Introduction to Rheology of complex fluids Brief Lecture Notes

Kinematics and material functions for extensional flows

Contents

- Introductory Lecture
- Simple Flows
- Material functions & Rheological Characterization
- Experimental Observations
- Generalized Newtonian Fluids
- Generalized Linearly viscoelastic Fluids
- Nonlinear Constitutive Models

Kinematics of extensional flow

Deformation in extensional flow

L(t)

Uniaxial Stretching

$$\varepsilon(t_{ref}, t) = \int_{t_{ref}}^{t} \dot{\varepsilon}(t')dt'$$

$$= \dot{\varepsilon}_{o} t$$

$$= \ln\left(\frac{L(t)}{L}\right)$$

Hencky Strain

The deformation is proportional to time, when $\dot{\epsilon}_o$ = const.

The ratio of lengths is an exponential function of time

Nomenclature For Strain

$$\varepsilon \leftrightarrow \gamma$$

$$\mathcal{E} \longleftrightarrow \mathcal{E}_{zz}$$

Rate of Strain

$$\dot{\varepsilon}_o \leftrightarrow \dot{\gamma}_o$$

Extensional Flow Characteristics

Strong

In comparison to simple shear flow which is a weak flow.

$$L(t) = L_o \exp(\dot{\varepsilon}t)$$

Exponential Change

$$z(t) = z(t = 0) + \dot{\gamma}t$$

Irrotational

Linear Change

Recirculations are not formed, while the deformation results from the stretching and the orientation of the macromolecules.

Non-viscometric flow

The third invariant of the rate of deformation is non-zero.

Three types

Uniaxial, Biaxial and 2D Elongation

Three Types of Flow

$\dot{\varepsilon}(t) = \dot{\varepsilon}_o = \text{constant}$

Kinematics

$$v_x(x, y, z) = -\frac{1}{2}\dot{\varepsilon}(t)(1+b)x$$

$$v_{y}(x, y, z) = -\frac{1}{2}\dot{\varepsilon}(t)(1-b)y$$

$$v_{z}(x, y, z) = \dot{\varepsilon}(t)z$$

Exrension in z direction

Nomenclature

Uniaxial Stretching:

$$b=0$$
, $\dot{\varepsilon}>0$

Biaxial Stretching:

$$b = 0$$
, $\dot{\varepsilon} < 0$

2D Stretching:

$$b=1$$
, $\dot{\varepsilon}>0$

Three Steady Extensional flows

Rate of Deformation Tensor

$$\underline{\nabla v} = \dot{\varepsilon}_o \begin{pmatrix} -\frac{1}{2}(1+b) & 0 & 0 \\ 0 & -\frac{1}{2}(1-b) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\dot{\underline{\gamma}} = \underline{\nabla}\underline{v} + (\underline{\nabla}\underline{v})^T = 2\dot{\varepsilon}_o \begin{pmatrix} -\frac{1}{2}(1+b) & 0 & 0 \\ 0 & -\frac{1}{2}(1-b) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Nomenclature

T

Uniaxial Stretching:

$$b=0$$
, $\dot{\varepsilon}>0$

Biaxial Stretching:

$$b=0$$
, $\dot{\varepsilon}<0$

2D Stretching:

$$b=1$$
, $\dot{\varepsilon}>0$

Three Steady Extensional flows

Material Properties

$$\overline{\eta} \equiv \frac{\tau_{zz} - \tau_{xx}}{\dot{\varepsilon}_o}$$

$$\overline{\eta} \Leftrightarrow \overline{\eta}_{\scriptscriptstyle B} \Leftrightarrow \overline{\eta}_{\scriptscriptstyle P_1}$$

Uniaxial or Biaxial or 1st level viscosity

$$\overline{\eta}_{P_2} \equiv \frac{ au_{yy} - au_{xx}}{\dot{\mathcal{E}}_o}$$

2nd level viscosity

Application of Uniaxial Extension In Newtonian Fluids

Enaineerinc

ChemEnaU

$$\underline{\underline{\tau}} = \eta \dot{\underline{\gamma}}$$

$$\dot{\underline{y}} = \underline{\nabla}\underline{v} + (\underline{\nabla}\underline{v})^T = 2\dot{\varepsilon} \begin{pmatrix} -1/2 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Extensional Viscosity Definition

$$\eta_E(t) = \frac{\tau_{zz} - \tau_{yy}}{\dot{\varepsilon}} = 3\eta(t)$$

For low rate of deformation:

$$\eta_{E,o} = 3\eta_o$$

A lot of materials diverge from this observation

Experimental Observations

Steady elongational and shear viscosity of a PS melt vs. extensional and shear rate of deformation, respectively

Experimental Observations

The extensional viscosity first increases and then decreases with increasing ϵ .

