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Macroscopic Constitutive models :
T=7 +7
= =p =S
r =2n,.D=ny
A A
L= 7757=/ +b, 7=/+ b117=/ 7=/ Second-order fluid
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Macroscopic Constitutive models
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Macroscopic Constitutive models 3
o
T=7T +7
= =p =S v ﬂ,
ZS :27789 Ep+l£p+a77_p£p zp :npjz/ Giesekus
ﬂ.v =1n._v 2/1 'V | +(1 A :
L, AL, _77p7=/_§ (ﬁp '_\—/) 1 +( +5)77_p£p Rolie-Poly
\Y%
z n, . D| 1
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r o+ [f(zp)] TERTA Dt[f(gp)]= FENE-P
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Zo - A FENE-CR
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PTT models E

gs - 27752
= TP = f(trr )T + A —=P =2n,D
=P /=P Dt ==
A )
1+E”(zp) Linear PTT
2
(e, ) o e, )22l 2o, )| Quadratic PTT
Np \=P ponentia
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Deformed
Undeformed configuration
configuration
= K(B)

Ko(B)
. &

X
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End-to-End Vector

Yy RR>
d=c=rr=(RR)=|(RR) (R}) (RR.) \

Dyadic of End-to-End | (R.R,)

Vector ! R=R.e,+Re, +Re,
The more complex Spherical Symmetry :

the configuration of

a polymer chain, the

more hoh-zero Cylindrical Symmetry .

entries in A ;
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Conformation Tensor (A) vs. Stress Tensor (lp) :
The stress components
_ are proportional to the
zp éé 3D chain configuration.
G is the shear modulus.
But we have to define a
[ é(é — £) reference
=P o (undeformed=random) state:
A=l

Department
Of Chemical

Engineering
John Tsamopoulos — Fluids Lab — Department of Chemical Engineering — University of Patras GhemEng .




Deformed

, Rheological
< Characterization

Oldroyd-B

Undeformed
configuration
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The constitutive model : Oldroyd-B :
In conformation tensor form
T = éé (1)

To express the constitutive relation in terms of stresses,
eq. (1) should be solved in ferms of conformation tensor A
(=¢) and substituted in eq. (2).
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Governing equations for the flow of an Oldroyd-B fluid | 3¢

V-v=0
- Equations for the

oV complete determination
v P
1Y _7" +v-Vv |=V- of both the velocity and

r=—pL+1; ((YZ) +(w) ) "L,

I

the stress fields
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Simple Shear Flow oo

Let the velocity field equal to  V(Y,t) = (g(t) y,0,0)
0 O
vv(y,t) = ( j

s(t) O
Thg total stress Ten;or . .p 1756 (t) L GA
is given by the relation = \nct) -p =
The viscoelastic stresses are T ; =GA

The conformation tensor is determined by

5(AXX AWJ_[;-(t)AW oj_(g'(t)AXy g'(t)Ayyj__l(Axx—l Axyj

Ap Ay

ot A

s®Ay 0 0 0 A Ax Ay -
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Steady Simple Shear Flow :
The total stress tensoris 7 = ( i p nsyoj+ GA
B MsVo —P o
A, A
The viscoelastic stress is T = G[ X xy]
=P Ax Ay

And the conformation tensor is

. 70AXY 0 _ 7}0A>Q/ ?}OA __i Axx_l Axy
oAy O 0 0 Al A Ay -1
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Steady Simple Shear Flow o

Which results into

- Ay=l [/x /&J [1+27'§f m)

/N

A :7}01 g -
Ay —1-|-27/0/12

The total stress tensor

B [— p+G+2G72 2% (n, +Gl)7}oj

Il =

(775+GA)7}0 _p+G
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The viscosity is: n=n,+GA

The First
Normal Stress
Difference is:
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Oscillatory Simple Shear Flow (SAQS)

The conformation tensor is given by

kil LAXX AWJ_(g'(t)Axy oj_(g'(t)Axy g‘(t)AWJ__g(AXX

ot A, A c(tA, O 0 o ) il A

yX Yy yX

The rate of deformation equals

¢(t) = aw cos(at)
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If we assume that the flow startsatt+=0s oo’
[ X )
A= | All the chains are initially
= = unstretched

