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The challenge of decarbonisation in industry

2

Decarbonisation well understood.

Market mostly domestic.

May provide negative emissions.

power industry

Decarbonisation considered difficult.

Closely connected to international 

markets.

Requires offsets for residual 

emissions.

Abatement may add power demand.



Energy Systems Optimisation Model (ESO(NE))
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Based on a power systems model 

(ESO(NE)), we are developing our 

spatially disaggregated, temporally 

explicit energy systems model.

In the future, we plan to include 

social KPIs such as employment 

and GDP.

We are expanding it to include the 

decarbonisation of the industrial, 

transport and heat sectors.

[1]-[11]



Net zero – power only – CP only 
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Research questions
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Which industrial sectors represent the largest emitters in UK industry?

Which options exist for abatement in these industrial sectors?

Which pathways lead to net-zero for power and industry? How much carbon offset is 

required from power?

Can decarbonisation and domestic production be incentivised using a border tax 

adjustment?

Which combinations of carbon price and negative emissions credit achieve net zero?
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power

CO2 from 
industrial
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Modelling industrial decarbonisation – UK status quo

cement plants 
(11 kilns)

steel plants       
(2 blast furnaces)

refineries (6) other

> 1 Mt

0.1-1 
Mt

< 0.1 Mt

by size 

[Mt-CO2/yr]

by sector

Industrial emissions are spread over 

a wide range of point source sizes.

Half of UK industrial emissions stem 

from 2 steel plants, 6 refineries and 

11 cement plants. These were 

chosen for modelling.

At least a quarter of UK industrial 

emissions are too small and 

distributed for carbon capture –

underscoring the need for negative 

emissions in light of the 2050 net 

zero target.

[14]
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Modelling industrial decarbonisation – UK status quo 

(current)
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UK point sources were analysed with regard 

to capacity, emissions and age. Values were 

grouped and averaged appropriately.

[14][18][19][23][24][27]



Modelling industrial decarbonisation - cement
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Cement production from limestone (CaCO3) 

causes process emissions combined with 

combustion emissions. Every abatement 

option requires carbon transport and 

sequestration.

The model includes

- oxy-combustion 

- post-combustion capture (PCC)

- calcium looping (CaL), integrated and tail-end

- Membrane-assisted liquefaction (MAL)

[12]-[14], [23]-[29]

cement production with oxy-combustion (Voldsund et al., Energies, 2019.)



Modelling industrial decarbonisation – iron & steel
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Part of the substantial CO2 emissions from reducing 

iron ore with coke can be captured via PCC. 

Hydrogen can be used as reducing agent instead, 

resulting in potentially zero-carbon steel-making.

Steel-making from scrap via electric arc furnaces is 

limited by the availability of scrap.

[12]-[22]

Wörtler et al., BCG & Steel Institute VDEh. 2013.

Biochar substituting coal combined with CCS leads 

to carbon-negative steel.

BF-BOF-Steelmaking



Modelling industrial decarbonisation – refineries
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Refineries are collections of point sources of 

varying CO2 concentration, flue gas flow rate 

and accessibility – complicating PCC.

Process flow and plant layout vary by 

individual refinery; generalising is difficult.

PCC for refineries in the model includes two 

options, based on a case study:

- 63% emissions reduction, more costly

- 22% emissions reduction, less costly 

Data for industrial abatement technologies is 

often unknown or uncertain.

[12]-[14], [30]-[34]

Yao et al., International Journal 

of Greenhouse Gas Control 74 

(2018): 87-98.



Key assumptions
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Net-zero carbon target in 2050 with a linear trajectory.

No carbon price (CP) or negative emissions credit (NEC) unless otherwise stated.

~50% of transport and heat are electrified. The shape and magnitude of the power demand 

curve consequently change. 

Biomass has embodied emissions of 0.25 tCO2/t caused by the supply chain, which are counted 

toward the carbon target and penalised by the carbon price.

Build rates (BR) are constrained based on historical data and increased by a factor when 

needed.

Electricity consumption of industrial plants is added to the demand in the power sector.

The 50% of industrial emitters which are not explicitly modelled require offsets in 2050.



other countries’ 

markets
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Modelling industrial decarbonisation – demand, import, export 

UK 

industry

UK 

market

other countries’ 

industry import

export

total

demandtotal

production

domestic delivery

ImportRatio =
Import

Total Demand

ExportRatio =
Export

Total Production

[15][17][18][26][35][36]



Industrial CCS scenarios – overview

13

abatement 

technologies

import ratio export ratio

BAU & offset fixed fixed

Abate & offset available fixed fixed

Import & offshore increasing fixed

Abate & export available fixed increasing

Deployment of technologies depends on 

- when they become available to the system

- the retirement time of old capacity

- their relative abatement cost

Many of these parameters are unknown or uncertain.

Import and export ratios are fixed to 

preserve the market structure.



Results – BAU and offset
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Retiring capacity is replaced 

with new-built high-carbon 

plants. 

