
3/16/15, 4:25 PMNotebook

Page 1 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

CFM-Imperial Distinguished Lecture Series

The Volatility Surface

Lecture 1: The Volatility Surface: Statics and Dynamics
Jim Gatheral
Department of Mathematics

Outline of Lecture 1
Introduction to R and iPython notebook
What is the volatility surface?
Financial time series stylized facts
Stochastic volatility
The Bergomi-Guyon expansion
Term structure of at-the-money skew
The skew-stickiness ratio
The volatility envelope



3/16/15, 4:25 PMNotebook

Page 2 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

What is R? (http://cran.r-project.org)
From Wikipedia:

In computing, R is a programming language and software environment for statistical computing and
graphics. It is an implementation of the S programming language with lexical scoping semantics inspired
by Scheme.
R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand, and is
now developed by the R Development Core Team. It is named partly after the first names of the first two
R authors (Robert Gentleman and Ross Ihaka), and partly as a play on the name of S. The R language
has become a de facto standard among statisticians for the development of statistical software.
R is widely used for statistical software development and data analysis. R is part of the GNU project,
and its source code is freely available under the GNU General Public License, and pre-compiled binary
versions are provided for various operating systems. R uses a command line interface, though several
graphical user interfaces are available.

RStudio (http://www.rstudio.com)
From RStudio.org:

RStudio is an integrated development environment (IDE) for R. RStudio combines an intuitive user
interface with powerful coding tools to help you get the most out of R.
RStudio brings together everything you need to be productive with R in a single, customizable
environment. Its intuitive interface and powerful coding tools help you get work done faster.
RStudio is available for all major platforms including Windows, Mac OS X, and Linux. It can even run
alongside R on a server, enabling multiple users to access the RStudio IDE using a web browser.
Like R, RStudio is available under a free software license that guarantees the freedom to share and
change the software, and to make sure it remains free software for all its users.



3/16/15, 4:25 PMNotebook

Page 3 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

The IPython Notebook (http://ipython.org/notebook.html)
From ipython.org:

The IPython Notebook is a web-based interactive computational environment where you can combine code
execution, text, mathematics, plots and rich media into a single document:

The IPython notebook with embedded text, code, math and figures. These notebooks are normal files that can be
shared with colleagues, converted to other formats such as HTML or PDF, etc. You can share any publicly
available notebook by using the IPython Notebook Viewer service which will render it as a static web page. This
makes it easy to give your colleagues a document they can read immediately without having to install anything.

http://nbviewer.ipython.org/github/dboyliao/cookbook-code/blob/master/notebooks/chapter07_stats/08_r.ipynb
has instructions on using R with iPython notebook.

Set up R environment

In [1]: %load_ext rpy2.ipython

In [2]: %%R

download.file(url="http://mfe.baruch.cuny.edu/wp-content/uploads/2015/03/I
mperialLecture1.zip", destfile="ImperialLecture1.zip")
unzip(zipfile="ImperialLecture1.zip")

The Black-Scholes formula
Code from BlackScholes.R:

trying URL 'http://mfe.baruch.cuny.edu/wp-content/uploads/2015/03/Imperial
Lecture1.zip'
Content type 'application/zip' length 92874 bytes (90 Kb)
opened URL
==================================================
downloaded 90 Kb



3/16/15, 4:25 PMNotebook

Page 4 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [3]: %%R

BSFormula <- function(S0, K, T, r, sigma)
{
    x <- log(S0/K)+r*T
    sig <- sigma*sqrt(T)
    d1 <- x/sig+sig/2
    d2 <- d1 - sig
    pv <- exp(-r*T)
    return( S0*pnorm(d1) - pv*K*pnorm(d2))
}

Note that this function can take a vector of strikes and volatilities.

In [4]: %%R

BSFormula(S0=1, K=c(.9,1.0,1.1), T=1, r=0, sigma=0.2)

In [5]: %%R

curve(BSFormula(S0=x, K=1.0, T=1, r=0, sigma=0.2),from=0.3,to=1.5,col="red
",lwd=2,xlab="Stock price",ylab="Value of 1 year call")

[1] 0.13589108 0.07965567 0.04292011



3/16/15, 4:25 PMNotebook

Page 5 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Implied volatility
In what follows, we always assume zero rates and dividends.

Denote the market price of an option with log-strike  and expiration  by . Then the implied volatility 
 is the number that solves:

where  denotes the Black-Scholes formula for a call option:

with

k t C(k, t)
(k, t)σBS

(k, t, (k, t)) = C(k, t)CBS σBS

(⋅)CBS

(k, t, σ) = F N( ) − K N( ) = F {N( ) − N( )}CBS d+ d− d+ ek d−

= ± .d±
−k

σ t√
σ t√

2



3/16/15, 4:25 PMNotebook

Page 6 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Here is some more code from BlackScholes.R

In [6]: %%R

BSImpliedVolCall <- function(S0, K, T, r, C)
{
    nK <- length(K)
    sigmaL <- rep(1e-10,nK)
    CL <- BSFormula(S0, K, T, r, sigmaL)
    sigmaH <- rep(10,nK)
    CH <- BSFormula(S0, K, T, r, sigmaH)
    while (mean(sigmaH - sigmaL) > 1e-10)
      {
        sigma <- (sigmaL + sigmaH)/2
        CM <- BSFormula(S0, K, T, r, sigma)
        CL <- CL + (CM < C)*(CM-CL)
        sigmaL <- sigmaL + (CM < C)*(sigma-sigmaL)
        CH <- CH + (CM >= C)*(CM-CH)
        sigmaH <- sigmaH + (CM >= C)*(sigma-sigmaH)
      }
    return(sigma)
}

First, we generate some option prices:

In [7]: %%R

vols <- c(0.23,0.20,0.18)
K <- c(0.9,1.0,1.1)
(optVals <- BSFormula(S0=1,K,T=1,r=0,sigma=vols))

Now get implied volatilities from these option prices:

In [8]: %%R

(impVols <- BSImpliedVolCall(S0=1, K, T=1, r=0, C=optVals))

[1] 0.14589696 0.07965567 0.03557678

[1] 0.23 0.20 0.18



3/16/15, 4:25 PMNotebook

Page 7 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

The volatility surface
In practice, implied volatility depends on strike and expiration.

