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Outline

I May 5: Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

2. Limit order book as a queueing system

I May 6: Deterministic (mean-field) models of LOB dynamics
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6. Stochastic approximations of a LOB
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Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

– high level view of equities execution ecosystem

– algorithmic trading systems

– trade scheduling and the role of market impact models

– tactical execution in a LOB

– fragmentation, internalization, incentives, . . .
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A Simplified View of Trading
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Modern U.S. Equity Markets

I Electronic

I Decentralized/Fragmented
NYSE, NASDAQ, ARCA, BATS, Direct Edge, . . .

I Exchanges (∼ 70%)
electronic limit order books (LOBs)

I Alternative venues (∼ 30%)
ECNs, dark pools, internalization, OTC market makers, etc.

I Participants increasingly automated

– institutional investors: “algorithmic trading”
– market makers: “high-frequency trading” (∼ 60% ADV)
– opportunistic/active (price sensitive) investors: “aggressive/electronic”
– retail: “manual” (∼ 5% ADV; small order sizes)
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An example

I How should you buy 250,000 shares of IBM stock between 12:30pm and
4:00pm?

– Is this order "large"?

– How fast should you trade? When?

– How much will it cost you?

– Who are you trading against?

I How is it done in practice?



C. Maglaras, 05/2015 – 7 / 228

Example cont.

– Forecasted Volume 12:30-4pm = 1,525,000 shares; Avg spread = $.04 (1.95bps);
– Expected Market Impact (1230-4pm) ≈ 20bps ≈ 40 pennies/share
– Expected MI (1230-130pm) ≈ 28bps ≈ 56 pennies/share
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Institutional traders (broad strokes)

I investment decisions & trade execution are often separate processes

I institutional order flow typically has “mandate” to execute

I trader selects broker, algorithms, block venue, . . .
(algorithm ≈ trading constraints)

I main considerations:
– “best execution”
– access to liquidity (larger orders)
– short-term alpha (discretionary investors)
– information leakage (large orders the spread over hrs, days, weeks)
– commissions (soft dollar agreements)
– incentives (portfolio manager & trading desk; buy side & sell side)

I execution costs feedback into portfolio selection decisions & fund perf

I S&P500:
– ADV ≈ <1% MktCap (.1% – 2%)
– Depth (displayed, top of book) ≈ .1% ADV
– Depth (displayed, top of book) ≈ 10−6 − 10−5 of MktCap
⇒ orders need to be spread out over time
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Market Makers & HFT participants (broad strokes)

I supply short-term liquidity and capture bid-ask spread capture
mostly intraday flow; limited overnight exposure

I small order sizes ∼ depth; short trade horizons / holding periods

I profit ≈ (captured spread) - (adverse selection) - (TC)

– critical to model adverse selection:
short term price change conditional on a trade

I important to model short term future prices (“alpha”):

– microstructure signals (limit order book)
– time series modeling of prices (momentum; reversion)
– cross-asset signals (statistical arbitrage, ETF against underlying, . . . )
– news (NLP)
– detailed microstructure of market mechanisms
· · ·

I risks: adverse price movements; flow toxicity; accumulation of inventory
& aggregate market exposure



C. Maglaras, 05/2015 – 10 / 228

My focus is on limit order book dynamics

Limit order book behavior affects:

I algorithmic trade execution systems & performance

I trading signals & execution for MMs

I key element of modern market microstructure over short time horizons

I regulatory implications

Queueing behavior plays an important role in short-term market dynamics

. . . the specific lens of these lectures
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Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

– high level view of equities execution ecosystem

– algorithmic trading systems

– trade scheduling and the role of market impact models

– tactical execution in a LOB

– fragmentation, internalization, incentives, . . .
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Algorithmic Trading Strategies (90+% of institutional flow)

I VWAP (Volume-Weighted-Average-Price): trades according to
forecasted volume profile to achieve (or beat) the market’s volume
weighted average price
– Passive strategy; subject to significant market risk

I TWAP (Time-Weighted-Average-Price): trades uniformly over time to
achieve (or beat) TWAP benchmark
– Passive strategy; market risk; not very popular in practice

I POV (Percent-of-Volume): Executes while tracking the realized volume
profile at a target participation rate, e.g., buy IBM at 15% part. rate
– Controls behavior during volume spikes to avoid excessive cost
– Popular in practice ∼ 5%-30% part.rates; (part.rate ∼ cost)

I IS (Implementation Shortfall): schedules trade so as to optimally
tradeoff expected shortfall (cost) against execution risk
– variable execution speed; adapts wrt changes in mkt conditions
– Popular, especially with portfolios where cost/risk tradeoff is intricate
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VWAP, XLY, 07/22/2013 (≈ .15%ADV )
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VWAP, XLY, 07/22/2013 (cumulative quantity)
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POV 20% ACT, 07/08/2013
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POV, ACT, 07/08/2013 (cumulative quantity)
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Schematic of execution profiles: TWAP, XLY, 07/02/2013
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TWAP, XLY, 07/02/2013 (cumulative quantity)
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Algorithmic Trading Systems

What is the high-level architecture of such a system?
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Algorithmic Trading Systems: typically decomposed into three steps

I Trade scheduling: splits parent order into ∼ 5 min “slices”
– relevant time-scale: minutes-hours
– schedule follows user selected “strategy” (VWAP, POV, IS, . . . )
– reflects urgency, “alpha,” risk/return tradeoff
– schedule updated during execution to reflect price/liquidity/. . .

I Optimal execution of a slice (“micro-trader”): further divides slice into
child orders
– relevant time-scale: seconds–minutes
– strategy optimizes pricing and placing of orders in the limit order book
– execution adjusts to speed of LOB dynamics, price momentum, ...

I Order routing: decides where to send each child order
– relevant time-scale: ∼ 1–50 ms
– optimizes fee/rebate tradeoff, liquidity/price, latency, etc.

separation of 2nd and 3rd steps mostly technological/historical artifact
(should not be treated separately)
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Algorithmic Trading Systems: basic building blocks

I forecasts for intraday trading patterns

– volume
– volatility
– bid-ask spread
– market depth
– . . .

I real-time market data analytics

I market impact model (more on this tomorrow)

I risk model

– “of the shelf” risk models calibrated using EOD closing price data
do not incorporate intraday correlation structure

– intraday data? (tractable for liquid securities, e.g., S&P500 universe)
– cross-asset liquidity model & market impact model
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Intraday volume profile: cross-sectional average of S&P500
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S&P500 cross-sectional, smoothed intraday trading volume profile (min-by-min).
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Intraday volatility profile: cross-sectional averages
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Cross-sectional averaged intraday volatility profiles for US equities.
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Intraday spread profile: cross-sectional averages
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Cross-sectional averaged intraday spread profiles for US equities.
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Intraday depth profile
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units of 10−4 · ADV.
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Log-depth as a function of spread (top 100 names ranked by ADV)

0 3 6 9 12 15
−0.5

0

0.5

1

1.5

2

2.5

3

Spread (bps)

lo
g
(d
ep
th

(1
0−

4
·A

D
V
))

“Large tick” stocks:
I liquid & low priced stocks, spread ≈ $0.01, but 1 spread = 5 – 15 bps
I depth ↗ as spread (in bps) ↑
. . . capturing spread yields significant return
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Algorithmic Trading Systems: trade scheduling

I Trade scheduling: splits parent order into ∼ 5 min “slices”
– relevant time-scale: minutes-hours
– schedule follows user selected “strategy” (VWAP, POV, IS, . . . )
– reflects urgency, “alpha,” risk/return tradeoff
– schedule updated during execution to reflect price/liquidity/. . .

I Optimal execution of a slice (“micro-trader”): further divides slice into
child orders
– relevant time-scale: seconds–minutes
– strategy optimizes pricing and placing of orders in the limit order book
– execution adjusts to speed of LOB dynamics, price momentum, ...

I Order routing: decides where to send each child order
– relevant time-scale: ∼ 1–50 ms
– optimizes fee/rebate tradeoff, liquidity/price, latency, etc.

separation of 2nd and 3rd steps mostly technological/historical artifact
(should not be treated separately)



C. Maglaras, 05/2015 – 28 / 228

Trade Scheduling: VWAP

I X (t)= # shares traded in [0, t] (X (0) = 0, X (T ) = X , RCLL, ↗)

p̄ =
1
X

∫ T

0
p(t)dX (t)

I Benchmark: L(t) cumulative traded volume in market in [0, t]

v̄ =
1

L(T )

∫ T

0
p(t)dL(t)

I Control problem:

choose X (t) to min p̄ − v̄ (for buy order)

I Typical solution:
– Lf (t) = forecast L(t) using k days of HF trading data
– schedule trade according to Lf (t)

– model L(t); filter aggressive trades
– adapt forecast to real time conditions & deviate opportunistically
– incorporate tactical short-term alpha signals (sec to minutes)
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Trade Scheduling: Implementation Shortfall

I Shortfall S := p̄ − parrival

I Fundamental tradeoff:
– quick execution ⇒ adverse price movement (market impact)
– slow execution ⇒ subject to price risk due to market movement

I Control problem (one possible variation): choose X (t) to

min E[S] + λVar[S]

where λ > 0 is a risk aversion parameter

I Typical solution:
– use a rolling horizon (MPC) control: at t, compute control for [t,T ]

– refine price impact estimates to real time conditions
– adapt trading speed & order placing logic in real-time
– incorporate tactical short-term alpha signals (sec to minutes)

I typical example: principle trading desks; transitions
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Essential building block: market impact (price impact) model

I "Macro" model are variants of the following:

Price impact = Temporary (:= f (x(t))) + Permanent (:= h(x(t)))

p̃(t) = p(t) + f (x(t)) and p(t + 1) = p(t) + h(x(t)) + σ(t)N(0, 1)

(above expression assumes Temp = Instantaneous; o/w we need
convolution eqn . . . )

I No-arbitrage argument supports use of linear permanent price impact

I Estimation of MI coefficients via non-linear regression based on realized
transaction costs of actual trades. Typical findings

f (x(t)) = α0,t + α1,t · st + α2,tx(t)p, p = 1 or p = 1/2, 2/3, . . .

– αi ,t depend on spread, tick size, volume, volatility, . . .
– solving IS: QP for linear f (·) and SOCP for fractional p model
– regression fits of market impact are “noisy" (more tomorrow)
– alternate: impact function decays with time (also noisy to estimate)
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Realized Shortfall for a sample of POV and VWAP orders
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I model is more estimable for aggressive executions (≥ 10% part rate)
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Realized Shortfall for POV and VWAP orders (cont.)
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I model is more estimable for slow duration orders (≤ 30min)
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Trade scheduling: key modeling and trading decisions

I accurate forecasts for intraday trading patterns

I market impact model (more on this tomorrow)

I mathematical formulation of trade scheduling problem could yield

a) essentially open-loop (static) or
b) feedback (adaptive) trade schedules
(preferred given noisy reference input data)

I how much to trade over a period of k minutes, bounds on permissible
deviations from plan, limit prices to control price impact, . . .

I adapt to real-time conditions

I optimized control of portfolio executions
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Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

– high level view of equities execution ecosystem

– algorithmic trading systems

– trade scheduling and the role of market impact models

– tactical execution in a LOB

– fragmentation, internalization, incentives, . . .
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Algorithmic Trading Systems: short horizon execution in LOB

I Trade scheduling: splits parent order into ∼ 5 min “slices”
– relevant time-scale: minutes-hours
– schedule follows user selected “strategy” (VWAP, POV, IS, . . . )
– reflects urgency, “alpha,” risk/return tradeoff
– schedule updated during execution to reflect price, liquidity/. . .

I Optimal execution of a slice (“micro-trader”): further divides slice into
child orders
– relevant time-scale: seconds–minutes
– strategy optimizes pricing and placing of orders in the limit order book
– execution adjusts to speed of LOB dynamics, price momentum, ...

