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The problem of all-survival Problem statement

The problem of all-survival I

We write
τ = [τ1, τ2, . . . , τN ]

a vector of random times (typically default times).

We are interested in the statistics of joint survival first, namely in the
probability of events (T = [T1,T2, . . . ,TN ] deterministic times)

P(τ > T ) := P(τ1 > T1, τ2 > T2, . . . , τN > TN)

Define this joint survival function as G(T1, . . . ,TN).
When T1 = T2 = ...TN = T we simply write P(τ > T ) for P(τ > T 1).
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The problem of all-survival Problem statement

The problem of all-survival II

PROBLEM 1
Find conditions under which sampling two independent G-distributed
random vecors τ1 for survival of all the components up to T and τ2 for
survival of all on a further time T is equivalent to sampling directly
survival of all components of τ up to 2T .

“Can we reduce a single one-shot simulation of ‘survival-of-all’ up to
2T in simulation of ‘survival-of-all’ steps of size T using the same
distribution?”

(generalizing later to n steps). Practical interest?
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The problem of all-survival Problem statement

The problem of all-survival III

Consistency with “Brownian-driven” asset classes
simulation. Risk measure or valuation adjustment simulation.
Evolve risk factors according to common controlled time steps.
Natural for asset models that are Brownian driven but harder when
trying to include defaults. This is because default times, typically
in intensity models, should be simulated just once, being static
random variables as opposed to random processes.
Basel III requirement for risk horizons: BIS suggests “The
Committee has agreed that the differentiation of market liquidity
across the trading book will be based on the concept of liquidity
horizons. It proposes that banks’ trading book exposures be
assigned to a small number of liquidity horizon categories. [10
days, 1 month, 3 months, 6 months, 1 year] [...]”. A bank will need
to simulate the risk factors of the portfolio across a grid including
the standardized holding periods above.
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The problem of all-survival Lack of Memory

The univariate case I

In the univariate case N = 1 we have the following results.
Definition. We say that the distribution of τ has lack of memory (LOM)
when for all S,U > 0

P(τ > S + U|τ > S) = P(τ > U) (⇐⇒ G(S + U) = G(S)G(U)).

If we assume G strictly positive and less than one we can take logs, we
get Cauchy’s functional equation and by assuming continuity in at least
one point we get the solution ln G(t) = −λt , and hence

G(t) = exp(−λt)

Of course, as we know well the above is a characterization of the
exponential distribution.
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The problem of all-survival Lack of Memory

The univariate case II

Proposition. In the case N = 1 lack of memory of G, resulting in an
exponential distribution for τ , solves Problem 1.

The proof is immediate by noticing that

P(τ > S + U) = P(τ > S + U|τ > S)P(τ > S) = P(τ1 > U)P(τ2 > S)

where the last equality follows from LOM.

The univariate case has not given us anything surprising, as all this is
well known. The multivariate case is more interesting and to that we
turn now.
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The problem of all-survival Lack of Memory

The multivariate case I

Definition. We say that the distribution of τ has multivariate
homogeneous lack of memory (MHLOM) when, given T > 0, for any
two integers i , j , i > j

P(τ > jT |τ > iT ) = P(τ > (j−i)T ) (⇐⇒ G((jT )1) = G(iT1)G((j−i)T1)).

The right hand side of the iff follows immediately by definition of
conditional probability. The definition is formally the same as for the
univariate case when S = iT ,U = jT , which we refer to as
“homogeneity” (of the time step T ).
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The problem of all-survival Lack of Memory

The multivariate case II

One might try to adopt a more general definition of lack of memory,
namely for all S = [S1, . . . ,SN ], U = [U1, . . . ,UN ] deterministic times

P(τ > S + U|τ > S) = P(τ > U).

This however is too strong and results in the trivial case of
independence of exponential univariates, see Marshall and Olkin [20].

The most general definition of multivariate lack of memory, without
collapsing into indepedence, assumes uniformity in S but not in U:
Definition. MLOM: Every subvector τ I of τ with I ⊂ {1,2, . . . ,N}
satisfies

P(τ I > S1+U|τ I > S1) = P(τ I > U) (⇐⇒ GI(S1+U) = GI(S1)GI(U)).
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The problem of all-survival Lack of Memory

The multivariate case: Marshall Olkin

Theorem (Marhall Olkin [20]).