Fixing one expiration, the volatility smile is the graph of implied volatility as a function of (log-)strike.
Plotting implied volatility by strike and expiration gives the volatility surface.

Smiles as of 15-Sep-2005
We see that the graph of implied volatility vs log-strike looks like a skewed smile. Some people say "smirk".

Figure 1: SPX volatility smiles as of September 15, 2005.



3/16/15, 4:25 PMNotebook

Page 8 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

3D plot
Interpolating by time to expiration, we obtain the following picture of the SPX volatility surface as of the close on
September 15, 2005:

Figure 2: Figure 3.2 from The Volatility Surface.  is the log-strike and  is time to expiry.k := log K/F t



3/16/15, 4:25 PMNotebook

Page 9 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Why is the surface not flat?
Suppose

with constant .

The solution to this SDE is

with .

 is then lognormally distributed and implied volatility, independent of strike or time to expiration. - If  were
constant, the implied volatility surface would be flat.

In the real world, returns are not lognormal nor are they independent, as we will now see.

Financial time series: stylized facts
From Cont (2001) :

the seemingly random variations of asset prices do share some quite non-trivial statistical
properties. Such properties, common across a wide range of instruments, markets and time
periods are called stylized empirical facts.

= σ dZdS
S

σ

=St S0 eσ Z− t/2t√ σ2

Z ∼ N(0, 1)

St σ

[4]

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_note-Cont2001


3/16/15, 4:25 PMNotebook

Page 10 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Cont (2001)  lists the following stylized facts

1. Absence of autocorrelation: (linear) autocorrelations of asset returns are often insignificant, except for
very small intraday time scales.

2. Heavy tails: the (unconditional) distribution of returns seems to display a power-law or Pareto-like tail,
with a tail index which is finite, higher than two and less than five for most data sets studied. In
particular this excludes stable laws with infinite variance and the normal distribution.

3. Gain/loss asymmetry: one observes large drawdowns in stock prices and stock index values but not
equally large upward movements.

4. Aggregational Gaussianity: as one increases the time scale  over which returns are calculated, their
distribution looks more and more like a normal distribution. In particular, the shape of the distribution is
not the same at different time scales.

5. Intermittency: returns display, at any time scale, a high degree of variability. This is quantified by the
presence of irregular bursts in time series of a wide variety of volatility estimators.

6. Volatility clustering: different measures of volatility display a positive autocorrelation over several days,
which quantifies the fact that high-volatility events tend to cluster in time.

7. Conditional heavy tails: even after correcting returns for volatility clustering (e.g. via GARCH-type
models), the residual time series still exhibit heavy tails. However, the tails are less heavy than in the
unconditional distribution of returns.

8. Slow decay of autocorrelation in absolute returns: the autocorrelation function of absolute returns
decays slowly as a function of the time lag, roughly as a power law with an exponent .
This is sometimes interpreted as a sign of long-range dependence.

9. Leverage effect: most measures of volatility of an asset are negatively correlated with the returns of that
asset.}

10. Volatility/volume correlation:trading volume is correlated with all measures of volatility.
11. Asymmetry in time scales: coarse-grained measures of volatility predict fine-scale volatility better than

the other way round.

Power laws in daily SPX returns
Using R and the quantmod package, we analyze log-returns of SPX since 1950.

[4]

Δt

β ∈ [0.2, 0.4]

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_note-Cont2001


3/16/15, 4:25 PMNotebook

Page 11 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [9]: %%R

library(quantmod)
library(boot)

options("getSymbols.warning4.0"=FALSE)

getSymbols("^GSPC",from="1927-01-01") #Creates the time series object GSPC

px <- Cl(GSPC) # Built-in quantmod function to get close
spxData <- px

Do the same for VIX and create joint dataset of VIX and SPX

Loading required package: xts
Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

    as.Date, as.Date.numeric

Loading required package: TTR
Version 0.4-0 included new data defaults. See ?getSymbols.



3/16/15, 4:25 PMNotebook

Page 12 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [10]: %%R
getSymbols("^VIX",from="1927-01-01") #Creates the time series object VIX

mm <- specifyModel(Cl(GSPC)~Cl(VIX))
spxVixData <-modelData(mm) #quantmod function automatically aligns data fr
om two series

print(head(spxVixData))

print(tail(spxVixData))

In [11]: %%R

ret.spx <- log(px/lag(px))
ret.spx <- ret.spx[!is.na(ret.spx)]  # Remove missing values
ret.spx <- ret.spx-mean(ret.spx)
breaks <- seq(-.235,.115,.002)
hist.spx <- hist(ret.spx,breaks=breaks,freq=F)

           Cl.GSPC Cl.VIX
1990-01-02  359.69  17.24
1990-01-03  358.76  18.19
1990-01-04  355.67  19.22
1990-01-05  352.20  20.11
1990-01-08  353.79  20.26
1990-01-09  349.62  22.20
           Cl.GSPC Cl.VIX
2015-03-06 2071.26  15.20
2015-03-09 2079.43  15.06
2015-03-10 2044.16  16.69
2015-03-11 2040.24  16.87
2015-03-12 2065.95  15.42
2015-03-13 2053.40  16.00



3/16/15, 4:25 PMNotebook

Page 13 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 3: Histogram of SPX log returns. It doesn't look like a normal distribution!



3/16/15, 4:25 PMNotebook

Page 14 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

The Student-t distribution

So the tail-exponent , the degrees of freedom.