I Order routing: decides where to send each child order
– relevant time-scale: ∼ 1–50 ms
– optimizes fee/rebate tradeoff, liquidity/price, latency, etc.

separation of 2nd and 3rd steps mostly technological/historical artifact
(should not be treated separately)
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LOB schematic
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The Limit Order Book (LOB)

price
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buy limit order arrivals
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cancellations
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Multiple Limit Order Books

exchange 1

exchange 2

...

exchange N

national best bid/ask
(NBBO)

Price levels are coupled
through protection
mechanisms (Reg NMS)
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Execution in a LOB

What are the key considerations & decisions?
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Execution in LOB: key modeling and trading decisions

I real-time measurements and forecasts for event rates
(arrivals, trades, cancellations on each side of the LOB)

I heterogenous flows wrt arrivals, executions, cancellations (tomorrow)

I time/price queue priority:
– estimate queueing delay & P(fill in T time units)
– limit order placement . . . depends on queueing effects at each exchange
– maintain / estimate queue position (& residual queueing delay)
– adverse selection as a function of exchange, depth, queue position, . . .
– transaction cost models

I microstructure, short-term alpha signals

I optimize execution price by tactically controlling

– when to post limit orders, and to which exchanges
– when to cancel orders
– when & how to execute using market orders

We will discuss LOB dynamics and associated control decisions in days 2-3.
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Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

– high level view of equities execution ecosystem

– algorithmic trading systems

– trade scheduling and the role of market impact models

– tactical execution in a LOB

– fragmentation, internalization, incentives, . . .
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Fragmentation (more in day 3)

exchange 1

exchange 2

...

exchange N

national best bid/ask
(NBBO)

exchanges differ in fee/rebates

traders heterogenous wrt
urgency

fragmentation impacts order
routing decisions

optimized routing ⇒ LOB
dynamics couple
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Internalization & incentives between broker & buy side client

I Typical scenario:

– Algo orders often “shown" to internalizers prior to going to Exch.
– internalizer decides whether to fill all-or-part of order
– algo order avoids exchange fee
– unfilled portion is subsequently routed to exchange
– HFT internalizer knows about orders directed to exchange
(informational advantage over many participants

– (∼ all) retail flow is routed through HFT internalizers

I Why do brokers that execute algo flow trade with internalizers?

– buy-side client typically pays broker an “all-in" rate (incl. exch.fees)
– all-in rate ∼ .5 ¢/share
– fee/rebate ∼ .25 ¢/share ⇒ broker net rev ∈ (.25, .75) ¢/share
. . . broker wants to avoid paying the exchange fee

– client indifferent as long as execution quality is good (is it?)
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How much volume is internalized? A lot . . .
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% volume internalized vs quote size
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% volume internalized vs spread
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Outline

I May 5: Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

2. Limit order book as a queueing system

I May 6: Deterministic (mean-field) models of LOB dynamics

3. Transient dynamics, cancellations, and queue waiting times

4. Execution in a LOB and a microstructure model of market impact

I May 7: Order routing and stochastic approximations of LOB markets

5. Order routing in fragmented LOB markets

6. Stochastic approximations of a LOB

I References
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Overview of algorithmic trading and limit order book markets

2. Limit order book (LOB) as a queueing system

– time/price priority & LOB as a multi-class queueing system

– events:
– limit order arrivals
– trade executions (service completions)
– cancellations

– motivating questions:
– delay estimation & heterogeneous order cancellation behavior
– short-horizon optimal execution in the LOB & microstructure cost model
– adverse selection
– optimal order routing in a fragmented market structure

– background on simple queueing models & their asymptotic behavior
a quick view on time-scales

(our focus today will be on “top-of-book”)
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LOB schematic
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The Limit Order Book (LOB)

price

ASK

BID

buy limit order arrivals

sell limit order arrivals

market sell orders

market buy orders

cancellations

cancellations



C. Maglaras, 05/2015 – 51 / 228

LOB: event driven (short-term) view
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LOB re-drawn as a multi-class queueing network
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Overview of algorithmic trading and limit order book markets

2. Limit order book (LOB) as a queueing system

– time/price priority & LOB as a multi-class queueing system

– events:
– limit order arrivals
– trade executions (service completions)
– cancellations

– motivating questions:
– delay estimation & heterogeneous order cancellation behavior
– short-horizon optimal execution in the LOB & microstructure cost model
– adverse selection
– optimal order routing in a fragmented market structure

– background on simple queueing models & their asymptotic behavior
a quick view on time-scales

(our focus today will be on “top-of-book”)
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Limit order arrivals

I Poisson?

I rate fcn’s λ (limit order submissions), µ (trades = service completions)

– time-of-day
– price level, distance from best bid / best ask, spread
– depth, certainly at top of book
– effective tick size
– rates of other flows; large blocks; . . .

other possible considerations:

– model “strategies” that generate flow, e.g.,

- POV responds to (filtered) volume
- HFT participants respond “quickly” to queue depletion events
. . .

structurally estimate state-dependent rate fcn
(complex / over fitting? / depends on intended use)

I jumps or bursts?
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Order sizes

I distinguish trades that happen on exchanges (as opposed to dark pools)

I most trades in increments of round lots: 100, 200, . . .

top 500 names (ADV) top 1000 names (ADV)

Q1 (# shares) 87 84
Q2 (# shares) 101 101
Q3 (# shares) 151 139

I odd lots (mostly < 100 share trades – non-negligible)

I roll up trades over δt to account for “simultaneous” prints triggered by
same parent

I think in $ or in shares (or in depth multiples)?

I trade sizes are heavy-tailed (lognormal gives reasonable fit)
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Cancellations

1. disregard cancellations

2. timer-based cancellations:

– each limit order has associated with it a patience ξ
– ξ ∼ exp(γ) ⇒ cancellation outflow ≈ −γQ(t)δt
– some general patience distributions also tractable (asymptotically)
– state-dependent cancellation flow “stabilizes” queues
– pretty reasonable model for child orders generated by algorithmic
strategies

3. constant cancellation outflow ≈ −ηδt

– state independent (not good)
– no feedback stabilization, i.e., as Q(t) ↑ cancellation flow constant
– but, more tractable

– appropriate model to use depends on the context (more in days 2/3)
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Heterogenous trading behaviors

I different market participants exhibit significantly different behavior wrt

– limit order submission
– cancellations
– trade sizes & trade submission triggers

I should we model flow through one order generating process?
(single type model)

– e.g., Poisson (λ(t, state vars)), sizes ∼ G , patience ∼ F

I or model heterogenous behavior and use a mixture model, e.g.,

– algo: Poisson (λ(t, state vars)), sizes ∼ Geo(1/s), patience ∼ exp(θ)

– MM: event driven arrivals, cancellations, trades (typically as a fcn of
state and signals)
– blocks: Poisson(η(t, state vars)), sizes ∼ lognormal

we will see both styles of models
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Event rates (top of book)
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Normalized event rates (top of book)
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I arrival volume (limit orders at top of book) � traded volume
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Interarrival times (top of book)
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Interarrival times (log scale) (top of book)
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I liquid stocks: # trades, # cancellations, # limit order arrivals are large
I # trades ≈ 1 order of magnitude less frequent than cancels or order arrivals
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Tick period / queueing delay against # trade events
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I tick period = avg time between changes in the mid-price
I tick period is on same (or smaller) order magnitude as queueing delay
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Tick period versus queueing delay: log-log
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Tick period versus queueing delay (liquid names): log-log
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Variability of order arrival rates

% obs. in ±2σt % obs. in ±3σt % obs. outside ±3σt

1 min 63.33% 79.23% 20.77%

3 min 32.56% 50.39% 49.61%

5 min 27.27% 35.06% 64.94%

10 min 13.16% 31.58% 68.42%

I table checks if µt+1 ∈ intervals µt ± kσt for k = 2, 3
I (λ, µ) exhibit significant differences in the time scale of 3 - 5 minutes
I cf. top 100 names (by ADV): average queueing delay = 61 sec
(more on this later on)
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Some observations

I Event data:
λ� µ and cancellation flow� µ

I significant cancellation volume to balance order flow at top of book

I price changes on the same time-scale as queueing delays

I event arrival rates fluctuate at slightly slower time scale than queueing
delays

I heterogeneous trading behavior may impact order flow dynamics

I fragmentation affects delay estimates and cancellation behavior
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Overview of algorithmic trading and limit order book markets

2. Limit order book (LOB) as a queueing system

– time/price priority & LOB as a multi-class queueing system

– events:
– limit order arrivals
– trade executions (service completions)
– cancellations

– motivating questions:
– delay estimation & heterogeneous order cancellation behavior
– short-horizon optimal execution in the LOB & microstructure cost model
– adverse selection
– optimal order routing in a fragmented market structure

– background on simple queueing models & their asymptotic behavior
a quick view on time-scales

(our focus today will be on “top-of-book”)
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Four motivating performance and control questions

1. Cancellation behavior and expected queueing delay at the top of book

– E(delay) until an order gets filled as a fcn of model primitives
– how does it depend on cancellation behaviors of different participants?

2. Optimal execution in a LOB and market impact, e.g.,

– how to buy 5,000 shares of IBM over the next 3 min
– estimated execution cost as fcn of real-time mkt conditions
– microstructure model of market impact

3. Optimal order routing across LOB; fee/rebate tradeoffs; dynamics

– tactical optimization of order routing decisions; money/delay tradeoffs

4. Stylized models of adverse selection as a fcn of queue position

– value of queue position in AS costs
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Where it all fits in the technology stack of an algo trading system. . .

I Trade scheduling: splits parent order into ∼ 5 min “slices”
– relevant time-scale: minutes-hours
– schedule follows user selected “strategy” (VWAP, POV, IS, . . . )
– reflects urgency, “alpha,” risk/return tradeoff
– schedule updated during execution to reflect price, liquidity/. . .

I Optimal execution of a slice (“micro-trader”): further divides slice into
child orders
– relevant time-scale: seconds–minutes
– strategy optimizes pricing and placing of orders in the limit order book
– execution adjusts to speed of LOB dynamics, price momentum, ...

I Order routing: decides where to send each child order
– relevant time-scale: ∼ 1–50 ms
– optimizes fee/rebate tradeoff, liquidity/price, latency, etc.

separation of 2nd and 3rd steps mostly technological/historical artifact
(should not be treated separately)
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Overview of algorithmic trading and limit order book markets

2. Limit order book (LOB) as a queueing system

– time/price priority & LOB as a multi-class queueing system

– events:
– limit order arrivals
– trade executions (service completions)
– cancellations

– motivating questions:
– delay estimation & heterogeneous order cancellation behavior
– short-horizon optimal execution in the LOB & microstructure cost model
– adverse selection
– optimal order routing in a fragmented market structure

– background on simple queueing models & their asymptotic behavior
a quick view on time-scales

(our focus today will be on “top-of-book”)
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Some basic building blocks from queueing theory

I M/M/1 system (Poisson limit and market order arrivals)

I M/M/1 + M with exponential patience clocks

I Basic facts for asymptotic behavior of M/M/1 and M/M/1 + M

regime we focus: (λ, µ) grow large

– mean-field (fluid) models
– diffusion models
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M/M/1 queue

Model:

I arrivals (limit orders) ∼ Poisson rate λ
I service completions (market orders) ∼ Poisson rate µ
(exponential service times, rate µ)

I single server; ∞ buffer; no cancellations

Steady-state probability distribution π of Markovian system:

πn = (1− ρ)ρn ρ :=
λ

µ
< 1

Steady-state performance measures:

I Expected time in system E(W ) =
1

µ(1− ρ)
=

1
µ− λ

I Expected number in system E(Q) =
ρ

1− ρ =
λ

µ− λ = λE(W )
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M/M/1+M queue (Erlang-A)

M/M/1 assumptions plus:

I exponential patience times, rate γ (iid)
I orders in queue cancel when the idiosyncratic wait time exceeds their
patience

Steady-state probability distribution π:

πn = π0

n−1∏
k=0

λ

µ+ kγ
π0 =

(
1 +

∞∑
n=1

n−1∑
k=0

λ

µ+ kγ

)−1

Cancellation behavior:
I conditional on queue length Q(t), cancellation intensity is uniform across
queue positions x < Q(t)

I variant on cancellations.: residual patience > residual E(waiting time)
(calculation needs queue position)
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Mean-field (fluid) model: M/M/1

Liquid securities see significant event volume per minute. Suggests scaling:

λn = nλ and µn = nµ

An(t) ∼ Poisson rate λn and similarly for service completions Sn(t)

Strong approximation: An(t) = nλt +
√
nλB(t) + O(log(nt)) a.s.

