d_{total} = d_{sping} + d_{dashpot}$$

When the resistances are in parallel, the Kelvin-Voigt model is derived

Maxwell Model

The total Displacement

$$\begin{aligned} d_{total} &= d_{sping} + d_{dashpot} \\ \frac{d(d_{total})}{dt} &= \frac{d(d_{sping})}{dt} + \frac{d(d_{dashpot})}{dt} \\ \frac{d(d_{total})}{dt} &= \frac{1}{G_{sp}} \frac{df}{dt} + \frac{1}{\mu} f \end{aligned}$$

$$f + \frac{\mu}{G_{sp}} \frac{df}{dt} = \mu \frac{d(d_{total})}{dt}$$

Maxwell Model

$$f + \frac{\mu}{G_{sp}} \frac{df}{dt} = \mu \frac{d(d_{total})}{dt}$$

In Shear
$$\tau_{yx} + \frac{\eta_o}{G_o} \frac{\partial \tau_{yx}}{\partial t} = \eta_o \dot{\gamma}_{yx}$$

G Relaxation Modulus

$$\frac{\tau}{=} + \frac{\eta_o}{G_o} \frac{\partial \tau}{\partial t} = \eta_o \dot{\gamma}$$

$$\lambda = \frac{\eta_o}{G_o}$$

Relaxation Time

$$\eta_o$$

Zero-Shear Viscosity

Is this generalization correct?

Integral form of Maxwell Model

Addition of contributions of past events with "fading" memory to predict the stress at the current time:

$$\underline{\underline{\tau}}(t) = \int_{-\infty}^{t} \left\{ \left(\frac{\eta_o}{\lambda} \right) e^{-(t-t')/\lambda} \right\} \underline{\dot{\gamma}}(t') dt' =$$

$$- \int_{-\infty}^{t} \left\{ \left(\frac{\eta_o}{\lambda^2} \right) e^{-(t-t')/\lambda} \right\} \underline{\dot{\gamma}}(t,t') dt'$$

Two parameters $\lambda = \frac{\eta_o}{G_o} \quad \begin{array}{l} \text{Relaxation} \\ \text{Time} \end{array}$ $\eta_o \quad \begin{array}{l} \text{Zero-Shear} \\ \text{Viscosity} \end{array}$

The stress at time t depends on the rate of strain at time t and the rate of strain at all past times t' with a weighting factor that decays exponentially (backwards) in time. OR

The history of strain at all past times

$$\left\{ \left(\frac{\eta_o}{\lambda^2} \right) e^{-(t-t')/\lambda} \right\}$$

(Fading) Memory function

Maxwell Model Predictions in Rheological Flows

Simple Shear Flow

Kinematics

$$\underline{v}(y,t) = \dot{\varsigma}(t) y \underline{e}_{x}$$

$$\dot{\varsigma}(t) = \dot{\gamma}_o = \text{constant}$$

Material Properties

$$\eta \equiv \frac{\tau_{yx}}{\dot{\gamma}_o}$$

$$\Psi_1 \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2}$$

$$\eta \equiv \frac{\tau_{yx}}{\dot{\gamma}_o} \qquad \Psi_1 \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} \qquad \Psi_2 \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2}$$

$$\underline{\underline{\tau}} + \frac{\eta_o}{G_o} \frac{\partial \underline{\tau}}{\underline{\partial t}} = \eta_o \dot{\underline{\gamma}}$$

$$\underline{\tau} = \eta_o y$$

Constitutive Model

$$\eta \equiv \frac{\tau_{yx}}{\dot{\gamma}_o} = \eta_o$$

Cannot Predict Shear Thinning

$$\Psi_1 \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} = 0$$

$$\eta \equiv \frac{\tau_{yx}}{\dot{\gamma}_o} = \eta_o \qquad \Psi_1 \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} = 0 \qquad \Psi_2 \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2} = 0$$

