Imperial College How one cell eats another: Experiments and modelling London investigate biophysical requirements for uptake

Sylvain Tollis, George Tzircotis, Robert G. Endres

Biophysics of phagocytosis

- Fundamental process of the immune response
- Complex biochemical pathways involved
- Completion depends on biophysical parameters (BP: particle ligand density, shape, size and cell membrane stiffness and tension etc)

The zipper mechanism (Griffin et al. 1975)

- Ligand/receptor (L/R) binding triggers signalling locally
- Signalling triggers actin polymerization
- Actin pushes the membrane outward
- New L/R bonds can be created...

First results in explaining particle-shape dependence

Phagocytosis simulation, demonstrating that the zipper mechanism leads to progressive engulfment. Cup shape depends on BP. Spheroid particles are engulfed more easily if taken with the tip first

Our main assumptions

- To polymerize actin, need gap between actin cortex and membrane: use thermal membrane fluctuations
- Gaps near particle are filled by signalling-induced actin polymerization, reinforcing L/R bonds (for engulfment irreversibility)
- Membrane fluctuations far from particle are not filled by actin, and can move backwards

Membrane fluctuation

Membrane fluctuation

Cell cortex Signalling

Our model

- Membrane is moved randomly
- Finite element calculation of energy
- Monte Carlo metropolis algorithm
- Stabilization of membrane near the particle

Model predictions

BP & out of equilibrium engulfment regulate cup shape

- Active engulfment allows for large increase in energy. Engulfment is faster and more regular
- Passive engulfment is produced by membrane ruffles, leading to irregular cups

Can we apply the model successfully

to bacteria uptake?

Comparison with experiments: analysis of fluorescence data

Confocal microscopy imaging of IgG-coated polystyrene particles taken up by COS-7 cells expressing either WT-FcγR or signalling-dead mutant Y282F/Y298F-FcγR. For control, we used WT-FcyR and treatment with CytoD

Computer image analysis: the 3D cup shape variability is characterized by spatial cell-membrane receptors distribution around the particle

- Predictions confirmed: engulfment proceeds even without actin polymerization, but slower and in a less regular fashion
- Biochemical pathways added through evolution for extrarobustness?