So:
I arrivals ∼ O(n)

I trades ∼ O(n)

I queue length ∼ O(n):

Q̄n(t) :=
1
n
Qn(t)

a.s.−→ q(t) u.o.c.

where q(t) is a deterministic trajectory satisfying

q̇(t) = λ− µ
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Mean-field (fluid) model: M/M/1+M

Scaling:
λn = nλ µn = nµ and γn = γ

I market grows large while order patience characteristics stay same

[Strong approximation + Gronwall’s inequality + CMT (for reflection map):]

Q̄n(t) :=
1
n
Qn(t)

a.s.−→ q(t) u.o.c.

where
q̇(t) = λ− µ− γq(t)
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Transient of mean-field (fluid) model of M/M/1+M

q̇(t) = λ− µ− γq(t)

ODE solution:

q(t) =
λ− µ
γ

(
1− e−γt

)
+ q(0)e−γt

I If λ− µ > 0 (as in trade data), q(t)→ λ− µ
γ

=: q∞

q∞ = equilibrium depth (outflow = trades + cancellation = inflow)

I If λ ≤ µ, q(t)→ 0.
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Heavy-traffic (diffusion) model: M/M/1 approximating diffusion

Scaling:
λn = n − β

√
n, µn = n (so that λn ≈ µn),

Flow imbalance:

Nn(t) = (An(t)− Sn(t)) = −β
√
nt + σ

√
nB(t) + O(log(nt))

O(
√
n) stochastic imbalance of Poisson flows, leads to O(

√
n) queue lengths

Q̂n(t) :=
Qn(t)√

n
=⇒ Q̂(t) = reflected Brownian motion.

dQ̂(t) = −βdt + σdB(t) + dL(t) (β > 0)

L(t) = local time at the origin; in LOB analogy, L(t) fires when price moves

N̂(t) = −βt + σB(t), L(t) = sup{0≤s≤t} N̂
−(s) (x− = min(0, x))
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Heavy-traffic (diffusion) model: M/M/1 performance approximations

Q̂(∞) ∼ exp(−2β/σ2)

I queue lengths:

E(Qn) =
ρn

1− ρn = O(
√
n)

I waiting times:
√
n queue length, trades arrive at order n, so

E(W n) =
E(Qn)

µn = O

(
1√
n

)
I how often does the queue gets depleted: τn is the length of busy periods

E(τn) ≈ O(1) the natural time scale of the limiting RBM

(regenerative cycles of RBM)

I time scale separation: E(τn)� E(W n)

E(τn) ≈
√
nE(W n)



C. Maglaras, 05/2015 – 80 / 228

Heavy-traffic (diffusion) model: M/M/1+M, λn − µn = β
√

n

Scaling:

λn = n + β
√
n, µn = n and γn = γ

Similar to M/M/1 in heavy traffic:

Q̂n(t) :=
1√
n
Qn(t)⇒ Q̂(t) (reflected O-U process)

where
dQ̂(t) =

(
β − γQ̂(t)

)
dt + σdB(t) + dL(t)

I stable queue due to cancellations (drift −γQ(t))

I cancellation volume ≈ O(
√
n)� λn

I Q̂(∞) ∼ truncated Normal dist.

I time scale separation: E(τn)� E(W n) . . .E(τn) ≈
√
nE(W n)
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A different heavy-traffic regime: M/M/1+M, λn � µn

Scaling:
λn = nρ, µn = n and γn = γ (ρ > 1)

I O(n) imbalance between order arrivals and trades

I balanced through O(n) cancellations

I proportional cancellation flow γQn(t), suggests Qn(t) = O(n)

I indeed fluid path dominates behavior:

Qn(t) ≈ nq(t) +
√
n(stochastic fluctuations) + O(log(nt))

– for large t, Qn(t)/n ≈ q∞, where ρ− 1 = γq∞

– E(W ) = O(1)

– fluid paths cannot generate price changes (no queue depletions)
. . . price changes triggered by changes in rate parameters
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Quick observations

I data for liquid stocks suggests EW ≈ Eτ

– “heavy-traffic” diffusion models (M/M/1 or M//M/1 + M) may not be
appropriate to study queueing effects

– queueing delays appear instantaneous in these diffusion models

– also, arrival rates fluctuate on time scale of queueing delays

I data: cancellation volume seems to indicate queues of O(n)

where n= scale of the system (e.g., speed)

– O(
√
n) variability of Poisson arrival flows “small” viz O(n) queues

– arrival rate fluctuations may yield O(n) variability on order arrival processes

I non-exponential patience, e.g., M/M/1 + GI similar qualitative results
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M/M/1, ρ > 1, Fluid Scale O(n)
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M/M/1, ρ > 1, Diffusion Scale O(
√

n)
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M/M/1+M, ρ > 1, Fluid Scale O(n)
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M/M/1+M, ρ > 1, Diffusion Scale O(
√

n)
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M/M/1, ρ ≈ 1, Fluid Scale O(n)
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M/M/1, ρ ≈ 1, Diffusion Scale O(
√

n)
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M/M/1+M, ρ ≈ 1, Fluid Scale O(n)

0 20 40 60 80 100
0

2

4

6

8

10

ρ
n
 = 0.99,   n = 1

t

Q
n
(t

)

0 20 40 60 80 100
0

20

40

60

80

100

ρ
n
 = 0.99684,   n = 10

t

Q
n
(t

)

0 20 40 60 80 100
0

200

400

600

800

1000

ρ
n
 = 0.999,   n = 100

t

Q
n
(t

)

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

ρ
n
 = 0.99968,   n = 1000

t

Q
n
(t

)



C. Maglaras, 05/2015 – 90 / 228

M/M/1+M, ρ ≈ 1, Diffusion Scale O(
√

n)
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M/M/1, ρ < 1, Fluid Scale O(n)
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M/M/1, ρ < 1, Diffusion Scale O(
√

n)
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Quick recap

I LOB can be modeled as a multiclass queueing system

I data analysis:
λ� µ and cancellations� µ

I large scale queues can be approximated via tractable ODE or diffusion

their analysis generate insights

– expected waiting times
– cancellation dynamics
– . . .

Next: study 4 problems encountered in analysis and trade execution in LOB
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Outline

I May 5: Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

2. Limit order book as a queueing system

I May 6: Deterministic (mean-field) models of LOB dynamics

3. Transient dynamics, cancellations, and queue waiting times

4. Execution in a LOB and a microstructure model of market impact

I May 7: Order routing and stochastic approximations of LOB markets

5. Order routing in fragmented LOB markets

6. Stochastic approximations of a LOB

I References
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Deterministic (mean-field) models of LOB dynamics

3. Transient dynamics, cancellations, and queue waiting times

– single type of order flow
– waiting time & equilibrium depth
– queue position as fcn of elapsed waiting time

– a view in the data
– realized delays vs. delay estimates & cancellation flows

– two types of order flow
a) algo flow: exponential cancellations
b) MM flow: event driven arrivals; state dependent cancellations

– waiting time; depth; queue position as fcn of elapsed waiting time
– back to the data
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Motivating question #1

I estimation of expected delay until a limit order gets filled

I related questions:

– estimate queue position while in queue

– estimate residual delay until an order gets filled while in queue

– relevant in deciding when to place limit orders taking into account
scheduling objective

– routing of orders across exchanges
(that may differ in their expected delays)

– input to understanding adverse selection
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Two different estimates of delay in getting a fill

λ

µ

γq(t)

I Naive estimate (no cancellations, γ = 0):

w 0 =
q(0)

µ

I Proportional cancellations:

w 1 =
1
γ
log

(
1 +

q(0)γ

µ

)

derivation of w 1 uses fluid model of M/M/1 + M:

w 1 = inf{t ≥ 0 : q(t) = 0}

ODE: q̇(t) = −µ− γq(t)

⇒ q(t) = −µ
γ

(
1− e−γt

)
+ q(0)e−γt
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Queue position as fcn of sojourn time s

x(s) = queue position s time units after posting infinitesimal (patient) order

I No cancellations:
q(s) = q(0)− µs

– linear progress through the queue

I Proportional cancellations (exp. patience):

x(s) = q(0)− λ
∫ s

0
e−γtdt =

(
q(0)− λ

γ

)
+
λ

γ
e−γs

– non-linear movement thru queue; impatient traders cancel early
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Residual delay as fcn of queue position at time s

x(s) = queue position s time units after posting infinitesimal (patient) order

I No cancellations:

w 1(x(s)) =
x(s)

µ
, x(0) = q(0)

I Proportional cancellations (exp. patience):

w 2(x(s)) =
1
γ
log

(
1 +

x(s)γ

µ

)
x(0) = q(0)
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Realized delays vs. estimates

I dataset: 325,000 algo limit orders, Mar-Apr 2012, ≈500 symbols

I fields: date, time (ms), exchange, symbol, buy/sell, parent strategy (e.g.,
VWAP), outcome, waiting time (till execution or cancellation)

I we estimated model parameters using trailing 3 minute statistics (TAQ)

I filtered symbols with too few points, to end with 109,000 orders, 268
symbols

I uncensored delay observations (the data set was censored due to cancels
(65% of orders)
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Realized delays vs. estimates (sample: 325,000 algo orders Mar-Apr 2012)

Realized limit order delays Du (x axis) compared to delay estimates with proportional cancelations

(blue), or no cancelations (red). Realized delays uncensored (max entropy).
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Treatment of cancellations seems relevant to accuracy of delay estimates

I ∼ 80% of orders get cancelled

I disregarding cancellations seems too drastic of a simplification

I exponential patience / proportional cancellations appear too optimistic
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Alternate model: constant (state-independent) cancellation intensity

q̇(t) = λ− µ− η, 0 > η ≥ λ− µ

I v(s) = µ+ (x(s)/q(0))η = speed of moving through queue after s time

x(s) = q(0)−
∫ s

0
v(t)dt

= q(0)− µs −
∫ s

0
(η/q(0))x(t)dt ⇒ ẋ(s) = −µ− (η/q(0))x(s)

It follows that

w 2 = inf{t ≥ 0 : x(t) = 0} = · · · =
q(0)

η
log
(
λ

µ

)
I If queue is stable, then η ≥ λ− µ. Set η = λ− µ.

M/M/1 + M: equilibrium depth q∞ s.t. λ = µ+ γq∞ ⇒ η = γq∞.

if q(0) = q∞, w 1 =
1
γ
log

(
1 +

γq(0)

µ

)
=

q(0)

η
log
(
λ

µ

)
= w 2

if q(0) < q∞, then w 2(q(0)) < w 1(q(0)) (and vice versa)
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need more nuanced model to estimate cancellation effect on delay
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Event and queue dynamics over a single price change

Trading episode in BAC stock on 6/18/2013 starting around 11:30:39
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Order flows depend on LOB state

Standardized arrival and cancelation volumes for DJIA stocks - more orders cancel
from small queues, less orders arrive to small queues.
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Cancelations depend on LOB state

State-dependent cancelations - more orders cancel from small queues. (grey: (can-
cellations in δt intervals) (in shares); red: (cancellations in δt)/Qt )

I exp. patience ⇒ proportional cancellation model ≈ γQtδt
⇒ (cancellations in δt)/Qt ≈ γ (i.e., constant)

I data shows normalized cancellation intensity ↗ as normalized queue size ↓
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Bursty event behavior & cancellation mechanism

Observations:

I Event rates increase when queues are small (and likely to get depleted)

I Cancellations also increase when queues are small

– why?