τ satisfies MLOM ⇐⇒ τ ∼ Marshall Olkin multivariate distribution.

[Note: the MO COPULA with arbitrary exponential margins is not
enough]
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The problem of all-survival Homogeneous lack of memory and EV copulas

The homogeneous multivariate case: EV Copulas I

It is immediate to see that, for the same reasons as in the univariate
case, MHLOM solves Problem 1 in the multivariate case. Since
MHLOM is weaker than MLOM=Marshall-Olkin, we can hope for
solutions different from the Marshall Olkin multivariate distribution.
We need to understand what the condition

G((jT )1) = G(iT1)G((j − i)T 1)

entails. To investigate this, we assume that G is associated with a
survival copula function C. Then

G(iT 1) = P(τ > iT ) = P(Gm(τ) < Gm(iT )) = C(Gm(iT ))

where Gm(t) is the vector of the marginal survival functions of the
components of τ , all computed in t .
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The problem of all-survival Homogeneous lack of memory and EV copulas

The homogeneous multivariate case: EV Copulas II

Hence we can rewrite MHLOM as

G(jT 1) = G(iT1) G((j−i)T1) iff C(Gm(jT )) = C(Gm(iT )) C(Gm((j − i)T )).

We require that the marginal distributions satisfy lack of memory, so
this means, due to the univariate characterization, that
Gm(kT ) = Gm(T )k (they are exponential functions), and hence the
MHLOM condition reads

C(Gm(T )j) = C(Gm(T )i) C(Gm(T )j−i)

where the product of the Gm is component-wise.
Write the above equation for i = 1, j = 2 to get

C(Gm(T )2) = C(Gm(T ))2 .
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The problem of all-survival Homogeneous lack of memory and EV copulas

The homogeneous multivariate case: EV Copulas III

Then i = 1, j = 3, substituting the one just found, and iterating, gives

C(Gm(T )k ) = C(Gm(T ))k , k ∈ N.

Given the arbitrariness of the marginal intensities in Gm, we conclude

C(x t ) = C(x)t ⇐⇒ C(x) = (C(x t ))1/t for all t > 0, x ∈ [0,1]N

This is a characterization of extreme value copulas.

Theorem (B. Chourdakis [7]). In the multivariate setting, and under a
common time step, Problem 1 is solved by G characterized by
exponential margins and an extreme value survival copula
(self-chaining copulas).
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The problem of all-survival Homogeneous lack of memory and EV copulas

The homogeneous multivariate case: EV Copulas IV

Corollary: Given exponential margins, the only solution in the
archimedean sub-family is the Gumbel Copula.

Corollary: Marshall Olkin copula with exponential margins solves this
problem.

Corollary: In dimension 2 this is solved by Pickands functions and
exponential margins.
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The problem of all-survival Danger: Iterating a Gaussian or t copula destroys dependence

Beware of iterating the Gaussian Copula I
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The problem of all-survival Danger: Iterating a Gaussian or t copula destroys dependence

Beware of iterating the Gaussian Copula II
Iterating a Gaussian copula kills dependence. Consider two
exponentially distributed default times connected by a Gaussian
copula with dependence parameter ρ and intensities λ1 and λ2,

τ1 = − ln(1− Φ(X1))/λ1, τ2 = − ln(1− Φ(X2))/λ2,

[X1,X2] bivariate Gaussian with standard marginals and correlation ρ.
Assume λ1 = λ2 = 0.02, ρ = 0.5, and either

a) Sample directly τ1 > 30y ∩ τ2 > 30y . Get the probability of this
event from a simulation with one million scenarios.

b) Iterate ∆iτ1 > 1y ∩∆iτ2 > 1y 30 times, where [∆iτ1,∆iτ2],
i = 1,2, . . . ,30 are independent copies of [τ1, τ2] to be used to
check survival in every year.

a) : 0.386± 0.0015 b) : 0.328± 0.0015 (18%diff )
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The more general problem of sub-survivals Removal of default times?