Obviously, this distribution has mean zero. Its variance is

With , the density simplifies to

SPX daily log-returns: Student-t fit

In [12]: %%R

plot(hist.spx,xlim=c(-.05,.05),freq=F,main=NA,xlab="Log return") 
sig <- as.numeric(sd(ret.spx)) 
curve(dt(x*sqrt(3)/sig,df=3)*sqrt(3)/sig,from=-.05,to=.05,col="red", add=T
)
curve(dnorm(x,mean=0,sd=sig),from=-.05,to=.05,col="blue", add=T)

p(x) = ∼  as x → ∞
Γ ( )ν+1

2
Γ ( )ν π‾ ‾‾√ ν

2

1

(1 + )x2

ν

ν+1
2

1
xν+1

ζ = ν

∫ p(x) dx =x2 ν
ν − 2

ν = 3

p(x) = 2
π3‾√

1

(1 + )x2

3
2



3/16/15, 4:25 PMNotebook

Page 15 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 4: Student-t with  fits almost perfectly! Normal fit is in blue. The cubic law of returns is confirmed.

SPX weekly log-returns

ν = 3



3/16/15, 4:25 PMNotebook

Page 16 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [13]: %%R

pxw <- Cl(to.weekly(GSPC))  # Built-in quantmod function to get close
retw <- Delt(log(pxw))[-1] 
retw <- retw-mean(retw) 
c(min(retw),max(retw))
breaks <- seq(-.0345,.0345,.001)
spx.histw <- hist(retw,breaks=breaks,freq=F,plot=F) 
sigw <- as.numeric(sd(retw)) 
scale <- function(nu){sqrt(nu/(nu-2))} 

plot(spx.histw,xlim=c(-.035,.035),freq=F,main=NA,xlab="Weekly log return")  
curve(dt(x*scale(4)/sigw,df=4)*scale(4)/sigw,from=-.05,to=.05,col="red", 
add=T)
curve(dnorm(x,mean=0,sd=sigw),from=-.05,to=.05,col="blue", add=T)

Figure 5: Student-t with  in red. Normal fit is in blue. Aggregational Gaussianity?

SPX monthly log-returns

ν = 4



3/16/15, 4:25 PMNotebook

Page 17 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [14]: %%R

pxm <- Cl(to.monthly(GSPC))  # Built-in quantmod function to get close
retm <- Delt(log(pxm))[-1] 
retm <- retm-mean(retm) 
c(min(retm),max(retm))
breaks <- seq(-.046,.038,.004)
spx.histm <- hist(retm,breaks=breaks,freq=F,plot=F) 
sigm <- as.numeric(sd(retm)) 
scale <- function(nu){sqrt(nu/(nu-2))} 

plot(spx.histm,xlim=c(-.045,.045),freq=F,main=NA,xlab="monthly log return"
) 
curve(dt(x*scale(5)/sigm,df=5)*scale(5)/sigm,from=-.05,to=.05,col="red", 
add=T)
curve(dnorm(x,mean=0,sd=sigm),from=-.05,to=.05,col="blue", add=T)

Figure 6: Student-t with  in red. Normal fit is in blue. Aggregational Gaussianity again?ν = 5



3/16/15, 4:25 PMNotebook

Page 18 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

SPX log-returns: Volatility clustering
In [15]: %%R

plot(ret.spx,main=NA)

Figure 7: Daily log-returns of SPX

Autocorrelation of SPX returns



3/16/15, 4:25 PMNotebook

Page 19 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [20]: %%R

acf.r <- acf(ret.spx,main=NA)

Figure 8: No significant autocorrelation in returns.

Autocorrelation of SPX absolute returns
It is a stylized fact that the autocorrelation function (ACF) of absolute log-returns decays as a power-law.
However, we will see below that this widespread belief is probably not justified.



3/16/15, 4:25 PMNotebook

Page 20 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [16]: %%R
# Autocorrelation of absolute returns
acf.rabs <- acf(abs(ret.spx),main=NA,plot=F)
logacf.rabs <- log(acf.rabs$acf)[-1]  
loglag.rabs <- log(acf.rabs$lag)[-1] 
plot(loglag.rabs,logacf.rabs,xlab="log(lag)",ylab="log(acf)",pch=20,col="b
lue") 
print(acfrabs.lm <- lm(logacf.rabs[-(1:15)]~loglag.rabs[-(1:15)]) )
abline(acfrabs.lm,col="red",lwd=2)

Call:
lm(formula = logacf.rabs[-(1:15)] ~ loglag.rabs[-(1:15)])

Coefficients:
         (Intercept)  loglag.rabs[-(1:15)]  
             -0.7447               -0.2925  



3/16/15, 4:25 PMNotebook

Page 21 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 9: Slope of fit is around .

It is often concluded from fits like this that the autocorrelation function of volatility decays roughly as 
with .

Absolute and squared log-returns vs realized variance
Absolute daily log-returns are (very) noisy proxies for daily volatilities  and squared daily log-returns are (very)
noisy proxies for daily variances . Gatheral and Oomen  (for example) show how tick data can be used to
obtain more accurate estimates of realized variance .

The Oxford-Man Institute of Quantitative Finance makes historical realized variance estimates for 21 different
stock indices freely available at http://realized.oxford-man.ox.ac.uk. These estimates are updated daily. We may
then investigate the time series properties of  empirically.

Decay of the volatility ACF
According to our recent work using such realized variance time series, which I will present in Lecture 3, the
empirical ACF of volatility does not decay as a power-law.

In fact, SPX realized variance has the following amazingly simple scaling property:

where  denotes a sample average.

This simple scaling property holds for all 21 indices in the Oxford-Man dataset. We have also checked that it
holds for crude oil, gold and Bund futures. For SPX over 14 years,  and .

As a consequence it may be shown that the autocorrelation function should take the form:

(1)

Predicted vs empirical autocorrelation function

−0.29

t−α

α ≈ 0.3

σt
σ2

t
[6]

σ2r

σ2
t

(Δ) := ⟨(log − log ⟩ = AV2 σ2
t+Δ σ2

t )2 Δ2 H

⟨⋅⟩

H ≈ 0.14 A ≈ 0.38

ρ(Δ) ∼ exp {− } .η2

2 Δ2 H

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_note-GO


3/16/15, 4:25 PMNotebook

Page 22 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [17]: %%R

h.spx <- 0.14

y <- logacf.rabs
x <- acf.rabs$lag[-1]^(2*h.spx)

fit.lm <- lm(y[-1]~x[-1])
a <- fit.lm$coef[1]
b <- fit.lm$coef[2]

plot(loglag.rabs,logacf.rabs,xlab="log(lag)",ylab="log(acf)",pch=20,col="b
lue",xlim=c(0,4.5)) 
abline(acfrabs.lm,col="red",lwd=2) 
curve(a+b*exp(x*2*h.spx),from=0,to=4.5,add=T,col="green4",lwd=2)

Figure 10: The red line is the conventional linear fit; the green line is the rough volatilty prediction (1) .

