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BEIS Public Attitudes Tracker P
7ih May 2020 Business, Enaray
Renewables & Industrial Strategy

Support for renewable energy remained steady at 82% in March 2020.

3 INDEPENDENT |
28 April 2020

Climate crisis: UK hits coal-free
record for power generation amid
coronavirus lockdown

Closure of fossil-fuel plants and fall in demand due to Covid-19 sees CO2 emissions cut by one-third

The Guardian Tue 19 May 2020
How renewable energy could power
Britain's economic recovery

Harnessing power from sun, wind and sea could spur UK's post-
pandemic economy while tackling climate crisis, say experts

Energy Futures Lab — Caroline Ganzer — 21st May 2020

REUTERS
13.05.2019

Does renewables pioneer Germany risk
running out of power?
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German Failure on the Road to a Renewable
Future

Why Renewables Can't Save the

Climate
FINANCIAL TIMES MAY 14 2019
Falling renewables investment stalls Paris
climate goals
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Imperial College Energy transition, electrification & renewables integration —
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Imperial College

uestions
London Q

What is the potential for inter-seasonal grid-scale energy storage in the UK when
explicitly accounting for the electrification of heat and transport?

Which function does inter-seasonal storage take on depending on the capacity
mix?

What are priorities for the development of power-to-gas technologies?

What are cost optimal combinations of renewables, storage, low-carbon
dispatchable technologies, negative emissions technologies?
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Imperial College Energy Systems Optimisation Model (ESO(NE))

London
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Energy Futures Lab — Caroline Ganzer — 21st May 2020 [1]-[3] 7



Imperial College £ \c rification scenarios

London

400
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total annual electricity
demand/ TWh

0

s power

I heat (electric)

fm heat (heat pump)
. BV

2020 2030 2040 2050

minimal central high I total I

2020 2030 2040 2050

_ efficiency improvements until 2030, further improvements offset by growth
EV steady progression ~50% of road transport ~80% of road transport ~100% of road transport
heat pumps no deployment 70% air-sourced, 30% ground-sourced heat pumps, no heat storage,

profiles calculated using one year of full-hourly heat pump COP data

~50% of residential &
commercial demand

~80% of residential &
commercial demand

~100% of residential &
commercial demand
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Imperial College £ \c rification scenarios
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Disaggregating by sector allows us to incorporate the changing profile
of the demand, becoming more “peaky” and more seasonal.
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Imperial College  per-to-methane storage (P2M)

London
Power-to-methane has been
shown in previous work to have
cost advantages compared to
power grid power-to-hydrogen.
1 N Yao et al., Sustainable Energy & Fuels 3 (11), 3147-3162), 2019.
' i . SNG| ”
I
CCGT . .
Flectrolysis e We solve ESO-X in linear
Sarbon| relaxation with full-hourly
% saltcavern : demand & renewables data in
e B CaDOr e b e e e e e e e e e e e e e | order to allow inter-day storage
and analyse seasonal effects.
CAPEX Round-trip efficiency Storage duration Self-discharge
Pumped hydro storage 1,200 £/kW 0.75 5h 0
Battery storage 1,800 £/kW 0.85 5h 0.000050 /h
Power-to-methane storage (P2M) 2,400 £/kW 0.29 8400 h 0
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Imperial College  ¢/iica) assumptions
London

Net-zero carbon target in 2050 without a specific trajectory.

Carbon price on CO, emissions ramping up from 18 £tCO, in 2020 to 236 £/tCO, in 2050.

Biomass has embodied emissions of 0.25 tCO,/t caused by the supply chain, which are counted
toward the carbon target and penalised by the carbon price.

Plant flexibility is constrained via up time & down time, all plants are assumed to be able to start
up and shut down within one hour; storage is always running.

Build rates (BR) are constrained based on historical date and increased by a factor when
needed.
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9€¢  High-iRE system without seasonal storage or dispatchable technologies
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Imperial College pes yith & without CCS and/or P2M — capacity expansion
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Imperial College

P2M storage level (without CCS, central electrification)
London
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Imperial College pes yith & without CCS and/or P2M — dispatch in 2050
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Power-to-gas storage absorbs high amounts of renewable Seasonal generation can also be provided by
power and provides power during peak hours and on days the combination of CCGT-CCS (load-following),
with low renewable energy available. Long-term storage CCGT (peak), and BECCS (negative emissions).
allows better utilisation and avoids curtailment and lost

load. It can also provide reserve and inertia. Flexibility (daily & seasonal) has great value.
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Minimal, central, high electrification — with CCS
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When renewables deployment is constrained,
dispatchable generation is needed to achieve
higher levels of electrification.
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Minimal, central, high electrification — without CCS
London
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Higher levels of electrification require higher amounts
of dispatchable generation and/or long-term storage.
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Bottlenecks — low solar availability
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Bottlenecks — low wind availability
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Imperial College g tjenecks — low solar & wind availability
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Imperial College Charging ratio and round trip efficiency

London
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Low round-trip efficiency does not prevent
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P2M capacity deployed /| GW
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Conclusions caroline.ganzerl7@imperial.ac.uk
London

How much value inter-seasonal storage such as power-to-gas storage can add to the energy
system depends on its cost, other technologies deployed, build rates of renewables, and the level
of electrification. When deployment of low-carbon dispatchable technologies is limited, it becomes
essential.

The optimal system design is of course uncertain and depends on technology CAPEX
assumptions, emissions accounting, policy, etc.

Seasonal effects impact the design, especially with rising share of renewable energy and
electrification of heat.

Analysing the role of a technology in the system and in synergy with other technologies enables
the assessment of its value.

It is of interest to investigate how to incentivise the deployment of CAPEX-driven technologies
such as wind, solar, and storage.
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