– does it matter in estimating delays and in order placement?
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Deterministic (mean-field) models of LOB dynamics

3. Transient dynamics, cancellations, and queue waiting times

– single type of order flow
– waiting time & equilibrium depth
– queue position as fcn of elapsed waiting time

– a view in the data
– realized delays vs. delay estimates & cancellation flows

– two types of order flow
a) algo flow: exponential cancellations
b) MM flow: event driven arrivals; state dependent cancellations

– waiting time; depth; queue position as fcn of elapsed waiting time
– back to the data
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Limit order FIFO queue with two types of order flow

I Type-1 orders (algorithmic flow):
I Arrive (join the queue) according to a Poisson process with rate λ
I Cancel according to finite deadlines ∼ exp(γ)

I Type-2 orders (MM) - event driven:
I Join right after any other order joins, with probability F , as long as the
queue length q(t) > θ

I Cancel all orders immediately whenever q(t) ≤ θ
– for simplicity assume that θ is common across all type 2 orders

I Market orders arrive according to a Poisson process with rate µ.

I Intuition:
– when q(t) is small, a cascade of type-2 order cancelations is likely
– when q(t) is large, type-2 orders increase depth and waiting times

(“order crowding”)
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Associated fluid model

λ · f 1{q(t)>δ}λ

µ

γq1(t)

I qi(t) = type i orders, i = 1, 2

I q(t) = q1(t) + q2(t) = total queue content

I cancellation behavior:
– type 1: −γq1(t) ⇐ ξ ∼ exp(γ)

– type 2: all q2(t) cancels if q(t) ≤ θ

I α(t) = % of µ that trades with type 1
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Queue density as a function of sojourn time

λ · f 1{q(t)>δ}λ

µ

γq1(t)

I ζi(t, u) = type i density at time t of age u

I qi(t, y) =

∫ y

0
ζi(t − u, u)du

(type i content at t of age ≤ y)

I ζ̇1(t, u) = −γζ1(t, u)

I τ(t) = age of HOL orders (= delay)

I α(t) =
ζ1(t, τ(t))

ζ1(t, τ(t)) + ζ2(t, τ(t))

I qi(t) = qi(t, τ(t))
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Fluid model dynamics

I Total queue dynamics

q̇1(t) = λ− γq1(t)− α(t)µ

q̇2(t) = (λf − (1− α(t))µ)1{q(t)>θ} − q2(t)δ
(
1{q(t)>θ}

)
α(t) =

ζ1(t − τ(t), τ(t))

ζ1(t − τ(t), τ(t)) + ζ2(t − τ(t), τ(t))

I Queue density dynamics

ζ1(t, 0) = λ, t > 0

ζ2(t, 0) = λf 1{q(t)>θ}, t > 0

∂ζ1(t, u)

∂u
= −γζ1(t, u), t ≥ 0, 0 < u ≤ τ(t)

ζ2(t, u) = ζ2(t − u, 0)1{
min

0≤v≤u
(q(t−v))>θ

}, t ≥ 0, 0 < u ≤ τ(t)
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“Regular” queue profiles

a) large queue; b) type-2 doesn’t cancel; c) exp. thinning of type-1

λ · f 1{q(t)>δ}λ

µ

γq1(t)

I ζ1(t, u) = λe−γu, u ≤ τ(t)

I ζ2(t, u) = λf , u ≤ τ(t)

I queue content takes intuitive shape

I in deep queues, most orders in front are type 2 (MM)
(the only ones that survive/tolerate LONG delays)
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Who trades & after how long?

I if queue is long, then it’s profile must be regular

I once profile becomes regular, then it stays regular
& profile always becomes regular after sufficient time

I fraction of trades against type 1 (algo) orders: α(t) =
e−γτ(t)

e−γτ(t) + f

I waiting time: τ(t) =
1
γ
log

(
λ

λ− γq1(t)

)
for all t > 0
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Queue composition in regular profiles

I the dynamics of type 1 simplify

q̇1(t) = λ− γq1(t)− λ− γq1(t)

λ(1 + f )− γq1(t)
µ

I q2(t) = λf τ(t) =
λf
γ

log

(
λ

λ− γq1(t)

)
I total queue length is determined by q1(t):

In steady state:

α∗ = 1− λf
µ

and τ∗ =
1
γ
log
(

λ

µ− λf

)
and

q∗1 =
λ(1 + f )− µ

γ
=
λ− (µ− λf )

γ
, q∗2 =

λf
γ

log
(

λ

µ− λf

)
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A new formula for delay in a LOB with heterogeneous order flow

I w 3 =
1
γ
log
(

λ

µ− λf

)
I w 3 > w 1 (w 1 = 1

γ
log
(
λ
µ

)
all algo flow)

– if λ(1 + f )/µ = 5 and λf ≈ 3/4µ, then w 3 ≈ 2w 1

I starting from an arbitrary IC and assuming profile is regular, w 3 is
computed by solving the following system of differential equations:

ṗ1(t) = −γp1(t)− α(t)µ and ṗ2(t) = −(1− α(t))µ

q̇1(t) = λ− γq1(t)− λ− γq1(t)

λ(1 + f )− γq1(t)
µ

α(t) =
λ− γq1(t)

λ(1 + f )− γq1(t)

IC p1(0) = q1(0), p2(0) = q2(0) and TC p1(w 3) = p2(w 3) = 0.
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Contrasting delay estimates against realized delays

Waiting times with one-type model w1, with no cancelations w0, with two-type model w compared to realized

delays Du .
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Rough intuition

I need to estimate mixture of patient vs. inpatient orders

I incorporate “crowding” out effect of patient orders

I resulting delay estimate is not as pessimistic as q/µ (no cancellations)

I fragmentation . . . need delay estimates for each exchange
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Flow heterogeneity has 1st order effect on LOB behavior

I Important to model heterogenous trade behaviors
– order placement
– cancellations
– market orders

I possible explanation for anomalously long waiting times in large queues
despite large cancellation rates (some orders never cancel, and in long
queues only these orders survive)

I significant differences on state-dependent behavior across types of flow
– MM/HFT flow sensitive to AS costs, primarily state-dependent policies
– algo flow primarily driven by strategy participation considerations,
mostly “timer-based”

I estimating state- & price-dependent event rates should deal with the
above distinction
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Followup question #4

I probability that an order will get filled

I conditional probability that this will be an “adverse” fill

I estimate adverse selection costs as a fcn of queue position

return to this tomorrow (towards the end of these slides)
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Outline

I May 5: Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

2. Limit order book as a queueing system

I May 6: Deterministic (mean-field) models of LOB dynamics

3. Transient dynamics, cancellations, and queue waiting times

4. Execution in a LOB and a microstructure model of market impact

I May 7: Order routing and stochastic approximations of LOB markets

5. Order routing in fragmented LOB markets

6. Stochastic approximations of a LOB

I References
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Deterministic (mean-field) models of LOB dynamics

4. Execution in a LOB and a microstructure model of market impact

– formulate stylized optimal execution problem in LOB

– characterize optimal execution policy & associated cost

– a microstructure market impact model

– calibration of the microstructure market impact model on trade data
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The Limit Order Book (LOB)

price

ASK

BID

buy limit order arrivals

sell limit order arrivals

market sell orders

market buy orders

cancellations

cancellations
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LOB: event driven (short-term) view

price

pN

λbN

λsN

· · ·

· · ·

pat+1

λsat+1

pat

λsat

· · ·pbt

λbbt

pbt−1

λbbt−1

· · ·

· · ·

p1

λb1

buy limit order arrival rates

sell limit order arrival rates

µsbt sell market order rate

µbatbuy market order rate

γ

cancellation rate

γ

cancellation rate
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LOB re-drawn as a multi-class queueing network

µsbt

market
sell

orders

λbbt
, γ

...

...

λb1, γ

limit buy orders

µbat

market
buy

orders

...

λsat , γ

...

λsN , γ

limit sell orders
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Motivating question #2: Optimal execution in LOB & market impact cost

objective: how to buy C shares within time T at the lowest price

controls: how much, when, at what prices to trade

I trade with limit orders / market orders

I trade with block trades / continuously submitted trades (rate upper
bounded by κi)

– T is same order of magnitude as the queueing delays (≈ 1 - 5 min)

– microstructure of the LOB impact execution policy and resulting costs

– we focus on a stylized execution problem (tractable)
. . . to generate insight on impact cost drivers
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LOB fluid model dynamics

Q̇b
i (t) = λbi · 1 {i ≤ bt} − µs

i · 1 {i = bt} − γQb
i (t),

Q̇s
i (t) = λsi · 1 {i ≥ at} − µb

i · 1 {i = at} − γQb
i (t).

Main assumptions

I λbi > µs
i (motivated from earlier data analysis)

I constant bid-ask spread, no limit orders inside spread

I if price moves, limit orders slide, queue positions maintained
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LOB behavior

bt = best bid at time t; at = best ask at time t

I (best bid & best ask do not change) bt = b0, at = a0, for all t ≥ 0,

I Q(t)→ q∗ as t →∞

q∗,bi :=


λbi /γ if 1 ≤ i < b0,
λbi − µs

i

γ
if i = b0,

0 if b0 < i ≤ N,

q∗,si :=


0 if 1 ≤ i < a0,
λsi − µb

i

γ
if i = a0,

λsi /γ if a0 < i ≤ N,

– top of book queues equilibriate to balance arrivals with trades +

cancellations
– other queues balance arrivals with cancellations
– cf. Gao, Dai, Dieker, Deng
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Optimal execution policy

I Limit orders

- at time t = 0, to the best bid b0, submit limit orders

CL = min

{
µsb0

(
T − 1

γ
log
(
1 + γ

µb0
Q0(0)

))+

,C

}
;

I Market orders (κi = κ, ∀i)

- at time t = 0, to the best ask a0, submit block trade min{C −CL,Qs
a0(0)}

;

- for time 0 < t < T , to the best ask a0, continuously submit trade at rate
κ, or until C is filled;

- at time t = T , clean up with block trade, may deplete multiple queues at
higher price levels.
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Practical considerations

I avoid clean up trade, especially if this is a slice of a longer trade

I often times micro-trader does not have to complete C by T

I account of multiple exchanges in deciding how much and where to post

I do not post all limit order quantity in one block to avoid information
leakage

I policy predicated on the following assumption:

– trader can execute continuously with market orders at rate κ
(presumably low)

– κi = κ for all price levels i
one may expect supply to increase at higher price levels (more later)

I . . .
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Deterministic (mean-field) models of LOB dynamics

4. Execution in a LOB and a microstructure model of market impact

– formulate stylized optimal execution problem in LOB

– characterize optimal execution policy & associated cost

– a microstructure market impact model

– calibration of the microstructure market impact model on trade data
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Execution cost

IS :=
Total cost

C
− p = s/2− s · SL

C
+

N−a0∑
k=1

kδ · Ca0+k

C
.