Cannot Predict Normal Stresses

Start up of Simple Shear Flow

Kinematics

$$\underline{v}(y,t) = \dot{\varsigma}(t) y \underline{e}_x$$

$$\dot{\varsigma}(t) = \dot{\gamma}_o H(t)$$

Unidirectional Flow

$$\dot{\gamma} = \begin{pmatrix} 0 & \dot{\varsigma}(t) & 0 \\ \dot{\varsigma}(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Material Properties

$$\eta^{+} \equiv \frac{\tau_{yx}}{\dot{\gamma}_{o}} \qquad \Psi_{1}^{+} \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_{o}^{2}} \qquad \Psi_{2}^{+} \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_{o}^{2}}$$

$$\Psi_2^+ \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2}$$

Start up of Simple Shear Flow

$$\underline{\underline{\tau}} + \frac{\eta_o}{G_o} \frac{\partial \underline{\tau}}{\partial t} = \eta_o \dot{\underline{\gamma}}$$

$$\underset{=}{\tau}(t=0)=0$$

Constitutive Model

$$\tau_{xx} + \frac{\eta_o}{\mathcal{G}_o} \frac{\partial \tau_{xx}}{\partial t} = \eta_o \dot{\gamma}_{xx} = 0$$

$$\tau_{xx} = 0$$

$$\tau_{yy} + \frac{\eta_o}{G} \frac{\partial \tau_{yy}}{\partial t} = \eta_o \dot{\gamma}_{yy} = 0 \qquad \qquad \tau_{yy} = 0$$

$$\tau_{zz} + \frac{\eta_o}{\mathcal{G}} \frac{\partial \tau_{zz}}{\partial t} = \eta_o \dot{\gamma}_{zz} = 0 \qquad \qquad \tau_{zz} = 0$$

$$\tau_{yx} + \frac{\eta_o}{G_o} \frac{\partial \tau_{yx}}{\partial t} = \eta_o \dot{\gamma}_o H(t)$$

$$\tau_{yx}(t) = \int_{-\infty}^{t} \left(\frac{\eta_o}{\lambda}\right) e^{-(t-t')/\lambda} \dot{\gamma}_o H(t') dt' = \left(\frac{\eta_o}{\lambda}\right) \dot{\gamma}_o \int_{0}^{t} e^{-(t-t')/\lambda} H(t') dt'$$

$$= \left(\frac{\eta_o}{\lambda}\right) \dot{\gamma}_o \int_0^t e^{-(t-t')/\lambda} dt' = \int_0^u \left(\frac{\eta_o}{\lambda}\right) \dot{\gamma}_o \int_{-t/\lambda}^0 e^u \lambda du = \eta_o \dot{\gamma}_o e^u \Big|_{-t/\lambda}^0 = \eta_o \dot{\gamma}_o (1 - e^{-t/\lambda})$$

Start up of Simple Shear Flow

$$\tau_{yx}(t) = \eta_o \dot{\gamma}_o (1 - e^{-t/\lambda})$$

$$\eta^{+} \equiv \frac{\tau_{yx}}{\dot{\gamma}_{o}} = \eta_{o} (1 - \exp(-t/\lambda))$$

It can predict the gradual increase of shear stress

$$\Psi_1^+ \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} = 0 \quad \Psi_2^+ \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2} = 0$$

Cannot Predict
Normal Stresses

Step strain Test

Kinematics

Properties

$$\underline{v}(y,t) = \dot{\varsigma}(t) y \underline{e}_x$$

 $\dot{\gamma}_{o}\varepsilon = \text{constant} = \gamma_{o}$

 $\dot{\varsigma}(t) = \lim_{\varepsilon \to 0} \begin{cases} 0 & t < 0 \\ \dot{\gamma}_o, \ 0 \le t < \varepsilon \\ 0 & t \ge \varepsilon \end{cases} = \dot{\gamma}_o \delta^+(t)$