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#eq:ACF


3/16/15, 4:25 PMNotebook

Page 23 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Log returns of VIX
VIX can be thought of as a measure of volatility smoothed over one month. Let's look at the distribution of VIX
log-returns.



3/16/15, 4:25 PMNotebook

Page 24 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [18]: %%R

vix <- spxVixData[,"Cl.VIX"]
spx <- spxVixData[,"Cl.GSPC"]

retVIX <- as.numeric(diff(log(vix))[-1])
retSPX <- as.numeric(diff(log(spx))[-1])

sdVIX <- as.numeric(sd(retVIX)) 

hist(retVIX,breaks = 100,freq=F)
scale <- function(nu){sqrt(nu/(nu-2))} 
curve(dt(x*scale(4)/sdVIX,df=4)*scale(4)/sdVIX,from=-.3,to=.3,col="blue",l
wd=2, add=T)
curve(dnorm(x,mean=0,sd=sdVIX),from=-.3,to=.3,col="red", lwd=2,add=T)

Figure 11: Log-returns of VIX are somewhat less fat-tailed than log-returns of SPX.



3/16/15, 4:25 PMNotebook

Page 25 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

VIX vs SPX
We now regress log-returns of VIX against log-returns of SPX.

In [24]: %%R

fit.spxvix <- lm(retVIX~retSPX)
fit.spxvix2 <- lm(retSPX~retVIX)

# Scatter plot + fit
plot(retSPX,retVIX,xlab="SPX log returns",ylab="VIX log returns");
abline(fit.spxvix,col="red",lwd=2);

print(cor(retVIX,retSPX)) # Gets correlation

[1] -0.7099592



3/16/15, 4:25 PMNotebook

Page 26 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 12: Regression of VIX log-returns vs SPX log-returns.

Note the negative correlation  - similar to the correlation implied from fits of stochastic volatility
models to option prices.

Stochastic volatility
In the stochastic volatility paradigm, the above stylized facts may be qualitatively reproduced by
modeling volatility as a continuous stochastic process.
The volatility clustering feature implies that volatility (or variance) is auto-correlated

In the model, this is a consequence of the mean reversion of volatility.
Formally,

with stochastic .
Variance moves should be (anti-)correlated with index moves.

≈ −0.7

= ddSt
St

σt Zt

σt



3/16/15, 4:25 PMNotebook

Page 27 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Stochastic volatility examples

The Heston model

with .

The SABR model (with )

with .

The Heston model is popular because there is a (complicated) closed-form expression for the
characteristic function. It is therefore easy and fast to price European options. It follows that calibration
to the market is fast.
The SABR model is popular because there is a closed-form accurate asymptotic approximation to
implied volatility. Again, calibration is easy.

dSt

St
dvt

=

=

dvt‾‾√ Zt

− κ ( − ) dt + η dvt v̄ vt‾‾√ Wt

⟨d d ⟩ = ρ dtZt Wt

β = 1

dSt

dσt

=
=

dσt Sβ
t Zt

α dσt Wt

⟨d d ⟩ = ρ dtZt Wt



3/16/15, 4:25 PMNotebook

Page 28 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Variance curve models
Let  denote log-moneyness. If  is instantaneous variance, the forward variance curve is
given by

Forward variances are conditional expectations and thus martingales in .

Bergomi and Guyon consider models written in the following variance curve form:

Here, the instantaneous forward variance curve at time  is represented by

and  is a dimensional Brownian motion.

Obviously, .

The Bergomi and Guyon expansion
Using a technique from quantum mechanics, [Bergomi and Guyon]  compute an expansion of the volatility smile
up to second order in volatility of volatility for stochastic volatility models written in variance curve form.

The Bergomi-Guyon expansion of implied volatility takes the form

(2)

with

where  is total variance to expiration .

= log /Fxt St =vt σ2
t

(u) = - [ ]ξt vu ∣∣ t

t

dxt

d (u)ξt

=
=

− (t) dt + d1
2 ξt (t)ξt‾ ‾‾‾√ Z1

t

λ(t, u, ). d , (u) = ξ(u).ξt Zt ξ0

t

:= { (u) : u ≥ t}ξt ξt

Z = { , . . . , }Z1 Zd d −

(t) =ξt vt

[3]

(k, t) = + k + + O( )σBS σ ̂ T T T k2 ϵ3

w (s), ds=T
0 ,0 T

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_note-BG


3/16/15, 4:25 PMNotebook

Page 29 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Bergomi and Guyon correlation functionals

The various correlation functionals appearing in the BG expansion are:

where

represents functional differentiation with respect to the forward variance curve.

 is an integral of the term structure of covariances between returns and forward variances.
 is an integral of the variance curve autocovariance function.

 is somewhat more complicated ...

In principle, we could compute these terms from the time series of implied volatility surfaces. The BG expansion
gives us a direct correspondence between the implied volatility surface and the joint dynamics of the underlying
and the implied volatilities.

Example: The Heston model
It is straightforward to compute that

It follows that

Then

With  to simplify computations, we obtain

δ
δ (u)ξt

Cx ξ

C ξ ξ

Cμ

(u) = ( − ) + .ξt vt v̄ e−κ (u−t) v̄

d (u) = η d .ξt e−κ (u−t) vt‾‾√ Wt

- [d d (u)] = ρ η dt.xt ξt vt e−κ (u−t)

=v0 v̄

Cxξ =

=

ρ η dt duv̄ ∫
T

0 ∫
T

t
e−κ (u−t)

ρ η dt duv̄ ∫
T

0 ∫
T

t
e−κ (u−t)



3/16/15, 4:25 PMNotebook

Page 30 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Term structure of ATM skew in the Heston model
Define the at-the-money (ATM) volatility skew

It follows from (2) (again with ) that to first order in ,

In the Heston model,
 a constant as ,

 as .

