Qualitative parameter inference: Automated Detection of Chaotic and Oscillatory Regimes

Daniel Silk

Theoretical Systems Biology Group and Institute of Mathematical Sciences, Imperial College London, UK

15/10/2010

Imperial College London

Daniel Silk

Oct 2010 1 / 18

Motivation - Elusive behaviours

• Traditional quantitative driven parameter inference methods can fail for certain types of data.

Imperial College London

Daniel Silk

Qualitative inference

Motivation

Motivation – System design

• System design – finding parameter combinations that give rise to desired types of behaviour.

Motivation

Outline

Motivation

2 Background and Methods

- Encoding Dynamical Behaviour via Lyapunov Exponents
- Kalman Filtering
- The Unscented Kalman Filter
- Adapting the Unscented Kalman Filter

3 Results

- Detecting Chaos
- Detecting Oscillations
- Detecting Hyperchaos

4 Summary

5 Ongoing work

Encoding dynamical behaviour: Lyapunov exponents

- Lyapunov spectra, {λ_i}, measure the long term average rate of contraction/expansion of nearby trajectories.
- Computationally expensive inference procedure.

Imperial College London

Oct 2010 5 / 18

Probabilistic inference

- Allows the estimation of hidden system parameters from a sequence of incomplete and noisy observations.
 - Posterior distribution $p(\theta_t | \mathbf{y}_{1:t})$

Probabilistic inference

- Allows the estimation of hidden system parameters from a sequence of incomplete and noisy observations.
 - Posterior distribution $p(\theta_t | \mathbf{y}_{1:t})$
- Also applicable to state and dual estimation problems.

The optimal solution

$$p(\theta_k | \mathbf{y}_{1:k}) = rac{p(\theta_k | \mathbf{y}_k) p(\theta_k | \mathbf{y}_{1:k-1})}{p(\mathbf{y}_k | \mathbf{y}_{1:k-1})}$$

- Terms in the *Bayesian estimation update* correspond to multi-dimensional integrals.
- In general, closed form solutions are only available for linear systems.
 - Known as Kalman filtering.

Filtering for non-linear systems

- Models of biological systems are often non-linear.
- Our method requires the use of highly non-linear functions.

The Unscented Kalman Filter (Van der Merwe 2004)

Intuition: *Probability density functions may be easier to approximate than highly non-linear systems.*

- Propagated means and covariances are accurate to third order in the Taylor expansion.
- Computationally very efficient.

Figure adapted from The Unscented Kalman Filter for Nonlinear Estimation - E. A. Wan and R. van der Merwe

Imperial College London

UKF tth iteration

Summarize parameter distribution with sigma-points

Imperial College London Propagate sigma-points through the observation model g

Imperial College London

Qualitative inference

10 / 18

Update parameter distribution using observation y_t

 $P(\theta|y_{i < t})$

$P(\theta|y_{i < t+1})$

Imperial College London

Adapting the UKF for qualitative inference

The idea

- Exploit the flexibility of the observation function, g, and observations, y_t.
- Choose g to output the Lyapunov exponents of the model for parameter vector θⁱ.
- Fix y_t = Λ_t = Λ as the constant desired Lyapunov spectrum.

$$\begin{aligned} \theta_{t+1} &= \theta_t + v_t \\ y_t &= g(x_t, \theta_t) + u_t \end{aligned}$$

Imperial College London

Adapting the UKF for qualitative inference

The idea

- Exploit the flexibility of the *observation function*, g, and *observations*, y_t.
- Choose g to output the Lyapunov exponents of the model for parameter vector θⁱ.
- Fix y_t = Λ_t = Λ as the constant desired Lyapunov spectrum.

11 / 18

Adapting the UKF for qualitative inference

The idea

- Exploit the flexibility of the *observation function*, g, and *observations*, y_t.
- Choose g to output the Lyapunov exponents of the model for parameter vector θⁱ.
- Fix y_t = Λ_t = Λ as the constant desired Lyapunov spectrum.

 $P(\theta|\Lambda_{i < t})$ $P(\theta|\Lambda_{i < t+1})$

11 / 18

Results - Chaos in the Lorenz system

$$\dot{x} = \sigma(y - x)$$
$$\dot{y} = x(\rho - z) - y$$
$$\dot{z} = xy - \beta z,$$

Imperial College London

Daniel Silk

Results

Results - Oscillations in a Hes1 regulatory model

$$\dot{M} = -k_{deg}M + 1/(1 + (P_2/P_0)^h)$$
$$\dot{P_1} = -k_{deg}P_1 + \nu M - k_1P_1$$
$$\dot{P_2} = -k_{deg}P_2 + k_1P_1$$

Imperial College London

Daniel Silk

Results

Results – Chaotification

$$\dot{x} = y \dot{y} = ay - x - z \epsilon \dot{z} = b + y - c(e^{z} - 1),$$

Imperial College London

Daniel Silk

Qualitative inference

Results

Oct 2010 14 / 18

Results – A very hyperchaotic attractor $_{Qi et al. (2008)}$

• Very large Lyapunov exponents give trajectories similar properties to white noise.

$Results - A \ very \ hyperchaotic \ attractor \ _{Qi \ et \ al.} \ _{(2008)}$

- Very large Lyapunov exponents give trajectories similar properties to white noise.
- Lyapunov spectrum= (31.8, 16.8, -19.1, -71.4), over twice as large as previously found.

Imperial College London					
	Daniel Silk	Qualitative inference	Results	Oct 2010	15 / 18

Summary

- The Unscented Kalman filter may be adapted for qualitative parameter inference.
- Parameters may be inferred such that a model exhibits a chosen Lyapunov spectrum.
- Example applications successfully identify chaotic, oscillatory and hyperchaotic regimes.

• Can we infer model structure as well?

Ongoing work

- Can we infer model structure as well?
- Scan the space of 3 and 4 node networks for chaos/oscillations. Hope to identify common and necessary motifs for different types of behaviour.

Acknowledgements

Many thanks to

- Prof. Michael Stumpf
- Paul Kirk
- Chris Barnes
- Tina Toni
- The Theoretical Systems Biology group, Imperial College, London

Acknowledgements

Oct 2010 18 / 18