Unidirectional Flow

Material

$$G(t, \gamma_o) \equiv \frac{\tau_{yx}}{\gamma_o}$$

$$G(t, \gamma_o) \equiv \frac{\tau_{yx}}{\gamma_o}$$
 $G_{\Psi_1} \equiv \frac{\tau_{xx} - \tau_{yy}}{\gamma_o^2}$

$$G_{\Psi_2} \equiv rac{ au_{yy} - au_{zz}}{ au_o^2}$$

Relaxation Modulus

Step strain Test

$$\underline{\underline{\tau}} + \frac{\eta_o}{G_o} \frac{\partial \underline{\tau}}{\partial t} = \eta_o \dot{\underline{\gamma}}$$

$$\underbrace{\tau(t=0)=0}_{=}$$

$$\frac{\tau}{z} + \frac{\eta_o}{G_o} \frac{\partial \tau}{\partial t} = \eta_o \dot{\gamma}$$

$$\frac{\tau}{z} = 0$$

$$\frac{\tau}{G_o} \frac{\partial \tau_{xx}}{\partial t} = \eta_o \dot{\gamma}_{xx} = 0$$

$$\tau_{xx} + \frac{\eta_o}{G_o} \frac{\partial \tau_{xx}}{\partial t} = \eta_o \dot{\gamma}_{xx} = 0$$

$$\tau_{yy} + \frac{\eta_o}{G_o} \frac{\partial \tau_{yy}}{\partial t} = \eta_o \dot{\gamma}_{yy} = 0$$

$$\tau_{zz} + \frac{\eta_o}{G_o} \frac{\partial \tau_{zz}}{\partial t} = \eta_o \dot{\gamma}_{zz} = 0$$

$$\tau_{zz} = 0$$

$$\tau_{zz} = 0$$

$$\tau_{zz} = 0$$

$$\tau_{yx}(t) = \int_{-\infty}^{t} \left(\frac{\eta_o}{\lambda}\right) e^{-(t-t')/\lambda} \dot{\gamma}_o \delta(t') dt' = \left(\frac{\eta_o}{\lambda}\right) \dot{\gamma}_o \int_{0}^{t} e^{-(t-t')/\lambda} \delta(t') dt' = \left(\frac{\eta_o}{\lambda}\right) \dot{\gamma}_o e^{-t/\lambda}$$

Step strain Test

$$\tau_{yx}(t) = \frac{\eta_o}{\lambda} \dot{\gamma}_o e^{-t/\lambda}$$

$$G(t) = \frac{\tau_{yx}}{\gamma_o} = \frac{\eta_o}{\lambda} \exp(-t/\lambda)$$

Predicts realistic behavior for the Relaxation Modulus

$$G_o = G(t = 0)$$

$$G_{\Psi_1} \equiv \frac{\tau_{xx} - \tau_{yy}}{\gamma_o^2} = 0 \qquad G_{\Psi_2} \equiv \frac{\tau_{yy} - \tau_{zz}}{\gamma_o^2} = 0$$

Cannot Predict
Normal Stresses

Relaxation Modulus

Relaxation Modulus

Comparison with Experiments for polystyrene solution, $Mw = 10^6$, again points to the need for model improvement

Generalized
Maxwell model
for multiple
relaxation times

Superposition of Maxwell Models with different relaxation times $\lambda_1 > \lambda_2 > ... \lambda_N$

$$\tau_{=(k)}(t) = \int_{-\infty}^{t} \left(\frac{\eta_k}{\lambda_k}\right) e^{-(t-t')/\lambda_k} \dot{\gamma}(t') dt'$$

$$\tau(t) = \sum_{k=1}^{N} \tau_{=(k)}(t)$$

$$\underline{\underline{\tau}}(t) = \int_{-\infty}^{t} \sum_{k=1}^{N} \left[\left(\frac{\eta_{k}}{\lambda_{k}} \right) e^{-(t-t')/\lambda_{k}} \right] \underline{\dot{\tau}}(t') dt' =$$

$$- \int_{-\infty}^{t} \sum_{k=1}^{N} \left[\left(\frac{\eta_{k}}{\lambda_{k}^{2}} \right) e^{-(t-t')/\lambda_{k}} \right] \underline{\dot{\tau}}(t,t') dt'$$

