Qualitative parameter inference: Automated Detection of Chaotic and Oscillatory Regimes

Daniel Silk

Theoretical Systems Biology Group and Institute of Mathematical Sciences, Imperial College London, UK

15/10/2010

Motivation – Elusive behaviours

Traditional quantitative driven parameter inference methods can fail for certain types of data.

Imperial College London

Daniel Silk [Qualitative inference](#page-0-0) [Motivation](#page-1-0) Oct 2010 2 / 18

Motivation – System design

• System design – finding parameter combinations that give rise to desired types of behaviour.

Outline

[Motivation](#page-1-0)

[Background and Methods](#page-4-0)

- [Encoding Dynamical Behaviour via Lyapunov Exponents](#page-4-0)
- [Kalman Filtering](#page-5-0)
- **[The Unscented Kalman Filter](#page-9-0)**
- [Adapting the Unscented Kalman Filter](#page-14-0)

[Results](#page-17-0)

- [Detecting Chaos](#page-17-0)
- [Detecting Oscillations](#page-18-0)
- [Detecting Hyperchaos](#page-20-0)

[Summary](#page-22-0)

5 [Ongoing work](#page-23-0)

Encoding dynamical behaviour: Lyapunov exponents

- Lyapunov spectra, $\{\lambda_i\}$, measure the long term average rate of contraction/expansion of nearby trajectories.
- **Computationally expensive inference procedure.**

Probabilistic inference

Allows the estimation of hidden system parameters from a sequence of incomplete and noisy observations.

Posterior distribution $p(\theta_t|\mathbf{y}_{1:t})$

Probabilistic inference

Allows the estimation of hidden system parameters from a sequence of incomplete and noisy observations.

Posterior distribution $p(\theta_t|\mathbf{y}_{1:t})$

Also applicable to state and dual estimation problems.

The optimal solution

$$
p(\theta_k|\mathbf{y}_{1:k}) = \tfrac{p(\theta_k|\mathbf{y}_k)p(\theta_k|\mathbf{y}_{1:k-1})}{p(\mathbf{y}_k|\mathbf{y}_{1:k-1})}
$$

- Terms in the *Bayesian estimation update* correspond to multi-dimensional integrals.
- In general, closed form solutions are only available for linear systems.
	- Known as Kalman filtering.

Filtering for non-linear systems

- Models of biological systems are often non-linear.
- Our method requires the use of highly non-linear functions.

The Unscented Kalman Filter (Van der Merwe 2004)

Intuition: Probability density functions may be easier to approximate than highly non-linear systems.

- **•** Propagated means and covariances are accurate to third order in the Taylor expansion.
- • Computationally very efficient.

Figure adapted from The Unscented Kalman Filter for Nonlinear Estimation - E. A. Wan and R. van der Merwe

UKF t^{th} iteration

Summarize parameter distribution with sigma-points

Propagate sigma-points through the observation model g

Update parameter distribution using observation y_t

 $P(\theta|y_{i$

$P(\theta|y_{i$

Adapting the UKF for qualitative inference

The idea

- **•** Exploit the flexibility of the observation function, g , and *observations*, $\bm{\mathsf{y}}_t$.
- \bullet Choose g to output the Lyapunov exponents of the model for parameter vector $\hat{\theta}^i$.
- \bullet Fix $\mathsf{y}_t = \Lambda_t = \Lambda$ as the constant desired Lyapunov spectrum.

$$
\theta_{t+1} = \theta_t + v_t
$$

$$
y_t = g(x_t, \theta_t) + u_t,
$$

Adapting the UKF for qualitative inference

The idea

- **Exploit the flexibility of** the observation function, g , and *observations*, y_t .
- \bullet Choose g to output the Lyapunov exponents of the model for parameter vector $\hat{\theta}^i$.
- \bullet Fix $\mathsf{y}_t = \Lambda_t = \Lambda$ as the constant desired Lyapunov spectrum.

Adapting the UKF for qualitative inference

The idea

- **Exploit the flexibility of** the observation function, g , and *observations*, y_t .
- \bullet Choose g to output the Lyapunov exponents of the model for parameter vector $\hat{\theta}^i$.
- $\bullet\,$ Fix $\mathsf{y}_t=\mathsf{\Lambda}_t=\mathsf{\Lambda}\,$ as the constant desired Lyapunov spectrum.

Results – Chaos in the Lorenz system

$$
\dot{x} = \sigma(y - x)
$$

\n
$$
\dot{y} = x(\rho - z) - y
$$

\n
$$
\dot{z} = xy - \beta z,
$$

Results – Oscillations in a Hes1 regulatory model

$$
M = -k_{deg} M + 1/(1 + (P_2/P_0)^h)
$$

\n
$$
\dot{P}_1 = -k_{deg} P_1 + \nu M - k_1 P_1
$$

\n
$$
\dot{P}_2 = -k_{deg} P_2 + k_1 P_1
$$

Results – Chaotification

$$
\dot{x} = y
$$

\n
$$
\dot{y} = ay - x - z
$$

\n
$$
\epsilon \dot{z} = b + y - c(e^{z} - 1),
$$

Chaos

Tamaševičius et al. Eur. J. Phys. (2005)

Daniel Silk [Qualitative inference](#page-0-0) [Results](#page-17-0) Oct 2010 14 / 18

Results – A very hyperchaotic attractor Q_i et al. (2008)

Very large Lyapunov exponents give trajectories similar properties to white noise.

Results – A very hyperchaotic attractor Q_i et al. (2008)

- Very large Lyapunov exponents give trajectories similar properties to white noise.
- \bullet Lyapunov spectrum= $(31.8, 16.8, -19.1, -71.4)$, over twice as large as previously found.

Summary

- The Unscented Kalman filter may be adapted for qualitative parameter inference.
- Parameters may be inferred such that a model exhibits a chosen Lyapunov spectrum.
- • Example applications successfully identify chaotic, oscillatory and hyperchaotic regimes.

• Can we infer model structure as well?

Ongoing work

- Can we infer model structure as well?
- Scan the space of 3 and 4 node networks for chaos/oscillations. Hope to identify common and necessary motifs for different types of behaviour.

Acknowledgements

Many thanks to

- **•** Prof. Michael Stumpf
- Paul Kirk
- **o** Chris Barnes
- **o** Tina Toni
- The Theoretical Systems Biology group, Imperial College, London