Simplifications:

I disregard cancellations on the near side (limit order term)
– SL = min

{
µs
b0(T − w 0)+,C

}
, where w 0 = Qb(0)/µs

I clean up cost: the number of price levels needed to complete the trade is

n :=

(
C − SL −Qs

a0(0)− κT
)+

Q̄s
≈

(
C −Qs

a0(0)− κT
)+

Q̄s

For large C : IS = α0 + α1 · C + α2 · C 2

– α0 captures limit order offset, expect to be (-ve)
– α2 captures effect of the additional price levels needed, expect to be (+ve)
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Microstructure market impact model

I implementation shortfall of a buying order

- benchmark on the aggressive side: p0,mid + s/2 = a0

IS := p̄ − p0,mid = s/2 + (limit order benefit) + (higher price level adjustment)

I keep insightful structure, simplify the functional form

IS = s/2−
min

{(
µs
b0T −Qb

b0(0)
)+
,C
}

C
· s︸ ︷︷ ︸

limit order benefit

+
δ

2
·

(
C −Qs

a0(0)− κT
)+

Q̄s
+
δ

2︸ ︷︷ ︸
higher price level adjustment

.
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Microstructure market impact model

I implementation shortfall of a buying order
benchmark on aggressive side: p0,mid + s/2 = a0

IS = s/2−
min

{(
µs
b0T −Qb

b0(0)
)+
,C
}

C
· s︸ ︷︷ ︸

limit order benefit

+
δ

2
·

(
C −Qs

a0(0)− κT
)+

Q̄s
+
δ

2︸ ︷︷ ︸
higher price level adjustment

- (Effect of limit orders) decreasing in µs
b0 , T , increasing in Qb

b0(0)

- (Effect of top-of-book market orders) decreasing in κ and Qs
a0(0)

- (Effect of higher price market orders) decreasing in Q̄s

- increasing in s, δ

- if κi increase as pi grows, then cost exhibits sub-linear growth
if κi grow linearly in pi , then cost grows like

√
C for large C
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Deterministic (mean-field) models of LOB dynamics

4. Execution in a LOB and a microstructure model of market impact

– formulate stylized optimal execution problem in LOB

– characterize optimal execution policy & associated cost

– a microstructure market impact model

– calibration of the microstructure market impact model on trade data
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Proprietary trade data

realized trade stats: 5min slices for 2013/7-2013/9, > 1, 800 securities traded

JUL 2013 AUG 2013 SEP 2013

Sample Size
5min Slices 27,760 30,054 29,226
Parent Orders 3,396 3,607 3,882
Distinct Securities 988 896 885

Characteristics

Average Daily Volume (shares) 3,014,000 2,595,000 2,509,000
Size of 5min Slices (shares) 1,294 1,043 849
Average Queue Length 10,280 21,730 17,750
Realized Participation Rate 9.60% 9.40% 8.39%
Price ($) 46.80 38.16 41.41
Spread ($) 0.031 0.025 0.025
Daily Volatility 2.23% 1.90% 1.94%
Implementation Shortfall (bps) 3.04 3.09 3.48
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Calibration of auxiliary model parameters

Three quantities not directly observable from data: continuous trading rate κ,
equilibrium queue length Q̄s , effective tick size δ
I calibration of κ:

1. postulate κ = θ · µ, assume θ is the same on the bid and ask side
2. identify slices that: a) queue length at far side less than 1/3 average

length; b) no price change
3. generate forecast for nominal trading rate µ
4. θ estimated as average ratio of executed quantity to the nominal trading

rate

I Q̄s approximated by time-averaged queue length at top of the book over each
5min interval

I σ as a proxy for δ
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Microstructure market impact model

I microstructure market impact model

IS = s/2−
min

{(
µs
b0T −Qb

b0(0)
)+
,C
}

C
· s︸ ︷︷ ︸

limit order benefit

+
δ

2
·

(
C −Qs

a0(0)− κT
)+

Q̄s
+
δ

2︸ ︷︷ ︸
higher price level adjustment

I linear regression:

IS = β0 + β1 · s∗ + β2 · (RLs∗) + β3 · (RMδ∗) + β4 · δ∗

- RL :=

min

{
C ,
(
µsb0

T−Qb
b0

(0)
)+
}

C

- RM :=

(
C−Qs

a0
(0)−κT

)+

Q̄s
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In-sample regressions (ADV ≥ 300, 000 shares; POV ∈ (1%, 30%))

Monthly linear regression results for microstructure market impact model

JUL 2013 AUG 2013 SEP 2013

(intercept)
coefficient -0.6888*** -0.6941*** -0.5832**
std. error 0.1232 0.1140 0.1076

spread (bps): s∗
coefficient 0.3187*** 0.3905*** 0.3950***
std. error 0.0069 0.0077 0.0070

limit order: RLs∗
coefficient -0.3027*** -0.3415*** -0.3658***
std. error 0.0107 0.0100 0.0099

add. tick to pay: RMσ∗

coefficients 0.0991*** 0.1480*** 0.1486***
std. error 0.0234 0.0225 0.0348

tick size: σ∗
coefficients 2.3238*** 1.8508*** 2.4290***
std. error 0.1098 0.0997 0.0996

R-squared 9.91% 10.62% 13.48%

Significance: *** p<0.001, ** p<0.01, * p<0.05
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In-sample regressions

Monthly in-sample linear regression results for microstructure market impact model

- consistently good performance of our model, represented by high R2 values

- coefficients of “micro-level” book variables are statistically significant

- signs of the coefficients are intuitive: limit order −, higher price order +
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Cross-validation

I Cross-Validation

(our “micro” model)

ν∗ = β0 + β1 · s∗ + β2 · RLs∗ + β3 · RMδ∗ + β4 · δ∗

(benchmark “macro” model)

ν∗ = β0 + β1 · (Percent of Market Vol.)α σ∗ + β2 · σ∗

out-of-sample R2: our model 11% vs. benchmark models 3%

Our Model Linear Square Root

avg. out-of-sample R2 11.03% 3.11% 3.12%
relative improvement 0.00% 255% 254%

– σ(t) above; using daily σ reduces explanatory power by 1-2%

– serial correlation: including 1 or 2 lagged residuals improves performance
coefficients are stat. significant and have right signs
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Simulated costs as microstructure variables are varied (C = 3×Depth)

– randomly generated 4-tuples for (Qb,Qa, µb, µs)
– variables varied by a random multiplier in (1/3, 1) w.p. .5 and (1, 3) w.p. .5
– cost estimates vary by ±60% around “nominal” values
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Robustness - order & security segmentation

Segmentation: by market participation rate

micro model macro model sample size
linear square root

Percent of market vol.

[1%,10%] 8.82% 1.87% 1.89% 55,337

(10%,20%] 14.10% 5.34% 5.21% 19,974

(20%,30%] 15.08% 4.23% 4.24% 11,729

overall: [1%,30%] 11.03% 3.11% 3.12% 87,040

- micro model outperforms the macro benchmark models for all groups

- all models improve as the participation rate increases
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Robustness - order & security segmentation

Segmentation: by (average daily volume, average queue length)

Low Depth Mid Depth High Depth Ultra Deep

Low ADV 6.26% 10.23% 17.14% N/A
Mid ADV 5.38% 8.12% 12.62% N/A
High ADV N/A 5.56% 10.32% 24.84%

deep

high
volume

- micro model outperforms the macro benchmark models for all groups

- model accuracy improves with queue length

- similar results when segmenting queue lengths in shares and dollars
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Robustness - effect of nonlinearity

Simplification: remove the non-linearities

ν
∗ = β0 + β1 · s∗ + β2 ·

(
µsb0

T −Qb
b0

(0)
)

C
· s∗ + β3 ·

(
C −Qs

a0(0)− κT
)

Q̄s
· δ∗ + β4 · δ∗

micro w/o nonlinearity macro linear macro square root

avg. out-of-sample R2 8.19% 3.11% 3.12%
relative improvement 0.00% 163% 163%

- may affect computational tractability in context of optimization
e.g., stock selection, trade scheduling

- still significantly outperforms benchmark models
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Robustness - effect of time horizon

Time horizon: 5min vs. 1min slices

model accuracy depends on the time horizon of the trade slices,
micro model has even better statistical fit for shorter-horizon slices

Our Model Linear Square Root

avg. out-of-sample R2 16.57% 2.67% 2.81%
relative improvement 0.00% 521% 490%
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1-min horizon: order / stock segmentation

Our Model Sample size
Linear Square Root

Percent of market vol.

[1%,10%] 13.53% 0.94% 0.96% 73,166

(10%,20%] 19.24% 2.26% 2.26% 40,631

(20%,30%] 21.51% 3.59% 3.59% 19,830

overall: [1%,30%] 16.57% 2.67% 2.81% 133,627

Our Model

Low depth Mid depth High depth Ultra deep Overall
Low ADV 12.18% 13.81% 23.12% too few obs.

16.57%Mid ADV 9.41% 10.84% 18.78% too few obs.
High ADV too few obs. 3.91% 20.74% 28.98%
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Robustness - prediction vs. attribution

Prediction: pre-trade cost estimates
use information available at the beginning of the trading slice

Our Model Linear Square Root
predictive attributive predictive attributive predictive attributive
8.20% 11.07% 2.26% 2.82% 2.25% 2.84%

- the drop in explanatory power is more significant in micro model

- micro model still significantly outperforms the two benchmark models

- similar comparison when using historical forecasts (monthly averages)
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Low ADV securities (ADV ∈ (50K , 300K) shares, POV ∈ (1%, 30%))
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Microstructure market impact model . . . closing comments

I depth of book information helps

I short-term price momentum predictions improve models predictions

I applications:

– trade execution (short-term trade offs; opportunistic signals)
– offers insight on dependence structure for cross-asset impact model
volume, depth, volatility

– short-term model useful in subsequently estimating impact decay &
permanent price impact
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Outline

I May 5: Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

2. Limit order book as a queueing system

I May 6: Deterministic (mean-field) models of LOB dynamics

3. Transient dynamics, cancellations, and queue waiting times

4. Execution in a LOB and a microstructure model of market impact

I May 7: Order routing and stochastic approximations of LOB markets

5. Order routing in fragmented LOB markets

6. Stochastic approximations of a LOB

I References
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Order routing and stochastic approximations of LOB markets

5. Order routing in fragmented LOB markets

– fragmentation & order routing decisions

– mean-field analysis & state space collapse

– quick look at some data

– pointwise-stationary-fluid-model (PSFM) – a first glimpse
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Multiple Limit Order Books

exchange 1

exchange 2

...

exchange N

national best bid/ask
(NBBO)

Price levels are coupled
through protection
mechanisms (Reg NMS)

We consider the evolution of:

I one side of the market
I the ‘top-of-the-book’, i.e.,
national best bid queues
across all exchanges
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Time Scales

Three relevant time scales:
I Events: order / trade / cancellation interarrival times (∼ ms – sec)

I Delays: waiting times at different exchanges (∼ sec – min)

I Rates: time-of-day variation of flow characteristics (∼ min – hrs)

Order placement decisions depend on queueing delays in LOBs (our focus)

I assume constant arrival rates of limit orders and trades
I order sizes are small relative to overall flow over relevant time scale
I overall limit order and trade volumes are high

We will consider a variation of the problem of execution in a LOB that
“incorporates” the fragmented nature of markets
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DJIA 30: Summary statistics – Sept 2011

Symbol Listing
Exchange

Price Average
Bid-Ask
Spread

Volatility
Average
Daily

VolumeLow High
($) ($) ($) (daily) (shares, ×106)

Alcoa AA NYSE 9.56 12.88 0.010 2.2% 27.8
American Express AXP NYSE 44.87 50.53 0.014 1.9% 8.6

Boeing BA NYSE 57.53 67.73 0.017 1.8% 5.9
Bank of America BAC NYSE 6.00 8.18 0.010 3.0% 258.8

Caterpillar CAT NYSE 72.60 92.83 0.029 2.3% 11.0
Cisco CSCO NASDAQ 14.96 16.84 0.010 1.7% 64.5

Chevron CVX NYSE 88.56 100.58 0.018 1.7% 11.1
DuPont DD NYSE 39.94 48.86 0.011 1.7% 10.2
Disney DIS NYSE 29.05 34.33 0.010 1.6% 13.3

General Electric GE NYSE 14.72 16.45 0.010 1.9% 84.6
Home Depot HD NYSE 31.08 35.33 0.010 1.6% 13.4

Hewlett-Packard HPQ NYSE 21.50 26.46 0.010 2.2% 32.5
IBM IBM NYSE 158.76 180.91 0.060 1.5% 6.6
Intel INTC NASDAQ 19.16 22.98 0.010 1.5% 63.6

Johnson & Johnson JNJ NYSE 61.00 66.14 0.011 1.2% 12.6
JPMorgan JPM NYSE 28.53 37.82 0.010 2.2% 49.1

Kraft KFT NYSE 32.70 35.52 0.010 1.1% 10.9
Coca-Cola KO NYSE 66.62 71.77 0.011 1.1% 12.3
McDonalds MCD NYSE 83.65 91.09 0.014 1.2% 7.9

3M MMM NYSE 71.71 83.95 0.018 1.6% 5.5
Merck MRK NYSE 30.71 33.49 0.010 1.3% 17.6

Microsoft MSFT NASDAQ 24.60 27.50 0.010 1.5% 61.0
Pfizer PFE NYSE 17.30 19.15 0.010 1.5% 47.7

Procter & Gamble PG NYSE 60.30 64.70 0.011 1.0% 11.2
AT&T T NYSE 27.29 29.18 0.010 1.2% 37.6

Travelers TRV NYSE 46.64 51.54 0.013 1.6% 4.8
United Tech UTX NYSE 67.32 77.58 0.018 1.7% 6.2

Verizon VZ NYSE 34.65 37.39 0.010 1.2% 18.4
Wal-Mart WMT NYSE 49.94 53.55 0.010 1.1% 13.1

Exxon Mobil XOM NYSE 67.93 74.98 0.011 1.6% 26.2

Table 1: Descriptive statistics for the 30 stocks over the 21 trading days of September 2011. All
statistics except the average bid-ask spread were retrieved from Yahoo Finance; the average bid-ask
spread is a time average computed from our TAQ data set. The daily volatility is computed from
closing prices over the period in question.

feeds (i.e., the CTS, CQS, UTDF, and UQDF data feeds). We restrict our attention to the 30
component stocks of the Dow Jones Industrial Average over the 21 trading days in the month of
September 2011. A list of the stocks and some basic descriptive statistics are given in Table 1.