2N unknowns $\{\eta_k, \Lambda_k\}$

Steady Simple & Step Shear

Steady Simple Shear

$$\eta \equiv \frac{\tau_{yx}}{\dot{\gamma}_o} = \sum_{k=1}^{N} \eta_k \qquad \Psi_1 \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} = 0 \qquad \Psi_2 \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2} = 0$$

Cannot Predict shear thinning

$$\Psi_1 \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} = 0$$

$$\Psi_2 \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2} = 0$$

Cannot predict normal stresses

Step Shear

$$G(t) \equiv \sum_{k=1}^{N} \frac{\eta_k}{\lambda_k} \exp(-t/\lambda_k)$$

$$G_{\Psi_1} \equiv \frac{ au_{xx} - au_{yy}}{\dot{\gamma}_o^2} = 0$$
 $G_{\Psi_2} \equiv \frac{ au_{yy} - au_{zz}}{\dot{\gamma}_o^2} = 0$

Can describe relaxation for more extended periods of time

Comparison with Experiments

Adding four Maxwell modes improves linear data

10

k=2

1000

10000

100

time. t

10

SAOS

Kinematics
$$\underline{v}(y,t) = \dot{\varsigma}(t) y \underline{e}_x$$

 $\dot{\varsigma}(t) = \dot{\gamma}_0 \cos(\omega t)$; $\gamma_0 = \dot{\gamma}_0 / \omega$

Unidirectional Flow

Material Properties

$$\dot{\gamma} = \begin{pmatrix} 0 & \dot{\varsigma}(t) & 0 \\ \dot{\varsigma}(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{\tau_{yx}(\gamma_o, t)}{\gamma_o} = G' \sin(\omega t) + G'' \cos(\omega t)$$

$$G'(\omega) = \frac{\tau_o}{\dot{\gamma}_o} \cos(\delta) \qquad G''(\omega) = \frac{\tau_o}{\dot{\gamma}_o} \sin(\delta)$$

Storage Modulus

Loss Modulus

SAOS

Predictions of GMM

GMM

$$\underline{\tau}(t) = \int_{-\infty}^{t} \sum_{k=1}^{N} \left[\left(\frac{\eta_k}{\lambda_k} \right) e^{-(t-t')/\lambda_k} \right] \dot{\underline{\tau}}(t') dt'$$

$$G'(\omega) = \sum_{k=1}^{N} \frac{\eta_k \lambda_k \omega^2}{1 + (\lambda_k \omega)^2}$$

$$G''(\omega) = \sum_{k=1}^{N} \frac{\eta_k \omega}{1 + (\lambda_k \omega)^2}$$

SAOS prediction of the Maxwell model for a single relaxation time

Comparison with experiments of GMM for multiple relaxation times (5 modes)

General linear viscoelastic model

Boltzmann Superposition

The experiment of multiple step changes in shear

Consider a sequence of small deformations where their response is linear.

For the 1st deformation the stress is:

$$\tau_{yx}(t) = G(t - t_1) \, \delta \gamma_{yx}(t_1) \quad t_1 < t < t_2$$

For the 2nd deformation the stress is:

$$\tau_{yx}(t) = G(t - t_1) \, \delta \gamma_{yx}(t_1) + G(t - t_2) \, \delta \gamma_{yx}(t_2) \quad t_2 < t < t_3$$

After N deformations:

$$\tau_{yx}(t) = \sum_{i=1}^{N} G(t - t_i) \, \delta \gamma_{yx}(t_i) \quad t_N < t$$

General linear viscoelastic model

Continuum Consideration:

$$\tau_{yx}(t) = \int_0^{\gamma_{yx}(t)} G(t - t') \, d\gamma_{yx}(t')$$

Change of Variables

$$d\gamma_{yx}(t') = \dot{\gamma}_{yx}(t') dt'$$

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{yx}(t') dt'$$

In practise

$$\tau_{yx}(t) = \int_0^t G(t - t') \dot{\gamma}_{yx}(t') dt'$$

It reminds us that we have to take into account the history of the material.

