Sub-project 2: Progress report

Emmanuelle Caron & Ozan Kahramanogullari

Imperial College London

Microbial encounters with immune cells

Subproject 2: People & Objectives

George Tzircotis
Emmanuelle Caron
(Marine van Berleere)
Sylvain Tollis
Robert Endres
(Jeroen van Zon)
Martin Howard
Ozan Kahramanogullari
Philippa Gardner
Luca Cardelli

Life Sciences

Maths

Computing

- > systems understanding of phagocytic uptake
- > predictive models
- > application to vaccine design

Imperial College London

SP2: Questions & Specific Milestones

- Local 3D remodelling of Cytoskeleton and Membrane
- Hijacked or prevented by pathogens
- Phagocytic cup as a discrete system
- Some regulators known (actin, Rhofamily proteins)
- → Image early receptor signalling; combine with RNAi to refine understanding of early signalling networks; compare bacteria & beads
- → Model 1st steps of FcγR-mediated phagocytosis
- → Model Rho GTPase cycle, actin polymerization; signalling networks
- → Validate and extend models and their predictions

SP2: Previous progress

- Phagocytic assays, RNAi in place (cell lines)
- Mini-screen Rho GTPases
 (FcyR- and CR3-mediated uptake)
- Time series data on FcγR dynamics during uptake (imaging)
- Working PDE model of phagocytic cup formation, based on Fc_YR and actin dynamics

$$E = \int dA(2\kappa H^2 + \sigma)$$

 Working process calculus models of the Rho protein cycle and Arp2/3 based actin dynamics

Imperial College London

SP2: Recent progress

1. Finalisation PDE model

Reasonable fit model / measurements, Unexpected variability in cup progression, Reaching bimodal distribution with gaps for $\pi R/2 < S < \pi R$

A mechanical bottleneck explains cup variability + Influence of preexisting membrane folds

Imperial College London

Model explains that particle shape influences uptake

SP2: Recent progress

2. Validation RNAi miniscreen

Imperial College London RhoG, a universal regulator of phagocytic uptake?

RhoG, a universal regulator of phagocytic uptake?

Bone marrow-derived, in vitro differentiated, macrophages

Also working in THP-1-derived human macrophages, tested in COS-7 cells

Imperial College London

SP2 - Conclusions

- Modelling the early phases of $Fc_{\gamma}R$ -mediated uptake has revealed unexpected features of phagocytosis: importance of preexisting structures, existence of a mechanical bottleneck controlling cup progression.
- Actin polymerization during phagocytosis of inert particles is controlled by subsets of Rho-family proteins, with a conserved role for RhoG as an early regulator of Fc γ R- and CR3-mediated phagocytosis.

 Computer languages and tools have been developed to describe signalling pathways and three-dimensional processes.

SP2: Outlook

- Spatio-temporal control of uptake of bacteria and inert particles (RhoG and other regulators)
- Larger siRNA screens for regulators of bacterial uptake
- Understanding the nature and regulation of the mechanical bottleneck - Role of biophysical constraints - Modelling CR3dependent uptake
- Integrating SP2

- with SP1: Impact of capsule and bacterial shape on Campylobacter binding, cup progression & uptake;
- with SP3: Impact of Notch signalling on phagocytic signalling

 with SP4: identifying regulators of BCG uptake (phagosys)