We restrict attention to the N = 6 most liquid U.S. equity exchanges: NASDAQ, NYSE,6

ARCA, EDGX, BATS, and EDGA. Smaller, regional exchanges were excluded as they account for
a small fraction of the composite daily volume and are often not quoting at the NBBO level. The
associated fees and rebates during the observation period of September 2011 are given in Table 2.

Throughout the observation period of our data set, the exchange fees and rebates were constant.
In our subsequent analysis we will also assume that the structural and economic characteristics of

6Note that the NASDAQ listed stocks in our sample (CSCO, INTC, MSFT) do not trade on the NYSE, hence for
these stocks only N = 5 exchanges were considered.

22
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DJIA 30: Expected Queue Lengths – Sept 2011AA
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(a) Average expected delay across stocks and exchanges.
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(b) Average queue length (number of shares at the NBBO) across stocks and exchanges.

Figure 2: Averages of hourly estimates of the expected delays and queue lengths for the Dow 30 stocks
on the 6 exchanges during September 2011. Results are averaged over the bid and ask sides of the
market for each stock.
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DJIA 30: Expected Delays – Sept 2011
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(a) Average expected delay across stocks and exchanges.
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(b) Average queue length (number of shares at the NBBO) across stocks and exchanges.

Figure 2: Averages of hourly estimates of the expected delays and queue lengths for the Dow 30 stocks
on the 6 exchanges during September 2011. Results are averaged over the bid and ask sides of the
market for each stock.
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One-sided Multi LOB Fluid Model

Fluid model: Continuous & deterministic arrivals of infinitesimal traders

exchange 1

exchange 2

exchange N

Λ ?

market order

optimized
limit order flow

λ1

λ2

λn

dedicated
limit order flow

µ1

µ2

µN

market order flow
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Problem #3: “Fragmented market” version of LOB execution problem

In a fragmented market, a trader had multiple exchanges to choose from.
They differ wrt
I Expected delay (≈ 1 to 1000 seconds), P(fill in t time)
I Rebates for limit orders (≈ −$0.0002 to $0.0030 per share) & fees for
mkt orders

I Other factors that affect decision such as short-term alpha signals,
estimates of adverse selection, tiering agreements with exchanges
(similar $ value as rebates, in general state dependent)

max
Xk

∑
k

E(Yk |Xk ,T )rk − (f + s) · (C −
∑
k

E(Yk |Xk ,T )

where
– Xk = quantity to get posted at exchange K (at top of book – good?)
– Yk = quantity that trades at exchange k up to time T
– simplifying mkt order problem to a clean up trade
– trading algorithms typically not allowed to post more quantity that C
– formulation limit orders are posted at t = 0
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Order routing in fragmented market – cont.

max
Xk

∑
k

E(Yk |Xk ,T )rk − (f + s) · (C −
∑
k

E(Yk |Xk ,T )

BUT – cannot post all quantity at t = 0 in practice; make incremental
decisions
– randomize posting times across LOBs
– post so as to spread out execution profile
– posting decisions tend to be “dynamic” i.e., revisited in [0,T ]

(especially for inverted exchanges)
– avoid clean up trade
– . . .
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Time vs. money tradeoff

despite the many caveats, previous problem captures time vs. money tradeoff

I time: trade now with a market order or sooner in a less congested LOB
I money: trade in a high rebate exchange and also avoid paying the spread
I incentives are such that most institutional flow tries to be patient

study a simpler problem for each trader, but allow many traders to participate

– each trader submits an infinitesimal order
– we consider the flow and mkt equilibrium across agents
– agents are heterogeneous wrt T (delay tolerance)
– leverage work on “economics of queues & congestion”

aim for structural insights & tractable model of fragmented market
equilibrium (not tactical)
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The Limit Order Placement Decision

Factors affecting limit order placement:

I Expected delay (≈ 1 to 1000 seconds)
I Rebates (≈ −$0.0002 to $0.0030 per share)
I Other factors that affect decision such as short-term alpha signals,
estimates of adverse selection, tiering agreements with exchanges
(similar $ value as rebates, in general state dependent)

r̃i := ri + (other factors) = “effective rebate” EDi = expected delay

Traders choose to route their order to exchange i given by

argmaxi γ r̃i − EDi

I γ ∼ F i.i.d. across traders, captures delay tolerance / rebate tradeoff
⇒ γ ∼ 101 to 104 seconds per $0.01

I allows choice amongst Pareto efficient (r̃i ,EDi) pairs
I Implicit option for a market order: r0 � 0, ED0 = 0
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The Market Order Routing Decision

I Market orders execute immediately, no queueing or adverse selection
I Market orders incur fees (≈ ri)
I Natural criterion is to route order according to

argmin i { ri : Qi > 0, i = 1, . . . ,N }

Routing decision differs from “fee minimization” due to
I Order sizes are not infinitesimal; may have to be split across exchanges
I Latency to exchange introduces notion of P(fill) when Qi are small
I Not all flow is “optimized”, or has other economic considerations
I Traders avoid “clearing” queues to avoid increased price slippage
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The Market Order Routing Decision

Attraction Model: Bounded rationality and model intricacies motivate fitting
a probabilistic model of the form

µi(Q) := µ
fi(Qi)∑
j

fj(Qj)

I fi(·) captures “attraction" of exchange i :

↑ in Qi and ↓ in ri

I these slides will use:
fi(Qi) := βiQi

(we imagine βi ∼ 1/ri)
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Order routing and stochastic approximations of LOB markets

5. Order routing in fragmented LOB markets

– fragmentation & order routing decisions

– mean-field analysis & state space collapse

– quick look at some data

– pointwise-stationary-fluid-model (PSFM) – a first glimpse
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Transient Dynamics & Flow Equilibrium

I Given (Λ, µ) study mean-field approximation of coupled LOBs

I Dynamics: Coupled ODEs describe Q̇(t) dynamics

I Convergence: Q(t)→ Q∗ as t →∞ (γ-dist. sufficiently decreasing tail)
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Fluid Model Equilibrium

πi(γ) = fraction of type γ investors who send orders to exchange i

An equilibrium (π∗,Q∗) must satisfy

(i) Individual rationality: for all γ, π∗(γ) optimizes

maxπ(γ) π0(γ)γ r̃0 +

N∑
i=1

πi(γ)
(
γ r̃i −

Q∗i
µi(Q∗)

)
subject to π(γ) ≥ 0,

N∑
i=0

πi(γ) = 1.

(ii) Flow balance: for all 1 ≤ i ≤ N,

λi + Λ

∫ ∞

0
π∗i (γ) dF (γ) = µi(Q

∗)
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Workload

I W :=

N∑
i=1

βiQi is the workload, a measurement of aggregate available

liquidity

I W 6= total market depth, also accounts for time

I EDi = Qi/µi =
(∑

j βjQj
)
/(µβi) = W /(µβi)

I Workload is a sufficient statistic to determine delays



C. Maglaras, 05/2015 – 170 / 228

Fluid model equilibrium – rewritten wrt W

(π∗,W ∗) satisfy

(i) Individual rationality: for all γ, π∗(γ) optimizes

maxπ(γ)

∫ ∞

0

(
π0(γ)γ r̃0 +

N∑
i=1

πi(γ)
(
γ r̃i −

W ∗

µβi

))
dF (γ)

subject to π(γ) ≥ 0,
N∑
i=0

πi(γ) = 1.

(ii) System-wide flow balance:

N∑
i=1

(
λi + Λ

∫ ∞

0
π∗i (γ) dF (γ)

)
= µ

if and only if (π∗,Q∗) is an equilibrium, where

Q∗i :=

(
λi + Λ

∫ ∞

0
π∗i (γ) dF (γ)

)
W ∗

µβi
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Fluid Model Equilibrium

System-wide flow balance: Most impatient investors (i.e., γ ≤ γ0) should
choose market orders

N∑
i=1

λi + Λ
(
1− F (γ0)

)
= µ =⇒ γ0 = F−1

(
1−

µ−
∑N

i=1 λi

Λ

)

Incentive compatibility:

max
i 6=0

γ(r̃i − r̃0)− W ∗

µβi
≤ 0 for all γ ≤ γ0

This is implied by the marginal indifference condition

max
i 6=0

γ0(r̃i − r̃0)− W ∗

µβi
= 0

Under mild conditions, W ∗ is the equilibrium workload if and only if

W ∗ = γ0µmax
i 6=0

βi(r̃i − r̃0)
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Price-delay sensitivity & choicePrice-Delay Sensitivity

Assume that r̃i ↑ and that βi ↓. Then,
ED0 = 0 < EDmin = ED1 < ED2 < · · · < EDN = EDmax

0

market order

γ0

route to exchange 1

γ1

route to exchange 2

γ2

route to exchange 3

γ3
· · ·

· · ·

probability

sensitivity γ (delay/$)

max
i

γr̃i − EDi

24
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Order routing and stochastic approximations of LOB markets

5. Order routing in fragmented LOB markets

– fragmentation & order routing decisions

– mean-field analysis & state space collapse

– quick look at some data

– pointwise-stationary-fluid-model (PSFM) – a first glimpse
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Empirical Results
I NYSE TAQ data, millisecond timestamps
I Stocks: DJIA 30 – Sept 2011
I 6 main exchanges ( 95% of “lit" volume)
I Analysis uses time-averaged 60 min slices from 9:45am - 3:45pm × 20
days
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Estimation of market order routing model (β’s)

Reduced form “attraction" model for market order arrival rates:

µ
(s,j)
i (t) = µ(s,j)(t)

β
(j)
i Q(s,j)

i (t)∑N
i ′=1 β

(j)
i ′ Q

(s,j)
i ′ (t)

,

where β(j)
i is the attraction coefficient for security j on exchange i .

Estimation procedure:

– Measure µ(s,j)
i (t), µ(s,j)(t) and Q(s,j)

i ′ (t)

– estimate βji via non-linear regression
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DJIA 30: Market order routing model (β’s) – Sept 2011
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State Space Collapse I

Under our model,

EDi ,t =
Qi ,t

µi ,t
=

Wt

µt
· 1
βi

Therefore, the vector of expected delays

~EDt :=

(
Q1,t

µ1,t
, . . . ,

QN,t

µN,t

)
should have a low effective dimension.
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State Space Collapse I – PCA output
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State Space Collapse II

Under our model,

EDi ,t =
Qi ,t

µi ,t
=

Wt

µt
· 1
βi

So:
EDi ,t =

βj
βi
· EDj ,t ,

predicts linear pairwise relation between delay estimates across exchanges.