Low-carbon secondary 

steelmaking from scrap via 

electric arc furnaces is 

expanded, adding electricity 

demand to the power sector.



Results – BAU and offset
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13 GW of BECCS are delivering 66 Mt-CO2/yr of negative emissions in 2050.

12 Mt-CO2/yr offset emissions from CCGT-CCS and CCGT, 54 Mt-CO2/yr are offsets for steel, cement, 

refineries and other industrial sectors.



Results – abate and offset
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Cement: Oxy-combustion is the clear 

favourite for retrofit and new-built.

Steel: Secondary steelmaking is 

expanded. Existing capacity is 

retrofitted with bio-CCS.

Refineries: Higher amount of PCC 

with higher cost and higher emissions 

reduction is selected. 

Abatement is preferred over BECCS 

carbon offsets.



Results – abate and offset
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10 GW of BECCS are delivering 50 Mt-CO2/yr of negative emissions in 2050.

17 Mt-CO2/yr offset emissions from CCGT-CCS and CCGT, 33 Mt-CO2/yr are offsets for steel, cement, 

refineries and other industrial sectors



Results – BAU vs. abatement in industry
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Assuming import prices at current technology OPEX, 

costs are the same within the margin of error.

BAU in industry CCS in industry

When a carbon price is applied to industrial 

emissions, CCS in industry becomes significantly 

less costly than BAU.



Results – import and offshore
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Exiting capacity is retired at 

the end of its lifetime or shut 

down and replaced with 

imports.



Results – import and offshore
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9.5 GW of BECCS are delivering 48 Mt-CO2/yr of negative emissions in 2050.

18 Mt-CO2/yr offset emissions from CCGT-CCS and CCGT, 30 Mt-CO2/yr are offsets for other 

industrial sectors.



Results – abate and export
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Cement: Oxy-combustion for existing 

and new plants is optimal.

Steel: Secondary steelmaking is 

expanded. Existing capacity is 

retrofitted with bio-CCS. New-build 

bio-CCS steel is added.

Refineries: Higher amount of PCC 

with higher cost and higher emissions 

reduction is selected. 



Results – abate and export
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10 GW of BECCS are delivering 52 Mt-CO2/yr of negative emissions in 2050.

17 Mt-CO2/yr offset emissions from CCGT-CCS and CCGT, 35 Mt-CO2/yr are offsets for steel, cement, 

refineries and other industrial sectors



Results – CO2 for transport & storage
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Ca. 65 MtCO2/yr require transport and storage if industrial emissions from cement, steel, 

refineries are offshored. 

If industrial emissions are abated, this number rises to ca. 85 MtCO2/yr.

In our “abate & export” scenario, 130 MtCO2/yr require transport & storage. 

abate & exportimport & offshore



Abate & offset with carbon price
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Industrial CCS is deployed 10 years sooner. CCGT-CCS is deployed sooner and in 

greater quantity to replace CCGT. BECCS is added later as fewer offsets are required.



Border tax adjustment (BTA)
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vs.

border tax adjustment [£/tCO2] × import carbon intensity [tCO2/Mt] = penalty [£/Mt]

baseline production cost 

(+ CCS cost) 

(+ carbon tax) 

+ carbon offset cost

Import cost 

+ border tax adjustment

Import price = OPEX of conventional technology

Import carbon intensity = carbon intensity of conventional technology

BTA  assumed constant over time



BTA – cement 
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BTA – steel 
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BTA – refineries 
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How to achieve net zero using CP & NEC
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A NEC above 138 £/t-CO2

achieves net zero for power and 

industry in our model without a CP.

Sharp increases in CP achieve 

only marginal reductions in total 

emissions; emissions are more 

sensitive to NEC than CP.

A NEC between 88-138 £/t-CO2

achieves net zero in combination 

with a CP.

[$/tCO2]

[$
/t

C
O

2
]



Conclusions
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Emissions from UK cement plants, steel plants and refineries can be reduced by 90% while maintaining 

production in the UK.

Optimal technology choices according to our model all involve CCS.

Abate & offset incurs similar costs to BAU & offset but leaves room for BECCS to offset other sectors.

Exporting zero-carbon cement, steel and petrochemicals is possible by deploying low-carbon production 

technologies in the UK – a potential economic boost.

CCS is deployed first in industry. Power overtakes after 2045.

A high enough BTA can force the system from offshoring emissions to domestic production.

A NEC is more effective than a CP in achieving net zero. A combination may be optimal from a public 

spending perspective.

caroline.ganzer17@imperial.ac.uk



Future work
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Where are synergies in the decarbonisation of power and industry with regard to industrial clusters?

How do both benefit from shared infrastructure?

What is the effect of other policy instruments for incentivising low-carbon UK industry, such as

- carbon takeback obligation for imports

- subsidies for local production

What is the impact of the pathways for UK industry on employment and GDP?

Which combination of CP and NEC is optimal in achieving net zero from a public spending 

perspective.

We are constantly improving our cross-sector model, modifying model constraints, assumptions, and 

numbers.

Scenarios change as we optimise the way we describe the UK energy system.
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