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Daunting signalling complexity in phagocytosis
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Universal biophysical aspects of phagocytosis

Size independence (o p)

Herant et al. (2006)

Shape and orientation dependence Acto-myosin dynamics

Champion et al. (2006,2009) Dieckmann R et al. (2010) Gerisch G et al. (2009)



Conceptual Zipper mechanism

for explaining dependence on ligand density
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Implementation of zipper mechanism
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Ligand-receptor binding induces actin polymerization, making membrane
deformation effectively irreversible - ratchet.




Successful engulfment for wide range of parameters
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Energetic requirements of engulfment

“Active zipper” “Passive zipper”
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mmmm)  Active zipper easily engulfs small and large particles

Passive zipper ONLY engulfs small particles - slowly with highly variable cups



Experiments and image analysis

COS-7 cell Fey receptor g

GFP

(a) Cells expressing wild-type Fcy receptor = active zipper

(b) Cells expressing signalling-dead mutant receptor

_ _ passive
(c) Cells transfected with cytochalasin D
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Test of model predictions by experiments

Engulfment time Variability in cup shape
for 20-40% Engulfment

Experiment Model
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Time (min) Time (i) ) Passive zipper produces

mmmm)  Active zipper engulfs more variable cup shapes
faster than passive zipper than active zipper

Due to difficulties in cup closure in model 2 new round of model and experiments