Test cross-sectionally (similar results within stocks; ARCA as benchmark
exchange):
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DJIA 30: Pairwise delay regressions – Sept 2011

NASDAQ BATS EDGX NYSE EDGA
Slope R2 Slope R2 Slope R2 Slope R2 Slope R2

Alcoa 0.85 0.83 0.95 0.93 0.90 0.76 0.72 0.88 0.50 0.91
American Express 0.53 0.66 0.69 0.68 0.68 0.60 0.53 0.64 0.56 0.62

Boeing 1.29 0.91 1.01 0.86 1.12 0.85 0.77 0.90 1.22 0.81
Bank of America 0.84 0.92 0.82 0.90 1.28 0.84 1.01 0.77 0.63 0.86

Caterpillar 0.97 0.91 0.77 0.89 0.94 0.75 0.76 0.91 1.19 0.80
Cisco 0.97 0.95 0.86 0.93 0.95 0.90 - - 0.63 0.90

Chevron 0.72 0.92 0.61 0.92 0.83 0.84 0.65 0.92 0.87 0.78
DuPont 0.78 0.95 0.85 0.93 0.69 0.83 0.67 0.94 0.65 0.86
Disney 0.66 0.95 0.82 0.92 0.65 0.87 0.46 0.91 0.50 0.86

General Electric 0.77 0.96 0.83 0.94 0.90 0.82 0.81 0.94 0.43 0.94
Home Depot 0.71 0.96 0.88 0.95 0.77 0.90 0.70 0.95 0.70 0.92

Hewlett-Packard 0.75 0.93 0.79 0.93 0.94 0.86 0.64 0.91 0.89 0.88
IBM 0.92 0.92 1.07 0.91 1.05 0.78 1.18 0.92 2.05 0.90
Intel 0.72 0.92 0.73 0.93 1.01 0.85 - - 0.83 0.89

Johnson & Johnson 0.73 0.92 0.88 0.87 0.76 0.86 0.65 0.91 0.74 0.86
JPMorgan 0.76 0.96 0.83 0.95 0.81 0.90 0.71 0.96 0.74 0.92

Kraft 0.58 0.85 0.65 0.85 0.81 0.80 0.49 0.87 0.44 0.73
Coca-Cola 0.74 0.97 0.83 0.95 0.88 0.87 0.54 0.94 0.53 0.83
McDonalds 0.94 0.93 0.89 0.94 0.99 0.78 0.81 0.90 0.87 0.86

3M 1.07 0.82 1.27 0.87 1.02 0.75 0.71 0.88 1.24 0.72
Merck 0.57 0.92 0.77 0.92 0.73 0.82 0.62 0.93 0.83 0.88

Microsoft 0.85 0.92 0.80 0.95 0.99 0.77 - - 0.59 0.95
Pfizer 0.74 0.92 0.83 0.94 0.92 0.87 0.78 0.92 0.58 0.92

Procter & Gamble 0.83 0.88 0.93 0.93 0.91 0.80 0.63 0.94 0.73 0.90
AT&T 0.61 0.90 0.72 0.89 0.92 0.79 0.55 0.93 0.58 0.88

Travelers 0.97 0.90 1.03 0.91 1.03 0.79 0.62 0.90 0.84 0.87
United Tech 1.11 0.92 1.07 0.91 1.04 0.84 0.79 0.91 1.37 0.61

Verizon 0.64 0.94 0.75 0.93 0.82 0.85 0.63 0.92 0.85 0.85
Wal-Mart 0.78 0.95 0.91 0.94 0.99 0.89 0.63 0.94 0.68 0.87

Exxon Mobil 0.70 0.97 0.86 0.97 0.78 0.84 0.79 0.92 0.61 0.89

Table 5: Linear regressions of the expected delays of each security on a particular exchange, versus that
of the benchmark exchange (ARCA).

delay measurements outlined in (25) for all time slots and both sides of the market, i.e., by dividing
the average observed queue size in each exchange with its respective observed rate of trading. The
results of these regressions are summarized in Table 5. The average R2 across all regressions is
82%, and all of the regressions are statistically significant. This provides strong evidence of a linear
relationship between delays across exchanges, and indirectly validates that the stationary attraction
model estimated in §4.2 results in a reasonably good fit for market order routing decisions.
TODO: should we stick in a comment about the slopes in Table 5 being ordered the same as β’s?

This linear relationship is illustrated in particular for the stock of Wal-Mart in Figure 3. Here,
we see that the linear relationship holds across all exchanges over periods that vary significantly
with respect too their prevailing market conditions, as is manifested in the roughly two orders of
magnitude variation in estimated expected delays. While the regression slopes in Figure 3 differ
from those predicted by the linear relationship (30), they have the same ordering. That is, the
relative slopes of any two exchanges in Figure 3 are inversely ordered according to the corresponding
attraction coefficients of the exchanges (cf. Table 3).

28



C. Maglaras, 05/2015 – 181 / 228

State Space Collapse II – BAC scatter plots
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State Space Collapse III

Under our model,

ÊDt =
Wt

µt
·
( 1
β1
, . . . ,

1
βN

)

How much of the variability of ED is explained by ÊD? For each security j ,

R2
∗ := 1−

Var
(∥∥∥ED(s,j)(t) − ÊD

(s,j)
(t)

∥∥∥)
Var
(∥∥ED(s,j)(t)

∥∥) ,

– Var(·) = sample variance, averaged over all time slots t and both sides of
market.

– R2
∗ close to 1, most variability of expected delays is explained via

(Wt/µt)(1/βi)
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DJIA 30: Residuals wrt SSC delay estimates – Sept 2011
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Is it delays or queue lengths that drive routing decisions? I – PCA

~EDt :=

(
Q1,t

µ1,t
, . . . ,

QN,t

µN,t

)
or ~Qt := (Q1,t , . . . ,QN,t)

have a low effective dimension.
I delay: 1st PC (& 2nd PC) explains 83% (90%) of variance on average.

I queue length:

I 1st PC (& 2nd PC) explains 65% (78%) of variance on average.
I less consistent, very low for some names

% of Variance Explained
One Factor Two Factors

Boeing 52% 66%
Caterpillar 31% 51%
Chevron 38% 59%
IBM 27% 53%

United Tech 39% 55%
Exxon Mobil 54% 69%
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Delay or queue lengths: II – linear dependency

EDi ,t =
βbenchmark

βi
· EDbenchmark,t or Qi ,t = β ·Qbenchmark,t

I delay: linear regressions have average R2 value 61%.

I queue length: linear regressions have average R2 value 21%.
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II – Linear regression tables (normalize by median on ARCA)

Dependent Variable: Qexchange
NASDAQ OMX BATS DirectEdge X NYSE DirectEdge A

Intercept 0.84∗∗∗ 0.39∗∗∗ 0.25∗∗∗ 0.57∗∗∗ 0.05∗∗∗
(0.02) (0.01) (0.01) (0.02) (0.01)

QARCA 0.74∗∗∗ 0.45∗∗∗ 0.29∗∗∗ 0.96∗∗∗ 0.24∗∗∗
(0.02) (0.01) (0.01) (0.02) (0.00)

R2 19% 20% 13% 26% 26%

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Dependent Variable: EDexchange
NASDAQ OMX BATS DirectEdge X NYSE DirectEdge A

Intercept 0.27∗∗∗ 0.28∗∗∗ 0.24∗∗∗ 0.28∗∗∗ 0.36∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Rescaled EDARCA 0.70∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 0.63∗∗∗ 0.60∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

R2 70% 70% 52% 60% 52%

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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Welfare implications of fragmentation?

Some background (service completion process centrally controlled):
I Mkt homogeneous wrt delay preferences:

– offering only one (delay, price) pair is welfare (rev max) optimal

– maxi γri + E(Di) yields same choice for all agents of they have same γ

I Mkt heterogeneous wrt delay preferences:

– optimal to offer multiple (delay, price) options

– welfare optimal to price the externality cost (wrt delay inflicted on
others)

– rev max solution also differentiated but more complex
(involves the idea of “damaged goods”)
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Welfare implications of fragmentation?

Q: What about in studying trade execution in a fragmented market where the
service process (aka. market orders) are not controlled by an optimizing
central planner?

I Requires more nuanced analysis that models order generating process

I e.g., is rebate capture a useful trading strategy that is incentivized
through rebate differences?
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Parameter variability & Pointwise-Stationary-Fluid-Model

% obs. in ±2σt % obs. in ±3σt % obs. outside ±3σt

1 min 63.33% 79.23% 20.77%

3 min 32.56% 50.39% 49.61%

5 min 27.27% 35.06% 64.94%

10 min 13.16% 31.58% 68.42%

I (λ, µ) exhibit significant differences in the time scale of > 5 minutes

I cf. top 100 names (by ADV): average queueing delay = 61 sec

I PSFM: after every rate change, FM converges to new SS; viewed in
slower time scale of parameter changes, FM moves from one equilibrium
state to another
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Outline

I May 5: Overview of algorithmic trading and limit order book markets

1. Overview of algorithmic trading

2. Limit order book as a queueing system

I May 6: Deterministic (mean-field) models of LOB dynamics

3. Transient dynamics, cancellations, and queue waiting times

4. Execution in a LOB and a microstructure model of market impact

I May 7: Order routing and stochastic approximations of LOB markets

5. Order routing in fragmented LOB markets

6. Stochastic approximations of a LOB

I References



C. Maglaras, 05/2015 – 191 / 228

Order routing and stochastic approximations of LOB markets

6. Stochastic approximations of LOB dynamics

– recap of background information in asymptotic behavior of queueing
models

– a simple model of adverse selection

– quick remarks on diffusion model of LOB top of book & PSFM

– questions
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Recap of basic building blocks from queueing theory

I M/M/1 system (Poisson limit and market order arrivals)

I M/M/1 + M with exponential patience clocks

I Basic facts for asymptotic behavior of M/M/1 and M/M/1 + M

regime we focus: (λ, µ) grow large

– mean-field (fluid) models
– diffusion models
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Heavy-traffic (diffusion) model: M/M/1 approximating diffusion

Scaling:
λn = n − β

√
n, µn = n (so that λn ≈ µn),

Flow imbalance:

Nn(t) = (An(t)− Sn(t)) = −β
√
nt + σ

√
nB(t) + O(log(nt))

O(
√
n) stochastic imbalance of Poisson flows, leads to O(

√
n) queue lengths

Q̂n(t) :=
Qn(t)√

n
=⇒ Q̂(t) = reflected Brownian motion.

dQ̂(t) = −βdt + σdB(t) + dL(t) (β > 0)

L(t) = local time at the origin; in LOB analogy, L(t) fires when price moves

N̂(t) = −βt + σB(t), L(t) = sup{0≤s≤t} N̂
−(s) (x− = min(0, x))
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Heavy-traffic (diffusion) model: M/M/1 performance approximations

Q̂(∞) ∼ exp(−2β/σ2)

I queue lengths:

E(Qn) =
ρn

1− ρn = O(
√
n)

I waiting times:
√
n queue length, trades arrive at order n, so

E(W n) =
E(Qn)

µn = O

(
1√
n

)
I how often does the queue gets depleted: τn is the length of busy periods

E(τn) ≈ O(1) the natural time scale of the limiting RBM

(regenerative cycles of RBM)

I time scale separation: E(τn)� E(W n)

E(τn) ≈
√
nE(W n)
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Heavy-traffic (diffusion) model: M/M/1+M, λn − µn = β
√

n

Scaling:

λn = n + β
√
n, µn = n and γn = γ

Similar to M/M/1 in heavy traffic:

Q̂n(t) :=
1√
n
Qn(t)⇒ Q̂(t) (reflected O-U process)

where
dQ̂(t) =

(
β − γQ̂(t)

)
dt + σdB(t) + dL(t)

I stable queue due to cancellations (drift −γQ(t))

I cancellation volume ≈ O(
√
n)� λn

I Q̂(∞) ∼ truncated Normal dist.