General linear viscoelastic model

Has factorized structure: Nature of fluid * Nature of flow, $\underline{\gamma}$, $\underline{\gamma}$

components:

$$\underline{\underline{\tau}}(t) = \int_{-\infty}^{t} G(t - t') \dot{\underline{\gamma}}(t') dt' = \int_{-\infty}^{t} M(t - t') \underline{\underline{\gamma}}(t, t') dt'$$

$$G(t-t')$$

:Relaxation Modulus

$$M(t-t') = \partial G(t-t') / \partial t'$$
: Memory Function

Nature

In practice:

$$\underline{\underline{\tau}}(t) = \int_0^t G(t - t') \, \dot{\underline{\gamma}}(t') dt'$$

Kinematics

$$\underline{v}(y,t) = \dot{\varsigma}(t) y \underline{e}_x$$

$$\dot{\varsigma}(t) = \dot{\gamma}_o = \text{constant}$$

Unidirectional Flow

Material Properties

$$\eta \equiv \frac{\tau_{yx}}{\dot{\gamma}_o} \qquad \Psi_1 \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} \qquad \Psi_2 \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2}$$

$$\dot{\gamma} = \begin{pmatrix} 0 & \dot{\varsigma}(t) & 0 \\ \dot{\varsigma}(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Psi_2 \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2}$$

$$\underline{\tau}(t) = \int_{-\infty}^{t} G(t - t') \, \dot{\underline{\gamma}}(t') dt'$$

Constitutive Relation

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{yx}(t') dt'$$

$$\tau_{ii}(t) = 0$$

$$\Psi_1 \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} = 0 \qquad \Psi_2 \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2} = 0$$

Cannot predict normal stresses

Constitutive Relation

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{yx}(t') dt'$$

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{o} dt'$$
$$= \dot{\gamma}_{o} \int_{-\infty}^{t} G(t - t') dt'$$

With change of variables

$$s = t - t'$$

$$ds = d(t-t') = -dt'$$

$$t' = -\infty \implies s = \infty$$
 $t' = t \implies s = 0$

$$t' = t \Longrightarrow s = 0$$

Thus:

$$\tau_{yx}(t) = \dot{\gamma}_o \int_0^\infty G(s) \, ds$$

In the LVE

$$\eta \equiv \frac{\tau_{yx}}{\dot{\gamma}_o} = \int_0^\infty G(s) ds \longrightarrow \eta_o$$

Uniaxial Elongation

$$\dot{\underline{\gamma}} = \underline{\nabla}\underline{v} + (\underline{\nabla}\underline{v})^T = 2\dot{\varepsilon}_o \begin{pmatrix} -1/2 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Constitutive Model

$$\tau(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}(t') dt'$$

With change of variables

$$s = t - t'$$
 $ds = d(t - t') = -dt'$
 $t' = -\infty \Rightarrow s = \infty$ $t' = t \Rightarrow s = 0$

$$\underline{\tau}(s+t') = 2\dot{\varepsilon}_o \int_0^s G(s) \begin{pmatrix} -1/2 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} ds$$
 Extensional Stream
$$\underline{\tau}_E = \underline{\tau}_{zz} - \underline{\tau}_{xx}$$

Extensional Stress

$$\tau_E = \tau_{zz} - \tau_{xx}$$

Start-up of Steady Shear

Kinematics

$$\underline{v}(y,t) = \dot{\varsigma}(t) y \underline{e}_{x}$$

$$\dot{\varsigma}(t) = \dot{\gamma}_o H(t)$$

Unidirectional Flow

$$\dot{\gamma} = \begin{pmatrix} 0 & \dot{\varsigma}(t) & 0 \\ \dot{\varsigma}(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Material Properties

$$\eta^{+} \equiv \frac{\tau_{yx}}{\dot{\gamma}_{o}} \qquad \Psi_{1}^{+} \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_{o}^{2}} \qquad \Psi_{2}^{+} \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_{o}^{2}}$$

$$\Psi_2^+ \equiv \frac{\dot{y}y}{\dot{\gamma}_o^2}$$

Stress Growth Coefficient

$\underline{\underline{\tau}}(t) = \int_{-\infty}^{t} G(t - t') \, \dot{\underline{\gamma}}(t') dt'$