Example: The SABR model
 so to first order in the volatility of volatility ,

It follows that, to first order again,

Then

Again to first order in , we obtain

and so

 is independent of  in the SABR model!
There is no mean reversion and so no term structure of ATM skew.

ψ(T) = (k, T)∂kσBS ∣∣k=0

=v0 v̄ η

ψ(T) = T =

=

w
T
‾‾‾√

1
2 w2 Cx ξ

{1 − } .ρ η
2 v̄√

1
κ T

1 − e−κ T

κ T

(T) T → 0
(T)1T T → ∞

- [ ] =σu ∣∣ t σt α

(u) = .ξt vt

d (u) = 2 d = 2 α d .ξt σt σt σ2
t Wt

- [d d (u)] = 2 ρ α dt.xt ξt σt
3/2

α

= 2 ρ α dt du = ρ αCxξ σ3/2
0 ∫

T

0 ∫
T

t
σ3/2

0 T 2

ψ(T) = = .T
ρ α
2

ψ(T) T

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#eq:BGexpansion


3/16/15, 4:25 PMNotebook

Page 31 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

The Bergomi model
The -factor Bergomi variance curve model  reads:

(3)

The Bergomi model generates a term structure of volatility skew  that looks something like

This functional form is related to the term structure of the functional .
Which is in turn driven by the exponential kernel in the exponent in (3).

Hedging European options
To hedge options using the Black-Scholes formula (say), market makers need to hedge two effects:

The explicit spot effect

and - The change in implied volatility conditional on a change in the spot

ATM implied volatilities  and stock prices are both observable so market makers can estimate the second
component using a simple regression:

Then .

n [1]

(u) = (u) exp { d +  drift } .ξt ξ0 ∑
i=1

n
ηi ∫

t

0
e− (t−s)κi W (i)

s

ψ(T)

ψ(τ) ∼ {1 − } .∑
i

1
Tκi

1 − e− Tκi

Tκi

Cxξ

δS∂C
∂σ

- [δσ |δS].∂C
∂σ

σ(T)

δσ(T) = α + β(T) + noise.δS
S

β(T) = - [δσ(T)|δS/S]

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#eq:Bergomi
http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_note-Bergomi2


3/16/15, 4:25 PMNotebook

Page 32 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

The skew-stickiness ratio
[Bergomi]  calls

the skew-stickiness ratio or SSR.

In the old days, traders would typically make one of two assumptions:

Sticky strike  where the implied volatility for a fixed strike is independent of stock price

or

Sticky delta  where the ATM volatility is independent of stock price.

Listed options were thought of as sticky strike and OTC options as sticky delta.

Empirically, , independent of .

Regress volatility changes vs spot returns
Let's check the skew-stickiness ratio over the period June 1, 2010 to June 1, 2011, reproducing a figure from an
article in the Encyclopedia of Quantitative Finance .

[2]

(T) = β(T)
ψ(T)

(T) = 0

(T) = 1

(T) ≈ 1.5 T

[7]

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_note-Bergomi4
http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_note-Kamal


3/16/15, 4:25 PMNotebook

Page 33 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [21]: %%R

library(stinepack)
load("spxAtmVolSkew2010.rData")

# First we need the time series of SPX returns:
spx2010 <- spx["2010-06-01::2011-06-01"]
ret.spx2010 <- diff(log(as.numeric(spx2010)))

n <- length(volSkewList2010)

vol.res <- array(dim=c(n,8))

for (i in 1:n){
    dat <- volSkewList2010[[i]]
    vol.res[i,1:4] <- stinterp(x=dat$texp,y=dat$atmVol,xout=c(1,3,6,12)/12
)$y
    vol.res[i,5:8] <- stinterp(x=dat$texp,y=dat$atmSkew,xout=c(1,3,6,12)/1
2)$y    
}

vol.skew.atm <- as.data.frame(vol.res)
colnames(vol.skew.atm) <- c("vol.1m","vol.3m","vol.6m","vol.12m","skew.1m"
,"skew.3m","skew.6m","skew.12m")

print(head(vol.skew.atm))

# Finally, create matrix of volatility changes
del.vol <- apply(vol.skew.atm[,1:4],2,function(x){diff(x)})

1-month SSR

     vol.1m    vol.3m    vol.6m   vol.12m    skew.1m    skew.3m    skew.6m
1 0.3116781 0.2892093 0.2840357 0.2848998 -0.9775653 -0.6994318 -0.5033279
2 0.2585816 0.2569657 0.2637964 0.2674395 -1.0391103 -0.6308754 -0.5047893
3 0.2593993 0.2532371 0.2590840 0.2633074 -1.0543336 -0.6167919 -0.4882985
4 0.3217950 0.2916457 0.2932080 0.2841629 -0.9936603 -0.6787185 -0.5012572
5 0.3240469 0.2982968 0.2859462 0.2874102 -1.0006733 -0.6137535 -0.4395970
6 0.2963918 0.2821198 0.2833307 0.2822569 -1.1808506 -0.6769495 -0.5147833
    skew.12m
1 -0.3469127
2 -0.3334118
3 -0.3472150
4 -0.3454572
5 -0.3411661
6 -0.3498540



3/16/15, 4:25 PMNotebook

Page 34 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [22]: %%R

y <- del.vol[,1]
x <- ret.spx2010*vol.skew.atm[-n,5]
fit.lm1 <- lm(y~x)
print(summary(fit.lm1))

plot(x,y,xlab=expression(psi(tau)*delta*x),ylab=expression(Delta*sigma ),m
ain="1m SSR",pch=20,col="blue")
abline(fit.lm1,col="red",lwd=2)
text(x=0.025,y=-0.0,"Slope is 1.47")
abline(coef=c(0,1),lty=2,lwd=2,col="green4")

Call:
lm(formula = y ~ x)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039160 -0.004263  0.000181  0.004642  0.024866 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.000265   0.000466   0.569     0.57    
x           1.474092   0.054832  26.884   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.007394 on 251 degrees of freedom
Multiple R-squared:  0.7422, Adjusted R-squared:  0.7412 
F-statistic: 722.7 on 1 and 251 DF,  p-value: < 2.2e-16



3/16/15, 4:25 PMNotebook

Page 35 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 13: The 1-month skew-stickiness ratio (SSR). The "sticky strike" green line with slope 1 clearly doesn't fit.