A second and more-ambitious problem I

Problem 1: when can we split a terminal “survival of all” sampling in
several equal time steps? Exponential margins and EV copula.

PROBLEM 2. Don’t look just at the “survival of all” event but consider
any possible mix of states (including removal of defaulted/liquidated
components) and check when a terminal simulation of this can be split
into different time steps for τ and its sub-vectors.

We have already seen the theorem where M-O satisfies the most
general multivariate lack of memory, including removal of components,
so we may guess that M-O will play a key role here and will be a
solution. However, we can say more. Define

Zt = [1τ1>t ,1τ2>t , . . . ,1τN>t ]

(notice that earlier we were considering 1τ1>t∩τ2>t ...∩τN>t ). Suppose Z
is Markovian. This would be a great step forward for us.
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The more general problem of sub-survivals Removal of default times?

A second and more-ambitious problem II

Previous literature studying credit risk via Z :
Multi-variate phase distributions (MPH). Developed in late 70s by
Neuts & co-workers, survey [6]. [2], see also [10]: default times
are the first points in time at which components of an underlying
multivariate Markov chain reach absorbing states.
MPH Very difficult to work with in high-dimensional applications.
A more practical, proper subclass of MPH is given by the family of
default times whose Z is a continuous-time Markov chain (MCZ).
Credit-risk modeling with MCZ [12, 5].
MCZ accounts for looping defaults, default contagion in the sense
of Jarrow and Yu [14, 23]; uses matrix exponentials.
However, the family MC still imposes serious challenges in a real
world implementation, since it is not naturally equipped with a
“nested margining” property.
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO I

Our Contribution: We now introduce a theorem showing that MO is
characterized by nested margining within MCZ, giving a new
characterization of MO in terms of MCZ.
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO II

Theorem (B. Mai & Scherer [8]) : A New Characterization of the
MO Distribution.

The survival indicator processes ZI are time-homogeneous Markovian
for all subsets ∅ 6= I ⊂ {1, . . . ,N}

⇔
(τ1, . . . , τN) has a Marshall–Olkin distribution

“⇒” is a new and rather surprising result.
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO III

Proof:
“⇒” By the time-homogeneous Markov property, there is a transition
function px,y(t) for x,y ∈ {0,1}N and t ≥ 0 such that

P(Z(tn) = xn, . . . ,Z(t1) = x1) = p(1,...,1),x1(t1)
n∏

l=2

pxl−1,xl (tl − tl−1)

for tn > . . . > t1 > 0 and x1, . . . ,xn ∈ {0,1}N . Let t , s1, . . . , sN ≥ 0 be
arbitrary and denote by π a permutation s.t. sπ(1) ≤ sπ(2) ≤ . . . ≤ sπ(N)

is the ordered list of s1, . . . , sN . Define the following subsets of {0,1}N :

A1 := {(1, . . . ,1)}, Ak :=
{

x ∈ {0,1}N : xπ(l) = 1 for all l ≥ k
}
, k = 2..N.

In words, Ak denotes the subset of {0,1}N in which all components
π(k), . . . , π(N) are still alive.
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO IV

There is a finite number M of distinct paths
(x(i)

2 , . . . ,x(i)
N ) ∈ A2 × . . .× AN , i = 1, . . . ,M, that avoid inconsistent

patterns in time (such as default resurrections etc), i.e. such that

0 < P{Z(t + sπ(1)) = (1, . . . ,1),Z(t + sπ(2)) = x(i)
2 , . . . ,Z(t + sπ(N)) = x(i)

N }.