Constitutive Model

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{yx}(t') dt'$$

$$\tau_{ii}(t) = 0$$

$$\Psi_1^+ \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} = 0 \quad \Psi_2^+ \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2} = 0$$

Cannot predict normal stresses

Constitutive Model

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{yx}(t') dt'$$

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{o} H(t') dt'$$
$$= \dot{\gamma}_{o} \int_{0}^{t} G(t - t') dt'$$

With change of variables

$$s = t - t'$$

$$ds = d(t - t') = -dt'$$

$$t' = 0 \Longrightarrow s = t$$

$$t' = 0 \Longrightarrow s = t$$
 $t' = t \Longrightarrow s = 0$

Thus:

$$\tau_{yx}(t) = \dot{\gamma}_o \int_0^t G(s) \, ds$$

$$\eta^{+} \equiv \frac{\tau_{yx}}{\dot{\gamma}_{o}} = \int_{0}^{t} G(s) ds$$

Cessation of Steady Shear

Kinematics

$$\underline{v}(y,t) = \dot{\varsigma}(t) y \underline{e}_x$$

$$\dot{\varsigma}(t) = \dot{\gamma}_o H(-t)$$

Unidirectional Flow

$$\dot{\gamma} = \begin{pmatrix} 0 & \dot{\varsigma}(t) & 0 \\ \dot{\varsigma}(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Material Properties

$$\eta^{-} \equiv \frac{\tau_{yx}}{\dot{\gamma}_{o}} \qquad \Psi_{1}^{-} \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_{o}^{2}} \qquad \Psi_{2}^{-} \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_{o}^{2}}$$

$$\Psi_2^- \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2}$$

Stress cessation Coefficient

Cessation of Steady Shear

$\underline{\underline{\tau}}(t) = \int_{-\infty}^{t} G(t - t') \, \dot{\underline{\gamma}}(t') dt'$

Constitutive Model

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{yx}(t') dt'$$

$$\tau_{ii}(t) = 0$$

$$\Psi_1^- \equiv \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}_o^2} = 0 \quad \Psi_2^- \equiv \frac{\tau_{yy} - \tau_{zz}}{\dot{\gamma}_o^2} = 0$$

Cannot predict normal stresses

Cessation of Steady Shear

Constitutive Model

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{yx}(t') dt'$$

$$\tau_{yx}(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}_{o} H(-t') dt'$$
$$= \dot{\gamma}_{o} \int_{-\infty}^{0} G(t - t') dt'$$

With Change of Variables

The viscosity is

$$s = t - t'$$
 $ds = d(t - t') = -dt'$
 $t' = -\infty \Rightarrow s = \infty$ $t' = t \Rightarrow s = 0$

$$\tau_{yx}(t) = \dot{\gamma}_o \int_t^\infty G(s) \, ds$$

$$\eta^{-} \equiv \frac{\tau_{yx}}{\dot{\gamma}_{o}} = \int_{t}^{\infty} G(s) ds$$

Differential form of the Maxwell model

Integral form of the Maxwell model

$$\underline{\underline{\tau}}(t) = \int_{-\infty}^{t} \left(\frac{\eta_o}{\lambda}\right) e^{-(t-t')/\lambda} \dot{\underline{\gamma}}(t') dt'$$

Generalized Maxwell model (N-Modes)

$$\underline{\tau}(t) = \int_{-\infty}^{t} \sum_{k=1}^{N} \left[\left(\frac{\eta_k}{\lambda_k} \right) e^{-(t-t')/\lambda_k} \right] \dot{\underline{\tau}}(t') dt'$$

General Viscoelastic Model

$$\underline{\tau}(t) = \int_{-\infty}^{t} G(t - t') \dot{\underline{\gamma}}(t') dt'$$

Pros & Cons of GLVE Models

Pros

- The first set of constitutive relations with "memory"
- Can predict SAOS & Step Change Flows well
- Easy Calculations
- Can approximate start-up and cessation flows

Cons

- Predict Constant shear viscosity (no shear thinning, small strain rates).
- Assume that strains can be added (small strains)
- Like in generalized Newtonian models, stresses are proportional to strain rates. Hence they cannot predict Normal Stresses in shear flow.
- Their predictions are not frame-invariant!