3-month SSR

In [23]: %%R

y <- del.vol[,2]
x <- ret.spx2010*vol.skew.atm[-n,6]
fit.lm3 <- lm(y~x)
print(summary(fit.lm3))

plot(x,y,xlab=expression(psi(tau)*delta*x),ylab=expression(Delta*sigma ),m
ain="3m SSR",pch=20,col="blue")
abline(fit.lm3,col="red",lwd=2)
text(x=0.015,y=-0.0,"Slope is 1.45")
abline(coef=c(0,1),lty=2,lwd=2,col="green4")



3/16/15, 4:25 PMNotebook

Page 36 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Call:
lm(formula = y ~ x)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0180521 -0.0023351 -0.0000552  0.0024244  0.0106338 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.0001939  0.0002445   0.793    0.428    
x           1.4509582  0.0432966  33.512   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.003876 on 251 degrees of freedom
Multiple R-squared:  0.8173, Adjusted R-squared:  0.8166 
F-statistic:  1123 on 1 and 251 DF,  p-value: < 2.2e-16



3/16/15, 4:25 PMNotebook

Page 37 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 14: The 3-month skew-stickiness ratio (SSR). The "sticky strike" green line with slope 1 clearly doesn't fit.

6-month SSR

In [24]: %%R

y <- del.vol[,3]
x <- ret.spx2010*vol.skew.atm[-n,7]
fit.lm6 <- lm(y~x)
print(summary(fit.lm6))

plot(x,y,xlab=expression(psi(tau)*delta*x),ylab=expression(Delta*sigma ),m
ain="6m SSR",pch=20,col="blue")
abline(fit.lm6,col="red",lwd=2)
text(x=0.01,y=-0.0,"Slope is 1.512")
abline(coef=c(0,1),lty=2,lwd=2,col="green4")

Call:
lm(formula = y ~ x)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0176677 -0.0017325 -0.0000075  0.0016376  0.0089884 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 8.003e-05  1.894e-04   0.423    0.673    
x           1.512e+00  4.522e-02  33.436   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.003004 on 251 degrees of freedom
Multiple R-squared:  0.8166, Adjusted R-squared:  0.8159 
F-statistic:  1118 on 1 and 251 DF,  p-value: < 2.2e-16



3/16/15, 4:25 PMNotebook

Page 38 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 15: The 6-month skew-stickiness ratio (SSR). The "sticky strike" green line with slope 1 clearly doesn't fit.

12-month SSR

In [25]: %%R

y <- del.vol[,4]
x <- ret.spx2010*vol.skew.atm[-n,8]
fit.lm12 <- lm(y~x)
print(summary(fit.lm12))

plot(x,y,xlab=expression(psi(tau)*delta*x),ylab=expression(Delta*sigma ),m
ain="12m SSR",pch=20,col="blue")
abline(fit.lm12,col="red",lwd=2)
text(x=0.007,y=0.0,"Slope is 1.601")
abline(coef=c(0,1),lty=2,lwd=2,col="green4")



3/16/15, 4:25 PMNotebook

Page 39 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Call:
lm(formula = y ~ x)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.007310 -0.001219  0.000014  0.001259  0.008139 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 6.517e-05  1.401e-04   0.465    0.642    
x           1.601e+00  4.407e-02  36.343   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.002221 on 251 degrees of freedom
Multiple R-squared:  0.8403, Adjusted R-squared:  0.8397 
F-statistic:  1321 on 1 and 251 DF,  p-value: < 2.2e-16



3/16/15, 4:25 PMNotebook

Page 40 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 16: The 12-month skew-stickiness ratio (SSR). The "sticky strike" green line with slope 1 clearly doesn't fit.

Computation of the regression coefficient 

We approximate ATM volatility using the variance swap. - By definition this is

Then

Thus

Also,

with  and

β(T) = - [δσ(T)|δS/S]

(T) = (u) du.t ∫
T

t
ξt

2 σ(T) δσ(T) T ≈ δ (u) du.∫
T

t
ξt

β(T) =

≈

- [δσ(T)|δS/S]

- [δ (u) ] du.1
2 σ(T) T ∫

T

t
ξt

∣
∣∣
δS
S

- [δ (u) ] ≈ =ξt
∣
∣∣
δS
S

- [δ (u) δ ]ξt xt

- [ ]δxt
2

ρ(t, u)
vt

= logxt St

ρ(t, u) = .- [d (u) d ]ξt xt
dt



3/16/15, 4:25 PMNotebook

Page 41 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

 and 

Then, restoring explicit dependence on  and ,

and

Assuming time-homogeneity,  would be a function of  only and  and so we further
approximate

Also, from the Bergomi-Guyon expansion, the ATM skew is given by

Thus

For emphasis, to first order in the volatility of volatility, the SSR  is given by the time derivative of the spot-
volatility correlation functional .

β(T) Cxξ

t T

(T)Cx ξ
t = ds ρ(s, u) du∫

T

t ∫
T

s

β(T) ≈

≈

ρ(t, u) du1
2 σ(T) T

1
vt ∫

T

t

− .1
2 σ(T) T

1
vt

∂ (T)Cx ξ
t
∂t

Cxξ τ = T − t ≈vt σ2

β(τ) ≈ .1
2 τσ3

∂ (τ)Cx ξ

∂τ

ψ(τ) ≈ (T) ≈ (τ).w
T
‾‾‾√

1
2 w2 Cx ξ

t
1

2 σ3
1
τ2 Cx ξ

(τ) = ≈ τ log (τ).β(τ)
ψ(τ)

d
dτ

Cxξ


Cxξ



3/16/15, 4:25 PMNotebook

Page 42 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

SSR examples

The SABR model

In the SABR model,  so .

