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Kinematics of
extensional flow
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Deformation in extensional flow °2

z direction

» L(t)

L

0]

Uniaxial Stretching Nomenclature

For Strain
(o )= JEQWI ety str N
E = | & encky Strain
ref 1
s E>E,
. The deformation is Dt o S
=g, i proportional to time, : .
when €= const. €y 70
In I—(t) The ratio of lengths is
o L an exponential function
0 of time
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Extensional Flow Characteristics oe

e Strong L(t) =L, exp(ét)
In comparison to simple shear flow
which is a weak flow.

Zt)=z(t=0)+yt

* |Irrotational

Recirculations are not formed, while the deformation results
from the stretching and the orientation of the macromolecules.

* Non-viscometric flow

The third invariant of the rate of deformation is non-zero.

* Three types
Uniaxial, Biaxial and 2D Elongation
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Three Types of Flow

£ ~

Uniaxial Stretching

: i E Biaxial Stretching
’ 20 Streftching
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Three Types of Flow T

g(t) = ¢, = constant
Nomenclature

Kinematics
_ 1. Uniaxial Stretching:
VX(X1 y,z)—_Eg(t)(l+b)X b:O, £>0
1. Biaxial Stretching:
VY(X’y’Z):_Eg(t)(l_b)y b=0 &<0
Vv, (X, Y, Z) — (g'-(t)z 2D Stretching:

b=1 &£>0

Exrension in z direction

—
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Three Steady Extensional flows T
Rate of Deformation Nomenclature
Tensor
O @) T
1
00 Uniaxial Stretching:
Vv =4¢, 0 —%(1—b) 0 b=0, £>0
0 0 1 Biaxial Stretching:
b=0, £<0
Loy 0 o0 2D S’rr‘e‘rchfng:
: . b=1 &£>0
Z:y\_/+(y\_/) = 2¢, 0 _E(l_b) 0
0 0 1
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Three Steady Extensional flows :

Material Properties

77 Tyx

. e, = —
&, &o

Z

n<<=ng <= 77P1
Uniaxial or Biaxial or 1st
level viscosity

2nd |evel viscosity

Department
Of Chemical

Engineering
John Tsamopoulos — Fluids Lab — Department of Chemical Engineering — University of Patras GhemEng .




Il =

I
S
1™

-1/2 0
. T .
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Extensional Viscosity
Definition

ne(t)=——T- W g(t)
£

For low rate of deformation:

Me o =3,

A lot of materials diverge from this

observation

Ny and 1 (Pa-s)
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Experimental Observations

107 g T 7T T T T T Y T Ty
- Zero - elongation - rate -
i elongational viscosity 7, ] Steady elongational
n e 4 and shear viscosity of
. 319 a PS melt vs.
10 E "§ extensional and shear
@ C 1, 3 rate of deformation,
= I \ 1 respectively
= - n{y) ._
& Zero-shear -rate
105~ viscosity 7, -
104 L1t ed ool vl g vennd v
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Experimental Observations o
10° 1 The extensional
o 0p = constant . . .
s viscosity first
X €n=constant .
increases and
107 - PS 1 then decreases
- 31y - ~goo—o—omommear o™ T S L 13000 with increasing
-3y - -+ —o——o—w—oki 00w PSTII  PSII £.

- 377{] W ? at 7= 160°C
lOﬁ 4.—-3,)0- L - ")S I\/

Trouton Ratio

Steady-state shear viscosity n(z), Pa-s

Steady-state elongational viscosity (o), Pa-. s

b."()- L i

» —
SN __ PSIVat T=160°C n
105 - M ‘ o | Tr=—
\ _n(r Shear viscosity 1,

\

\

]04 “j - - T E T )
102 10° 10% 105 106 107

Tensile stress o, Pa
Shear stress . Pa
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Uniaxial Extensional Flow

v
X

Fluid Streaklines
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Biaxial Extensional Flow .

Velocity Field Fluid element

V. (X, Y,2) =—£(t)X J | ]
v, (X, y,2)=0 ('
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Transient Extensional Flows e

« Start-up of Extensional Flows

 Cessation of Extensional Flows (almost impossible)
« Extensional Creep

« Extensional Ramp Deformation

« SAOE oscillation of small amplitude
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Extensional Material Properties :

ne (t, &) = ‘E (15’8) Tg =TT =011~ 133
E

InLVE:

lim {7z (&, €)= 72, () =375 1)
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Start-up of Extensional Flow T
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Molecular Weight of the samples:

Monodisperse
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Extensional Material Properties :

75 (1, &5)

E

T =111 — T2 =711 — 133

Ug(t’és):

In LVE:

lim 73 (t. &)= 75,0 (6) = 67, (1)
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Extensional Material Properties :

—T — T
np (t gB)_ & = 77p (t gB)_ & =

In LVE:

My o(tég) =4m, (t5)  17,,0(LE5) =41, (t5)
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Extensional Flow due to WIS WP 13
e S S 1‘ f

Step Deformation ey 1

log Eg(; ¢B)
log [Eg (1.eg)/ G(1)]

0.0 ; . - - : ' '
-20  -10 0.0 1.0 2.0 00 05 10 = 20
logt, s B
Deformation function for ?Iamping function for biaxial

ow

biaxial flow
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Transient Rheological Parameters

Parameter Shear Elongation Units

Strain Y =Y, sin(wt) € =¢,sin(wt)

Stress s = spsin(wt + §) t =t,sin(wt + §) Pa
Storac:u? Modulus G" = (s/Yp)c0sd E' = (ty/y)cosd Pa
(Elasticity)

Lo.ss Modulus G =(sy/y,)sind E'" = (ty/gy)sind Pa
(Viscous Nature)

Tan G'/6 E/E
Complex Modulus G*=(G'2+G "2)%3 E* = (E'2+E""2)%3 Pa
Complex Viscosity n*=6%w N =E*/w Pa-sec
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Why Extensional flow is a Rheological Flow?

« Simple Flow Field
* Represents many similar, but more complex flows
« Simple expression of the stress tensor
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Comments on the Extensional Flows

Steady Deformation

 Difficulties in reproducing the experiments
 Difficulties even in the steady extensional flows
« Important for many practical processes

Non Steady Deformation

« Difficulties in reproducing the experiments

« Open Question: What is the quantitative increase of
stresses with the deformation (strain hardening)
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Why have we chosen these flows?

Because they are symmetric.

Symmetry facilitates reaching conclusions for the stress

tensor that produces these well-described flow fields for
each different fluid.
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End of
lecture
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Uniaxial Extensional Flow ses
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Velocity Field v, (%,Y,2) =—§X
>(t
vy(x,y,z)=—§y < »
z direction

V,(X,Y,2)=¢(t)z TP ——
Uniaxial Extension Of Chemica
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Start-up of Figure 6.6 . 213

_ . Kurzheck et al.; PP
n . ] P .
Extensional Flow ="} = S
:: i o
Extensional g e
Increase of the \_SE/ —
viscosity 5 o' maxfom-- P
ﬂ —r— ()5 —a—{10] L AN
; —— —e S | = D2
B i [} | e (1N}
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i S . .
Tin il I i o
1;:]9 |"=|:|-.l5'.I T T T Tormp T T o T T TTTTH
Fitting with )
Pom-Pom model _ ™

10 Figure 6.63, p. 217 Inkson
etal.; LDPE
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