Frame Invariance

The rotating coordinate system is related to the Cartesian one via:

$$\begin{cases} \overline{x} = (x - x_o)\cos(Wt) + (y - y_o)\sin(Wt) \\ \overline{y} = -(x - x_o)\sin(Wt) + (y - y_o)\cos(Wt) \end{cases}$$

Constant velocity is applied on the upper plate of a Couette device:

$$\overline{u}_x = \dot{\gamma} \overline{y}$$
 where $\dot{\gamma} \Box 1$

The rate of strain tensor based on the observer xyz-system is:

$$\dot{\underline{\gamma}} = \begin{pmatrix} -\sin(2Wt) & \cos(2Wt) & 0\\ \cos(2Wt) & \sin(2Wt) & 0\\ 0 & 0 & 0 \end{pmatrix} \dot{\underline{\gamma}}$$

The integral form of the GLVM stress tensor is

$$\dot{\underline{\gamma}} = \begin{pmatrix} -\sin(2Wt) & \cos(2Wt) & 0 \\ \cos(2Wt) & \sin(2Wt) & 0 \\ 0 & 0 & 0 \end{pmatrix} \dot{\underline{\gamma}} \qquad \underline{\tau} = -\int_{0}^{\infty} G(s) \dot{\underline{\gamma}} ds = -\dot{\underline{\gamma}} \int_{0}^{\infty} G(s) \begin{pmatrix} -\sin(2W(t-s)) & \cos(2W(t-s)) & 0 \\ \cos(2W(t-s)) & \sin(2W(t-s)) & 0 \\ 0 & 0 & 0 \end{pmatrix} ds$$

Remarks and conclusions

- The stress tensor depends on the rotation velocity of the moving coordinate system!!!
- The zero-shear viscosity for t=0 is:

$$\tau_{xy} = -\eta_o \dot{\gamma} = -\dot{\gamma} \int_0^\infty G(s) \cos(2Ws) ds \Rightarrow \eta_o = \int_0^\infty G(s) \cos(2Ws) ds$$

Hence, it depends on the angular velocity!!!

➤ Also, elastic materials are analyzed under the Lagrangian framework.

Cause? The generalization of Maxwell's equation to the tensorial form.

Thus, for viscoelastic materials, which are partially elastic, we need a better mathematical description to study them in the Eulerian framework.

Solution?

Kinematics
$$\underline{v}(y,t) = \dot{\varsigma}(t) y \underline{e}_x$$

$$\dot{\varsigma}(t) = \dot{\gamma}_o \cos(\omega t)$$
 ; $\gamma_o = \dot{\gamma}_o / \omega$

$$\gamma_o = \dot{\gamma}_o / \omega$$

$$\dot{\vec{\gamma}} = \begin{pmatrix} 0 & \dot{\varsigma}(t) & 0 \\ \dot{\varsigma}(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{\tau_{yx}(\gamma_o,t)}{\dot{\gamma}_o} = G' \sin(\omega t) + G'' \cos(\omega t)$$

$$G'(\omega) = \frac{\tau_o}{\dot{\gamma}_o} \cos(\delta)$$

$$G''(\omega) = \frac{\tau_o}{\dot{\gamma}_o} \sin(\delta)$$

Loss Modulus

GVLE Predictions

$$\underline{\tau}(t) = \int_{-\infty}^{t} G(t - t') \dot{\underline{\gamma}}(t') dt'$$