The Heston model

For ,  and .
For ,  and .

The -factor Bergomi model

Let  be the shortest timescale (largest) mean reversion coefficient and  be the longest timescale (smallest)
mean reversion coefficient.

For ,  and .
For ,  and .

For stochastic volatility models in general,  for  small and  for  large.

Implication for the "true" model
Empirically, we see  for all . That is

with . Thus , and so .

An obvious model that would generate  is

In effect, replace all the exponential kernels in the Bergomi model (3) with a power-law kernel.
Such a model would be non-Markovian. The price of an option would depend on the entire history 

 of the Brownian motion.
To be consistent with , we would need .

In Lecture 3, we will see that scaling properties of the time series of realized variance also suggest such a model.

(Cx )2 ()2

(τ) = ρ η dt duCxξ v̄ ∫
τ

0 ∫
τ

t
e−κ (u−t)

τ ≪ 1/κ (τ) ∼Cxξ τ2 ()2
τ ≫ 1/κ (τ) ∼ τCxξ ()1

n

κ1 κn

τ ≪ 1/κ1 (τ) ∼Cxξ τ2 ()2
τ ≫ 1/κn (τ) ∼ τCxξ ()1

(τ) ≈ 2 τ (τ) ≈ 1 τ

(τ) ∼ 3
2 τ

(τ) ≈ τ log (τ) ≈ 2 − γ.d
dτ

Cxξ

γ ≈ 1/2 (Cx )2− ρ(t, u) ∼ (u − t)−γ

ρ(t, u) ∼ (u − t)−γ

∝ .d (u)ξt
(u)ξt

dWt
(u − t)γ

{ , s < t}Ws
(τ) ∼ 3

2 γ ≈ 1
2

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#eq:dataDriven


3/16/15, 4:25 PMNotebook

Page 43 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Observed term structure of ATM volatility skew
We study a period of history over which the ATM skew was relatively stable.

In [26]: %%R

vsl <- volSkewList2010
n <- length(names(vsl))

mycol <- rainbow(n)

plot(vsl[[1]]$texp,abs(vsl[[1]]$atmSkew),col=mycol[1],pch=20,cex=0.1,xlim=
c(0,2.6),
     xlab=expression(paste("Expiration ",tau)),ylab=expression(psi(tau)))
for (i in 2:n){
    points(vsl[[i]]$texp,abs(vsl[[i]]$atmSkew),col=mycol[i],pch=20,cex=0.1
)
}



3/16/15, 4:25 PMNotebook

Page 44 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 17: Decay of ATM skew (red dots) with respect to time to expiration. Data is SPX from 01-Jun-2010 to 01-
Jun-2011.

A shorter even more stable period

In [27]: %%R

vsl <- volSkewList2010[201:250]

n <- length(names(vsl))

plot(vsl[[1]]$texp,abs(vsl[[1]]$atmSkew),col="red",pch=20,cex=0.1,xlim=c(0
,2.6),
     xlab=expression(paste("Expiration ",tau)),ylab=expression(psi(tau)))
for (i in 2:n){
    points(vsl[[i]]$texp,abs(vsl[[i]]$atmSkew),col="red",pch=20,cex=0.1)
}



3/16/15, 4:25 PMNotebook

Page 45 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 18: Decay of ATM skew (red dots) with respect to time to expiration. Data is SPX from 16-Mar-2011 to 25-
May-2011.

Log-log plot of empirical ATM skew

In [28]: %%R

lvsl.texp <- log(vsl[[1]]$texp)
lvsl.atmSkew <- log(abs(vsl[[1]]$atmSkew))

for (i in 2:n){
    lvsl.texp <- c(lvsl.texp,log(vsl[[i]]$texp))
    lvsl.atmSkew <- c(lvsl.atmSkew,log(abs(vsl[[i]]$atmSkew)))  
}

plot(lvsl.texp,lvsl.atmSkew,col="red",pch=20,cex=0.5,
     xlab=expression(paste("log ",tau)),ylab=expression(paste("log ", psi(
tau))))

pick <- (lvsl.texp > -3)

print(fit.lm <- lm(lvsl.atmSkew[pick] ~ lvsl.texp[pick]))
abline(fit.lm,col="blue",lwd=2)

Call:
lm(formula = lvsl.atmSkew[pick] ~ lvsl.texp[pick])

Coefficients:
    (Intercept)  lvsl.texp[pick]  
        -1.1332          -0.3983  



3/16/15, 4:25 PMNotebook

Page 46 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 19: Log-log plot of decay of ATM skew (red dots) with respect to time to expiration.

Plot of ATM skew with power-law fit



3/16/15, 4:25 PMNotebook

Page 47 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [29]: %%R

plot(vsl[[1]]$texp,abs(vsl[[1]]$atmSkew),col="red",pch=20,cex=0.1,xlim=c(0
,2.6),
     xlab=expression(paste("Expiration ",tau)),ylab=expression(psi(tau)))
for (i in 2:n){
    points(vsl[[i]]$texp,abs(vsl[[i]]$atmSkew),col="red",pch=20,cex=0.1)
}

a <- fit.lm$coef[1]; b <- fit.lm$coef[2]
curve(exp(a+b*log(x)),from=0,to=3,col="blue",add=T,n=1000,lwd=2)

Figure 20: Log-log plot of decay of ATM skew (red dots) with respect to time to expiration. Power-law fit 
 in blue. Data is SPX from 16-Mar-2011 to 25-May-2011.ψ(τ) ∼ τ−.3983



3/16/15, 4:25 PMNotebook

Page 48 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

The variance swap curve
Assuming the underlying diffuses, the fair value  of a variance swap with maturity  may be computed as
follows:

where  and  denote the prices of calls and puts with strike  and expiration  respectively. For
details, see for example [The Volatility Surface] .