By integrating in time we have

a’i‘TW:_%(AW _1) Which gives A, =1
oA 1

Py A ——La

a WA =TT A
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Thus, eoe
o

1 2,2 /2
A, = aw Ac0S(at) + aw” A° sin(at) —aw Ae
Y 1+aﬂﬂg( )

For + —oo e_t/)L <<1

GA Gw’A?
— + t + t
Ty (773 T ol j y(t) 2127( )

Gw’ A’
G _
(@)= 1+ W A°
G"(w)=n, +— 22

2172
W
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Steady 2D Extensional Flow :
Let the velocity field be v(y,t) = (éox,—éo Y)
£
vv(y,t)=| °
vv(y.t) ( 0 Oj
The total stress tensor o (— P+ 21, 0 j+ GA
is given by the relation d 0 — p—2n.é, =
The viscoelastic stresses are T, = G A

The conformation tensor

EoPo —EoAy ) [ G Eohy 1(Ax-1 A,
EAy —EAy ) (—EAy —GAy ) Al Al A, -1

0" Xy

Department
Of Chemical

Engineering
John Tsamopoulos — Fluids Lab — Department of Chemical Engineering — University of Patras ChemEng .




00
0000
( X X N
J— 1 o000
A = o0
X 1-28, o
Hence, — A, =0
1
W 1426,
. (- p+ 246, + G (1~ 26,2) 0
The total stress tensoris 7= 0 CD-2n.é. +G I+ 23 1)
. L Txx ~ly
The extensional Viscosity 7, = i
0
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Ne =N+
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Deformed
configuration

K(B)

Undeformed
configuration

ko(B) ﬁ
=
XXz
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Anisotropic Drag Force :
Flow field Isotropy in chain mobility Anisotropy in

chain mobility

—
— J/ L —
—
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Anisotropic Drag Force $4+
:.
When a system is deformed, the space where a
macromolecule deforms becomes anisotropic.
This will lead to anisotropic drag force on it.
Vv
Bt +1A=0
— :p — ‘:
Mobility  Relaxation |v 0A r
Tensor time 4:—7+g-24—(2g) A-A-Vv

8-Iald-1}

ais a parameter that determines

t the degree of anisotropy in chain
mobility
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The constitutive model in terms of
conformation tensor

3TCons’ran‘r 5 \Y

i A(A-I) +{A-I)+1A=0

Relation is

expressed in

terms of the T = é(A _ I)
conformation =p = =
tensor
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The constitutive model in terms of 13
stress tensor
3-Constant
Giesekus model. \Y% /1

Here expressed

in ferms of the Z + 4 Z T a_z
polymeric =P =P n =P
stress tensor d

Il =3
||
)
o
™
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Material Properties

Steady Shear n [Q-Ff
Flow n, 1+(1-2a)f

¥ fll-af) 1

2,4 (L-Fla (47,)°

v, 1

—==—f

ok (A7,)

L ]/2

where  fe_ 17 12:[1+160(1—a)(/170)2]1 -1

8a (1 B a)(l}} 0 )2
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Material Properties: n & ¥,

108

Viscosity and

R 4 first normal
: stress coefficient
0 E for an 8-mode
£ 10ty Giesekus model as
zF compared to
g B A experimental data
=101 1000 for a low-density
to polyethylene melt
Q.1
108 g:g:n
0.0001
1074 107% ;n-; m-‘. Hullmﬂl 107 102 107 104
v i7"
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Material Properties

Small 77' 1
Amplitude = >
Oscillatory 7o 1+ (Aw)
Flow

77” ~ 2,(0

Te 1+ (o)
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Startup shear Viscosity: n*

L] LB RN | L] T T TTETg 1 T T T T T rrn
105 - .
= v =025 g
- ] Comparison of n+
tot L M B calculated by an
¥=50s5" 3 8-mode Giesekus
= - * # = ] .
w ¢ model with
£ 0 \ n | & experimental data
10° = 1 ] r ‘ _ .
= E 1000, " 10000 0030 'E' for' a IOW'denS|Ty
: 100 18000.0 | 0.050 3 polyethylene melt
i 10. 183000 | 0.200 ]
; 1 SB00.0 | 0.500
10 E 0.1 2670.0 | 0.400 3
- 0.0 §B6.0 | 0300 3
- 0.0m 04.8 | 0.200 A
- 0.0001 1290100 A
‘I{!II b1 i naanal bl B0 b addiil i 4 i