Trouton Ratio

$$Tr \equiv \frac{\overline{\eta}}{\eta_o}$$

Uniaxial Extensional Flow

Fluid Streaklines

Biaxial Extensional Flow

Velocity Field

$$v_{x}(x, y, z) = -\dot{\varepsilon}(t)x$$

$$v_{y}(x, y, z) = 0$$

$$v_{z}(x, y, z) = \dot{\varepsilon}(t)z$$

Fluid element

Transient Extensional Flows

As in shear flows, in extensional flows a variety of basic and interesting transient patterns have been defined

- Start-up of Extensional Flows
- Cessation of Extensional Flows (almost impossible)
- Extensional Creep
- Extensional Ramp Deformation
- SAOE oscillation of small amplitude

Extensional Material Properties

Start-up of uniaxial elongation

$$\eta_E^+(t,\dot{\mathcal{E}}) = \frac{ au_E(t,\dot{\mathcal{E}})}{\dot{\mathcal{E}}}$$

$$\tau_E = \tau_{11} - \tau_{22} = \tau_{11} - \tau_{33}$$

In LVE:

$$\lim_{\dot{\varepsilon}\to 0} \left\{ \eta_E^+(t,\dot{\varepsilon}) \right\} = \eta_{E,o}^+(t) = 3\eta_o^+(t)$$

Startup of extensional flow

A. Bach, K. Almdal, H. K. Rasmussen, O. Hassager, *Macromolecules* 36, 5174-5179 (2003)

Start-up of Extensional Flow

Extensional increase of the viscosity in constant value of Hencky strain:

$$\varepsilon(0,t) = \dot{\varepsilon}_o t$$

Molecular Weight of the samples:

	$ar{M}_{\mathbf{w}}$	${ar M}_{w}/{ar M}_{n}$	
PS I	7.4×10^4	1.2	
PS II	3.9×10^4	1.1	
PS III	2.53×10^{5}	1.9	
PS IV	2.19×10^{5}	2.3	

Monodisperse

Start-up of Extensional Flow

	$ar{M}_{w}$	${ar M}_{w}/{ar M}_{n}$
PS I	7.4×10^{4}	1.2
PS II	3.9×10^4	1.1
PS III	2.53×10^{5}	1.9
PS IV	2.19×10^{5}	2.3

Extensional Material Properties

Start-up of biaxial elongation

In LVE:

$$\lim_{\dot{\varepsilon}_B \to 0} \left\{ \eta_B^+(t, \dot{\varepsilon}_B) \right\} = \eta_{B,o}^+(t) = 6\eta_o^+(t)$$

Extensional Material Properties

Start-up of 2D elongation

$$\eta_{p_1}^+(t,\dot{\varepsilon}_B) = \frac{\tau_{11} - \tau_{33}}{\dot{\varepsilon}} \qquad \eta_{p_2}^+(t,\dot{\varepsilon}_B) = \frac{\tau_{22} - \tau_{33}}{\dot{\varepsilon}}$$

$$\eta_{p_2}^+(t,\dot{\mathcal{E}}_B) = \frac{\tau_{22} - \tau_{33}}{\dot{\mathcal{E}}}$$

In LVE:

$$\eta_{p_1,o}^+(t,\dot{\varepsilon}_B) = 4\eta_o^+(t_B) \qquad \eta_{p_2,o}^+(t,\dot{\varepsilon}_B) = 4\eta_o^+(t_B)$$

Extensional Flow due to Step Deformation

Deformation function for biaxial flow

Damping function for biaxial flow

Transient Rheological Parameters

Parameter	Shear	Elongation	Units
Strain	$\gamma = \gamma_0 \sin(\omega t)$	$\varepsilon = \varepsilon_0 \sin(\omega t)$	
Stress	$s = s_0 \sin(\omega t + \delta)$	$t = t_0 \sin(\omega t + \delta)$	Pa
Storage Modulus (Elasticity)	$G' = (s_0/\gamma_0)\cos\delta$	$E'=(t_0/\epsilon_0)cos\delta$	Pa
Loss Modulus (Viscous Nature)	$G^{''}=(s_0/\gamma_0)\sin\delta$	$E^{\prime\prime}=(t_0/\epsilon_0)sin\delta$	Pa
Tan δ	G''/G'	E''/E'	
Complex Modulus	$G^* = (G^{'2} + G^{''2})^{0.5}$	$E^* = (E^{\prime 2} + E^{\prime \prime 2})^{0.5}$	Pa
Complex Viscosity	$\eta^* = G^*/\omega$	η _E * = E*/ω	Pa-sec

Why Extensional flow is a Rheological Flow?

- Simple Flow Field
- Represents many similar, but more complex flows
- Simple expression of the stress tensor

Comments on the Extensional Flows

Steady Deformation

- Difficulties in reproducing the experiments
- Difficulties even in the steady extensional flows
- Important for many practical processes

Non Steady Deformation

- Difficulties in reproducing the experiments
- Open Question: What is the quantitative increase of stresses with the deformation (strain hardening)

Why have we chosen these flows?

Because they are symmetric.

Symmetry facilitates reaching conclusions for the stress tensor that produces these well-described flow fields for each different fluid.

End of lecture

Uniaxial Extensional Flow

Velocity Field

$$v_{x}(x, y, z) = -\frac{\dot{\varepsilon}(t)}{2}x$$

$$v_{y}(x, y, z) = -\frac{\dot{\varepsilon}(t)}{2}y$$

$$v_{z}(x, y, z) = \dot{\varepsilon}(t)z$$

Start-up of Extensional Flow

Extensional Increase of the viscosity

Fitting with Pom-Pom model