This set of paths depends on s1, . . . , sN , but it does not depend on t by
the time-homogeneity property of Z. We have

P(τ1 > t , . . . , τN > t)P(τ1 > s1, . . . , τN > sN)

= P(Z(t) ∈ A1)P
(
Z(sπ(1)) ∈ A1, Z(sπ(2)) ∈ A2, . . . ,Z(sπ(N)) ∈ AN

)
= P(Z(t) ∈ A1)

M∑
i=1

P(Z(sπ(1)) = (1..1),Z(sπ(2)) = x(i)
2 , . . . ,Z(sπ(N)) = x(i)

N )
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO V

= p(1,...,1),(1,...,1)(t)
M∑

i=1

p(1,...,1),(1,...,1)(sπ(1)) p
(1,...,1),x(i)

2
(sπ(2) − sπ(1)) ·

·
N∏

k=3

px(i)
k−1,x

(i)
k

(sπ(k) − sπ(k−1))

=
M∑

i=1

p(1,...,1),(1,...,1)(t + sπ(1)) p
(1,...,1),x(i)

2
(t + sπ(2) − (t + sπ(1)))·

·
N∏

k=3

px(i)
k−1,x

(i)
k

(t + sπ(k) − (t + sπ(k−1)))

= P(Z(t + sπ(1)) ∈ A1,Z(t + sπ(2)) ∈ A2, . . . ,Z(t + sπ(N)) ∈ AN)

= P(τ1 > t + s1, . . . , τN > t + sN)
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO VI

Repeating the above derivation for every subset I ⊂ {1, . . . ,N} we
obtain the equation

P(τi1 > t+si1 , . . . , τik > t+sik ) = P(τi1 > t , . . . , τik > t)P(τi1 > si1 ..τik > sik )

for arbitrary 1 ≤ i1, . . . , ik ≤ N and t , si1 , . . . , sik ≥ 0. This is precisely
the functional equality describing the multi-variate lack-of-memory
property, which is well-known to characterize the Marshall–Olkin
exponential distribution, see [20, 21].

The following result is not new but we prove it anyway in our setting:

“⇐” Assume (τ1, . . . , τN) has a Marshall–Olkin distribution with
parameters {λI}, ∅ 6= I ⊂ {1, . . . ,N} satisfying

∑
I:k∈I λI > 0 for all

k = 1, . . . ,N. We prove Markovianity of ZI for an arbitrary non-empty
subset I of components. Without loss of generality, we may assume
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO VII

that (τ1, . . . , τN) is defined on the following probability space, as first
considered in [1]: we consider an iid sequence {En}n∈N of exponential
random variables with rate λ :=

∑
∅6=K⊂{1,...,N} λK and an independent

iid sequence {Yn}n∈N of set-valued random variables with distribution
given by

P(Y1 = K ) = pK :=
λK

λ
, ∅ 6= K ⊂ {1, . . . ,N}.

The random vector (τ1, . . . , τN) is then defined as
τk := E1 + . . .+ Emin{n : k∈Yn}, k = 1, . . . ,N. Let us introduce the
notation

Nt :=
∞∑

k=1

1{E1+...+Ek≤t}, t ≥ 0,
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO VIII

which is a Poisson process with intensity λ. Fix a non-empty set
I ⊂ {1, . . . ,N}, say I = {i1, . . . , ik} with 1 ≤ i1 < . . . < ik ≤ N. Denoting
the power set of {1, . . . ,N} by PN , we define the function
fI : {0,1}k × PN → {0,1}k as follows:

j-th component of fI(~x , J) := 1{xj=1 and ij /∈J}, j = 1, . . . , k ,

for ~x = (x1, . . . , xk ) ∈ {0,1}k and J ∈ PN . It is now readily observed –
in fact just a rewriting of Arnold’s model – that

ZI(t) = fI
(

ZI(s),

Nt⋃
k=Ns+1

Yk

)
, t ≥ s ≥ 0. (1)

This stochastic representation implies the claim, since the second
argument of fI is independent of FI(s) := σ(ZI(u) : u ≤ s) by the
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO IX

Poisson property of {Nt}. To see this, it suffices to observe that ZI(s)
is a function of Ns and Y1, . . . ,YNs (which can be seen by setting t = s
and s = 0 in (1)), whereas the second argument is a function of
YNs+1, . . . ,YNt . Consequently, the independent random variables Ns
and Nt − Ns only serve as a random pick of two independent (because
disjoint) partial sequences of the iid sequence Y1,Y2, . . ..
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The more general problem of sub-survivals Solution & a new characterization of Marshall Olkin

Thank you for your attention!

Questions?
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