10-" 109 101 107 107
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Material Properties

Steady Extensional Viscosity

7 1(3+—\/1 U1-2a)0é + 4(1)2 — 1+ 21— Za)ﬂg+(/15))

3n,  6a
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Startup elongational Viscosity: n*

IG?E L] T IIIIIII I IIIIIIII

£=100s5"

105

10% L

7 iPas)

104k

Ll

1000, 10000 | 0.030
100, 1B8000.0 | 0.050
10, 18900.0 | 0.200
- 1. 4BO0.0 | 0.500
F 0.1 26700 | 0.400
0.01 G5BE.0 | 0.300
0.001 o4.8 | 0.200
2 12.9
10
1072 10" 10% Q! 102 ig?

ts)
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Comparison of A+
calculated by an
8-mode Giesekus
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Phan-Tien & Tanner (PPT) model (based on network theory)

Typical network of
polymer solutions

e

='—2.

1=
1=
1=

.pT

A=n/G is the relaxation time,
V over a variable indicates the
upper convected time-derivative

E_ introduces non-affine F; correlates with the creation and the destruction
motion of the polymer strands of junctions between the strands

Affine motion: The deformation characterizing the material

. e e . . . . D I it
at the macroscopic level is similar to its microscopic motion Of Cheme]

Engineering
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The Phan Tien Tanner (PPT) model: the functions

Comments:

* The parameter 0 < ¢ < 2 alters the time derivative.

* Forthe limits, { = 0 and {&=2, the upper and lower
convected time derivative are obtained.

» With {=1 the co-rotational time derivative results

E(zD)=¢ z—¢z-D"

* Ingeneral the functional dependence is such that it
accelerates stress decay rate at higher stresses and
approaches zero at least quadratically when strains
(i.e. stress divided by the modulus) approach zero.

» F, orf, the relaxation time of the model is made a
non-linear function of the extra stress tensor scaled
with a modulus.

* Predicts a maximum in the elongational
F;(T)=exp(€/G1.) viscosity before reaching extensional
- thinning at higher elongational rates

* Predicts extensional thickening
(0)=1+€/Gl. behavioraftgrwhich a plajteau is
= reached at higher elongational rates

Fy
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¢- PPT model: material functions

no(l — B)
ns = Bno + :
I

Predicts: 2n0(1 — By’
= Shear thinning behavior for shear viscosity and I = Iz :

normal stress difference
. . . | — } . EE

The elongational viscosities become bounded. o ( By

. N = — .

= For ¢=0, the second normal stress difference fj

becomes zero. f

— 3810+ 3np(1 — _ —|.
Ne = 3B10+ 3no( fﬂ)[fz ~ aE = ZRTE-}

Limitations: _
= For &0 spurious oscillations are predicted No/Ny=-¢/2

during start-up of shear flow.
= When =0, similar predictions are obtained as Comments:

the Giesekus model and no overshoot in the = The two parameters ¢, € define the non-linear behavior.

viscometric functions is predicted for start-up of = When e<< € the behavior in shear flow is mainly determined

shear by ¢, and € serves to blunt the singularity in elongation that

otherwise would be present.
= Asingle value of the slip parameter cannot fit both shear
viscosity and first normal stress difference satisfactorily.
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Material Properties for ¢- PPT

Shear Viscosity Extensional Viscosity
10' 10°
et [1)PTT,3=0.9,5 =0 : :
—a— Q]PTT. p=0.12 =0 -« {7 S} m g:g’g',?'":g
- = = = [3]PTT, [5-0.9.;,,,,'0.2 - === 3 PTT. Mg?m‘oz
—>— [PTT, j=0.1,5,,,=0.2 > []PTT.§=0.1,200.2
10°F '
10°F =
0
=
10" 10° -
i | L A ] " PEYT TIPSO | Y ISP R 1 1 A
10° 10 , 10° 10* 107 10 10° 107 10°
)|
Material functions for PTT model with €=0.04, {=0.0,0.2, =0.9,0.1) ‘
‘e | Department
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Material Properties for ¢- PPT

first normal stress-difference second normal stress-difference
2l )

10+ 10}

* = = = = PTT,p=09,,20.2, N,

& ] . PTT, }=0.9,%,,,50.2, N,
102} 10t}
> } M) 2 L
wt Bl €wF .