$$G'(\omega) = \omega \int_0^{\omega} G(s) \sin(\omega s) ds$$

$$G''(\omega) = \omega \int_0^{\omega} G(s) \cos(\omega s) ds$$

$$J_s^o = \lim_{\omega \to 0} \left(\frac{G'(\omega)}{(G''(\omega))^2} \right)$$

Compliance in Steady Flow

RC-3 polybutadiene $M_w = 940,000, M_w/M_n < 1.1, T_g = -99^{\circ}C$

$$G_N^o = \frac{2}{\pi} \int_{-\infty}^{\infty} G''(\omega) d(\ln(\omega))$$

$$A_G \equiv \lim_{\omega \to 0} \left(\frac{G'(\omega)}{\omega^2} \right) = \int_0^\infty G(s) s ds$$

$$A_G \equiv J_s^o \eta_o^2$$

End of lecture

Proof that:

$$A_G \equiv J_s^o \eta_o^2$$

$$A_G \equiv \lim_{\omega \to 0} \left(\frac{G'(\omega)}{\omega^2} \right) = \int_0^\infty G(s) s ds$$

$$\lim_{\omega \to 0} (\sin(\omega s)) = \omega s$$

$$G'(\omega) = \omega \int_0^\infty G(s) \sin(\omega s) ds$$

$$A_{G} = \lim_{\omega \to 0} \left(\frac{G'(\omega)}{\omega^{2}} \right) = \lim_{\omega \to 0} \left(\frac{\omega \int_{0}^{\infty} G(s) \sin(\omega s) ds}{\omega^{2}} \right) = \lim_{\omega \to 0} \left(\frac{\omega \int_{0}^{\infty} G(s) \omega s ds}{\omega^{2}} \right) = \int_{0}^{\infty} G(s) s ds$$

$$J_s^o = \lim_{\omega \to 0} \left(\frac{G'(\omega)}{\left(G''(\omega) \right)^2} \right) = \frac{1}{\eta_o^2} \int_0^\infty G(s) s(s)$$

$$A_G \equiv J_s^o \eta_o^2$$

Plateau Modulus Integration of the loss modulus

$$G_N^o = \frac{2}{\pi} \int_{-\infty}^{\infty} G''(\omega) d(\ln(\omega))$$

RC-3 polybutadiene
$$M_w=940,000,\,M_w/M_n<1.1,\,T_g=-99^{\circ}C$$

Creep Test

Kinematics

$$\underline{v} \equiv \dot{\gamma}_{yx}(t) y \underline{e}_x$$

$$\tau_{yx}(t) = \begin{cases} 0, & t < 0 \\ \tau_o, & t \ge 0 \end{cases} = \tau_o H(t)$$

Material Properties

$$J(t,\tau_o) \equiv \frac{\gamma_{yx}(0,t)}{\tau_o}$$

Shear Compliance

$$J_r(t', \tau_o) \equiv \frac{\gamma_r(t')}{\tau_o}$$

Recoverable Compliance

In linear viscoelasticity J is independent of τ_o (cm²/dyne)

Creep Test

$$J(t,\tau_o) = J_s^o + \frac{t}{\eta_o}$$

Compliance in steady state gives a modulus of the final stored elastic energy

Boltzmann superposition results

$$J_s^o = \frac{1}{\eta_o^2} \int_0^\infty G(s) s ds = \frac{\int_0^\infty G(s) s ds}{\left[\int_0^\infty G(s) ds\right]^2}$$

$$\eta_o = \int_0^\infty G(s) ds$$

$$J_s^o = \frac{1}{\eta_o^2} \int_{-\infty}^{\infty} G(s) s^2 d(\ln(s))$$

Relaxation Modulus

Comparison with Experiments for the determination of the relaxation time

Maxwell Model

$$G(t) = G_o \exp(-t/\lambda)$$

The function tG(t) reaches its max value when $t = \lambda$

tG(t) for polybutylene of high molecular weight Mw=940,000 and zero dispersity in the length of macromolecular chains. The continuous line depicts the predictions of the Maxwell model.

ChemEna