I time scale separation: E(τn)� E(W n) . . .E(τn) ≈
√
nE(W n)
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A different heavy-traffic regime: M/M/1+M, λn � µn

Scaling:
λn = nρ, µn = n and γn = γ (ρ > 1)

I O(n) imbalance between order arrivals and trades

I balanced through O(n) cancellations

I proportional cancellation flow γQn(t), suggests Qn(t) = O(n)

I indeed fluid path dominates behavior:

Qn(t) ≈ nq(t) +
√
n(stochastic fluctuations) + O(log(nt))

– for large t, Qn(t)/n ≈ q∞, where ρ− 1 = γq∞

– E(W ) = O(1)

– fluid paths cannot generate price changes (no queue depletions)
. . . price changes triggered by changes in rate parameters
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Order routing and stochastic approximations of LOB markets

6. Stochastic approximations of LOB dynamics

– recap of background information in asymptotic behavior of queueing
models

– a simple model of adverse selection

– diffusion model of LOB top of book

– pointwise-stationary-fluid-model (PSFM)
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Motivating question #4

I probability that an order will get filled

I conditional probability that this will be an “adverse” fill

I estimate adverse selection costs as a fcn of queue position
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Adverse selection

The issue:
I for a limit order to get filled, a trader must decide to cross the spread

I that action may convey information about the price (that may move
adversely)

I more likely to get filled by a large trade if at the back of the queue

I large trades often indicate future price movements

The role of queue position:

– front of queue . . . less waiting time, higher probability of a fill, could
trade against small counter order

– back of queue . . . higher waiting time, smaller probability of a fill, likely to
trade against a large (informed) trade
. . . higher probability that you may regret trading at that price
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Simplified model of price changes

i. stochastic fluctuations in queue lengths that lead to occasional queue
depletions

– when queue is depleted, with probability 1− α is bounces back up, and
– with probability α the price changes

ii. flow imbalance “detected” by MM

– MM maintain a noisy measure of flow imbalance between natural
interest to buy and sell
– MM cancel orders or trade aggressively when flow imbalance becomes
significant
– in part, MM cancel to avoid AS by filling orders immediately prior to a
price change
– typically 1-2 ticks and do not require lots of volume to trade

iii. block trades (informed investors)

– price change as a result of a block of volume traded
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Simplified model of price changes - II

i. stochastic fluctuations in queue lengths that lead to occasional queue
depletions

– when queue is depleted, with probability 1− α is bounces back up, and
– with probability α the price changes

I unlikely in liquid & deep securities

I λ, µ imbalance is O(n), queues are O(n) but stochastic fluctuations are
O(
√
n)

I disregard this effect in the sequel
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Simplified model of price changes - III

ii. flow imbalance “detected” by MM

– Poisson with rates κ+
1 and κ−1

– rates could be state dependent (not here)

iii. block trades (informed investors)

– Poisson with rates κ+
2 and κ−2

So:

– study superposition of Poisson flows

– if we model magnitude of price change, we get compound Poisson’s

– could also model volume of block trades, again compound Poisson
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Setup for adverse selection calculation

I given queue position x , d = E(W (x)) = expected delay until the x th

order in queue will get filled

I events to keep track (convention: +ve jump pushes price away (no fill)):

P(fill) = P(no jumps in [0, d ] or 1st jump occurs in [0, d ] and is -ve)

P(AS fill) = P(1st jump occurs in [0, d ] and is -ve)

P(no fill) = P(1st jump occurs in [0, d ] and is +ve)

– above calculations depend on d = E(W (x)) and adjust in real-time as
fcn of x(s)
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Probability of an adverse fill

I probability of a fill:

P(fill) =
κ−

κ
+
κ+

κ
e−dκ

I probability of an adverse fill (due to a jump):

P(adverse fill) = (1− e−dκ)
κ−

κ

and

P(adverse fill|fill) =
κ−(1− e−dκ)

κ− + κ+e−dκ

I probability of no fill:

P(no fill) = (1− e−dκ)
κ+

κ

I above consider a “race” between +ve and -ve jumps over the duration d

I AS often measures price moves within ∆ after fill (similarly)
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Including trading volume considerations & fragmentation

I fragmentation:

– queue position: order exchanges by fee (lowest to largest)
– cheaper exchanges placed ahead; more expensive placed behind
– Qfr = depth in front of order; Qbeh = depth behind order
– Qoth is the depth on the other side of the book

I consider jump size distribution:

– Fill: no jump in [0, d ] or (-ve) jump of size ≥ Qfr

– AS: (-ve) jump of size ≥ Qfr + Qbeh

– No Fill: (+ve) jump of size Qoth

I intuitive results:

– side of next price move depends on relative sizes of bid and ask queues
– duration of race depends on d , a function of our queue position
– AS ↓ as Qfr ↓ and as Qbeh ↑
– “ubiquitous” queue imbalance seems to emerge
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Measurements of adverse selection costs (Moallemi and Yuan, 2014)

I table below measures some of these quantities on Nasdaq ITCH dataset
(incl. order IDs)

I their model is related to previous slides (but not exactly match our
discussion)

I Nasdaq rebate = $.29; spread = 1 tickEmpirical Validation: Model Value vs. Backtest

Symbol Order Value Fill Probability Adverse Selection Order Value at the Front
Model Backtest Model Backtest Model Backtest Model Backtest
(ticks) (ticks) (ticks) (ticks) (ticks) (ticks)

BAC 0.14 0.14 0.62 0.60 0.57 0.57 0.36 0.31
CSCO 0.08 0.07 0.63 0.59 0.68 0.68 0.24 0.21

GE 0.08 0.09 0.62 0.60 0.67 0.65 0.19 0.23
F 0.13 0.15 0.65 0.64 0.60 0.53 0.24 0.23

INTC 0.11 0.09 0.64 0.61 0.63 0.56 0.28 0.23
PFE 0.12 0.11 0.63 0.58 0.62 0.61 0.16 0.21
PBR -0.03 -0.04 0.57 0.53 0.85 0.89 0.03 0.03
EMM 0.07 0.08 0.63 0.63 0.69 0.64 0.21 0.15
EFA 0.03 0.04 0.57 0.53 0.74 0.73 0.06 0.09

(Results averaged over August 2013)

25

Conclusions

A tractable, dynamic model for valuing queue position
For large tick-size assets, queueing effects can be very significant!
Accounting for queue position cannot be ignored when solving market
making or algorithmic trading problems

Future Directions
Two-sided model, i.e., incorporate order book imbalance
Is price-time priority with large tick sizes a good market structure?
Compare to smaller tick size, pro rata, alternative mechanisms, etc.

26
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Order routing and stochastic approximations of LOB markets

6. Stochastic approximations of LOB dynamics

– recap of background information in asymptotic behavior of queueing
models

– a simple model of adverse selection

– quick remarks on diffusion model of LOB top of book & PSFM

– questions
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Stochastic approximation of LOB dynamics (A)

Two natural alternatives:

I A. Diffusion model:

– O(
√
n) queue lengths

– O(
√
n) stochastic fluctuations due to flow imbalance

– E(W ) = O(1/
√
n) and E(τ) = O(1)

– specifically: queueing delays not visible in diffusion model
(snapshot principle)

– τ random variables depends on queue sizes
– cancellations: if proportional to Q, then O(

√
n)

– cancellations: if −ηδt, then O(n) but delay estimates suffer

I time scale separation:

very short queueing delays vs. moderate price change periods
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Stochastic approximation of LOB dynamics (B)

Two natural alternatives:

I B. Pointwise-Stationary-Fluid-Model:

– order n imbalance in λ, µ, results in O(n) queues
– natural stochastic fluctuations O(

√
n) not important

– E(W ) = O(1)

– mean field transient converges to stationary state (no price changes)
– “slower time scale:” model parameters λt , µt vary stochastically

µn(t) = nµ(t/an), where an →∞, an/n → 0 as n →∞

– on λt , µt time scale, price changes, and LOB state changes
– needs exogenous models of:

a) λt , µt random evolution (drive volatility in state and price)
b) price moves at time epochs where parameters change

I time scale separation:

moderate queueing delays vs. longer price change periods
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Interarrival times (log scale) (top of book)
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I liquid stocks: # trades, # cancellations, # limit order arrivals are large
I # trades ≈ 1 order of magnitude less frequent than cancels or order arrivals
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Tick period / queueing delay against # trade events
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Tick period versus queueing delay: ratio against # trade events. (liquid names)

I tick period = avg time between changes in the mid-price
I tick period is on same (or smaller) order magnitude as queueing delay
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Tick period versus queueing delay: log-log
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Tick period versus queueing delay: log-log, slope = 0.2745<0.5.
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Tick period versus queueing delay (liquid names): log-log
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Tick period versus queueing delay: log-log, slope = 0.2745<0.5.
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Variability of order arrival rates

% obs. in ±2σt % obs. in ±3σt % obs. outside ±3σt

1 min 63.33% 79.23% 20.77%

3 min 32.56% 50.39% 49.61%

5 min 27.27% 35.06% 64.94%

10 min 13.16% 31.58% 68.42%

I table checks if µt+1 ∈ intervals µt ± kσt for k = 2, 3
I (λ, µ) exhibit significant differences in the time scale of 3 - 5 minutes
I cf. top 100 names (by ADV): average queueing delay = 61 sec
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PSFM – setup

Slow time scale processes: 1st order variability of rate processes

µn(t) = nµ(t/an) and λn(t) = nλ(t/an)

where an →∞, an/n → 0 as n →∞

e.g., µ(t), λ(t) are affine diffusions

dµ(t) = α1(µ̄(t)− µ(t))dt + σ1
√
µ(t)dB1(t)

and
dλ(t) = α2(λ̄(t)− λ(t))dt + σ2

√
λ(t)dB2(t)

Fast time scale transient: λ, µ appear stationary,

Q(s)→ f (λ− µ)

Queue process in slow time scale: dQ(t) in terms of
1
γ

(dλ(t)− dµ(t))

(reflected at Q(t) = 0 and re-initialized at depth of bid-1 or ask+1 depths)
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Wrap-up

I queueing dynamics of LOB seem crucial in tactical trading decisions:

– timing order placement
– order routing
– adverse selection
– cancellation behavior

I short-term market design & regulation initiatives should consider short
time scale view of LOB and their impact

– on short-term trading strategies
– depth & AS
– transaction costs

I interesting application domain for stochastic networks
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QUESTIONS?

also email: c.maglaras@gsb.columbia.edu



C. Maglaras, 05/2015 – 219 / 228

References
Disclaimer: the list of references that follows is incomplete.

A few specific remarks:

I not referenced the extensive finance empirical literature on market microstructure

I not referenced most of the papers on market microstructure theory

I apart from a handful of papers, I have not referenced the econophysics literature on limit
order books

I queueing papers on LOB either focus on descriptive issues or tactical decision making. I
have only referenced a couple of the recent papers that strive to characterize the shape of
the LOB. I have not reviewed most of the literature on double-sided queues, apart from
referencing Kendall’s early paper on the topic.

I I have provided a very limited set of references on stochastic networks. In addition the
book by Chan and Yao could serve as a reference text, introductory texts on "Queueing
systems" could provide background on simple queueing systems such as M/M/1 and the
M/M/1 + M.

I not referenced the extensive OR literature on the "economics of queues" or "queues with
strategic users" that relate to the problems of order placement, order routing, and
cancellation.

I not referenced the literature on PS queues that is related to prorata market structures.

I . . .
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I C. Maglaras, C. Moallemi, H. Zheng (2015), Optimal execution in a limit order book and
an associated microstructure market impact model, working paper, Columbia University.
(the background for slides 123-152)
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Few references on adverse selection
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(the motivation and structure of the adverse selection discussion in these slides is based on
Moallemi-Yuan)
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I B. Biais, F. Declerck, S. Moinas, Fast trading and prop trading, workign paper, 2014.
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Some references on stochastic networks
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References on optimal execution (small subset)

Trade scheduling (not including papers on VWAP / TWAP, although some interesting work
exists):
I D. Bertsimas and A. W. Lo. Optimal control of execution costs. Journal of Financial

Markets, 1: 1-50, 1998.
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