3 - .

| 1 e :
Ll T e oo 0 10°F

2 e [4] PTT, =0.1,%,,,=0.2 B
e 0010

! !

Material functions for PTT model (€=0.04,§=0.0,0.2), =0.9, 0.1
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Deformed

- '@~ Endof4®
lecture
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Dskmed. FENE

K'(B) . °
Constitutive
models

Undeformed
configuration

@
|

X3,
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FENE Models

[ A
R 3
R g « o
& i 4
ul i D
o\‘-'
-.'.
-
.
L
" ey 8
Prrethe,
A gy
P o

Real molecule Bead-rod chain

——R=HR

000
0000
o000
o000
[ X )
o
Dumbbell
R FENE stands for the finitely
extensible nonlinear elastic
model of a long-chained polymer.
It simplifies the chain
of monomers by connecting a
Bead-spring chain Bead-spring sequence of beads with

dumbbell nonlinear springs.

1

FOR) = —— =

ﬂ 1- (B / Rmax)
Hookean spring or Oldroyd-B '
entropic spring I$ model ;/\;girnnger > |$ rﬁ\ilc\i'fl
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FENE Models
RR
Z, =~”‘£<1_ 2/ efm>_£J FENE
( (2R) \
r,=6 s -L FENE-P
. _<— > = max )
( , )
T =6 <££> — f"‘“x I FENE-CR
T (R /R, Rem3T
\ J
G =nk,T
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FENE Chilcott-Rallison Model

If the dumbbell model is considered to

~ 77557:(7‘/"4)/1 have a maximum attainable length L.
L= Z The force of the dumbbell is given by
Warner law.
0A - f(fir A
=y VA-W A=AV =——=(1-4)
f- - T = E— = = —— A — =
1 _
F(trA) = c="1"1s Concentration
- frA Ng
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SAQS: relaxation modulus, G" & G s
-D2
FENE-P b=R% e
relaxation modulus G, ((t-1')/ 2) = exp((+—t")(b+3)/ (b))
_ G'-on,  [(b+3)/blie
Loss moduli nk,T  [(b+3)/bF + (o)
| & ()
Storage moduli nk,T  [(b+3)/bF + (Ao
FENE-CR
relaxation modulus ~ &,((t-1')/ 2) = %exP(—(T—*')b/ (b-3))
Loss moduli & —on, __[b/(b-3)f e
nkT b/ (b-3)F +(ie)
Storage moduli ALACE 3 (o)
”kBT [b/ (b-3)F +(1w)* Department
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Startup shear flow: n* .
b=R?
max
Low shear rate High shear rate
Ay = Ay = 30
N — —_—
[ (0) . () = 20, 50, 100
= 1+'D'_ = b — L >
2 | b =20, 50, 100 . A 1
I
e~ L E L T — FENE
= i = | f%h o T FENE-P
< < | &% T FENE-CR
f:‘. UE‘- N FI:-. 2 i
= | woo... FENE=P s
- 1 - FENE-CR
0.0 k™™, . e Oy I U
107 107" 1 10' 107 10’

t/ M

Time evolution of n* after inception of shear flow
for FENE, FENE-P and FENE-CR
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SA0S: G"& G”

b = 50

l_
I 0 =
—~ L ]
F":"_ L e — FENE E
3 S O T FENE-P |
:' N -.._FENE-CR |
o ' _ _ expansions

10" LA for FENE
d "
~ LA
h I

1070 . ... . %

10 10" 107 10°
LA
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Startup shear flow: ¥, *
b=R?

max
High shear rate

Low shear rate

Ay = 100
My = 0.20 - -
2.0[ ' - ™ Tl (e) ___ FENE
- (a) I Il ] L FENE-P
[ b ] - N ____FENE-CR
r Jp——— ] 0.15 y -
1.5k 100 : - I
[ b = 50 fa ) -
% o 20 ] 2 0.10 b= ]
= 1.0F i c
N ;‘: 100
e [ ___ FENE )
z L FENE-P ! 50 |
05F ____FENE-CR ] 0.05} 20 -
o,o: P 0.00L Al . ,
107 107 1 10 107 107" 1 10"
t/ A t/\

Time evolution of ¥, * after inception of
shear flow for FENE, FENE-P and FENE-CR
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