Thus, with this continuity assumption, we may compute the fair value of a variance swap from an infinite strip of
call and put option prices (the so-called log-strip).

For a given maturity, the variance swap level depends on exactly how we interpolate and extrapolate
option prices.
We use the arbitrage-free SVI parameterization that I will explain in Lecture 2.
In particular, we will analyze variance swap estimates from June 01, 2010 to June 10, 2011, the same
period as before.

In [30]: %%R

load("spxVarSwapList2010.rData")

n <- length(names(varSwapList2010))

# Convert list to matrix
tmp <- array(dim=c(n,40))

for (i in 1:n){
    tmp[i,] <- varSwapList2010[[i]]$varSwap
}

varswap.mean <- apply(tmp,2,mean)
varswap.sd <- apply(tmp,2,sd)
tmat <- (1:40)*.05

The average shape of the variance swap curve

(T)t T

(T) = (u) du = min[P(K, T), C(K, T)]t ∫
T

t
ξt ∫

∞

0

dK
K2

C(K, T) P(K, T) K T
[5]

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_note-TVS


3/16/15, 4:25 PMNotebook

Page 49 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [31]: %%R

plot(tmat,sqrt(varswap.mean),type="b",col="red",xlab=expression(paste("Mat
urity ",tau)),ylab="Variance swap quote")

Figure 21: Average shape of the variance swap curve from 01-Jun-2010 to 01-Jun-2011.

The volatility envelope
The envelope is the graph of volatilities of variance swap quotes vs time to maturity. First, we draw a log-log plot
of standard deviation of log-differences of the curves.



3/16/15, 4:25 PMNotebook

Page 50 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [32]: %%R

# Compute standard deviation of log-differences
sd.t <- function(x){sd(diff(log(x)))}

varswap.sd.t <- apply(tmp,2,sd.t)

# Log-log plot
x <- log(tmat)
y <- log(varswap.sd.t)
plot(x,y,col="red")
points(x[1:20],y[1:20],col="blue",pch=20)

fit.lm2 <- lm(y[1:20]~x[1:20])
print(summary(fit.lm2))
abline(fit.lm2,col="orange",lwd=2)
a2 <- fit.lm2$coef[1]; b2 <- fit.lm2$coef[2]

Call:
lm(formula = y[1:20] ~ x[1:20])

Residuals:
      Min        1Q    Median        3Q       Max 
-0.046099 -0.015713  0.004174  0.014588  0.048747 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.885944   0.008890  -324.6   <2e-16 ***
x[1:20]     -0.365137   0.007513   -48.6   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02662 on 18 degrees of freedom
Multiple R-squared:  0.9924, Adjusted R-squared:  0.992 
F-statistic:  2362 on 1 and 18 DF,  p-value: < 2.2e-16



3/16/15, 4:25 PMNotebook

Page 51 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Figure 22: Log-log plot of volatility envelope with linear fit.

Variance swap envelope with power-law fit



3/16/15, 4:25 PMNotebook

Page 52 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

In [33]: %%R

plot(tmat,varswap.sd.t,col="red",pch=20,xlab=expression(paste("Maturity ",
tau)),ylab="sd(Variance swap quote)",ylim=c(0.04,.2))
curve(exp(a2+b2*log(x)),from=0,to=3,col="blue",add=T,n=1000,lwd=2)

Figure 22: Variance swap envelope from 01-Jun-2010 to 01-Jun-2011. The blue line corresponds to the fit 
.τ−0.365



3/16/15, 4:25 PMNotebook

Page 53 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Hand-waving computation
Consider once again a model of the form

Then

Then

The standard deviation of log-differences computed above should then scale as

the same scaling as that of the ATM volatility skew
a relationship also confirmed in the data.

Moral of the story
Conventional stochastic volatility models are normative.

We write down underlying dynamics as if to say ``suppose the underlying stochastic drivers were to
satisfy the following...''.
Dynamics are invariably Markovian, in contrast to the real world.
The state space is typically very small.

Conventional models of volatility are engineering models, not physics models.

Conventional stochastic volatility models are Markovian approximations to a non-Markovian reality.

∝ .d (u)ξt
(u)ξt

dWt
(u − t)γ

d (T) = d (u) du ∼ (u) du.t ∫
T

t
ξt ∫

T

t
ξt

dWt
(u − t)γ

- [d (T ] ∼ dt ∼ (T (T − t .t )2 ( (u) du. )∫
T

t
ξt

1
(u − t)γ

2
t )2 )2−2 γ

= .( )1
τ2 τ2−2 γ

1/2 1
τγ



3/16/15, 4:25 PMNotebook

Page 54 of 54http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false

Motivating observation
A Bergomi model with dynamics of the form

might be consistent with our empirical observations.

References

1. ^ Lorenzo Bergomi, Smile dynamics II, Risk Magazine 67-73 (October 2005).
2. ^ Lorenzo Bergomi, Smile dynamics IV, Risk Magazine 94-100 (December 2009).
3. ^ Lorenzo Bergomi and Julien Guyon, Stochastic volatility’s orderly smiles. Risk Magazine 60-66, (May

2012).
4. ^ Rama Cont, Empirical properties of asset returns: stylized facts and statistical issues, Quantitative

Finance 1 223-236 (2001).
5. ^ Jim Gatheral, The Volatility Surface: A Practitioner’s Guide, John Wiley and Sons, Hoboken, NJ (2006).
6. ^ Jim Gatheral and Roel Oomen, Zero-intelligence realized variance estimation, Finance and Stochastics

14(2) 249-283 (2010).
7. ^ Michael Kamal and Jim Gatheral, Implied Volatility Surface, Encyclopedia of Quantitative Finance,

Wiley (2010).

∝d (u)ξt
(u)ξt

dWt
(u − t)γ

http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_ref-Bergomi2
http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_ref-Bergomi4
http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_ref-BG
http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_ref-Cont2001
http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_ref-TVS
http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_ref-GO
http://localhost:8888/nbconvert/html/Documents/iPython/VolatilityWorkshop/Imperial1.ipynb?download=false#cite_ref-Kamal

