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Market impact of large trades and optimal execution
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Market impact of metaorders: phenomenology
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The square-root law of price impact
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The average relative price change between the first and the last 
trade of a metaorder of size Q is well described by the so called 
“square-root” law:

Figure reproduced by: 

Bouchaud J.P. et al.  

Anomalous Price Impact and the Critical 
Nature of Liquidity in Financial Markets 

Physical Review X 2011



R(t/T < 1) ⇠ C

✓
t

T

◆↵

The price impact trajectory during the execution
The price impact trajectory is a concave function of time, i.e. for a given execution size, 
earlier transactions of the metaorder change the price more than later transactions:

Figure reproduced by: 

Moro. at al. 

Market Impact and the Trading Profile of Hidden Orders in Stock Markets 

Physical Review E 2009



The price impact trajectory after the execution
Several studies indicate that once the metaorder is executed the price impact relaxes from its peak 
value and converges to a plateau. The reversion indicates that not all the impact is permanent. Even 
stronger, a recent study suggests that, up to a proper deconvolution of the price impact with respect to 
the impact of subsequent metaorders and of the the price momentum, the impact relaxes to zero.

Figure reproduced by: 

Moro at al. 

Market Impact and the Trading Profile of Hidden Orders in Stock Markets 

Physical Review E 2009



A portfolio manager liquidates a position and splits its order between brokers.
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A broker receives orders from different portfolio managers and bundles 
them in a unique metaorder.   

Ancerno Dataset - 1



Ancerno Dataset - 2
• Metaorder definition: an execution performed by a single Broker, on a single stock, in a given 

direction. All metaorders are completed within a trading day. 
• The dataset is heterogeneous, containing metaorders traded by many financial institutions for different 

purposes and it spans several years. 
• US Equity in Russel 3000 Index in 2007-2009 
• The metaorders account for roughly 5% of ADV for the top 20 stocks 
• For each metaorder in the dataset we recover the relative daily fraction π, the participation rate η, 

and the duration F.  
• We work in volume time (intraday patterns)  
• We introduce the following filters:

Filter 0 Selecting metaorders traded between 
January 2007 and December 2009 ~ 28,500,000

Filter 1 Selecting metaorders traded on 
Russell3000 index ~ 23,000,000

Filter 2 Selecting metaorders traded during 
regular trading section: 09:30 - 16:00 ~ 11,000,000

Filter 3 Selecting metaorders with duration 
longer than 2 minutes ~ 7,500,000

Filter 4 Selecting metaorders whose 
participation rate is smaller than 0.3 ~ 7,000,000

Sign

Duration

Participation rate

Daily rate

Trading profile

✏ = ±1

⌘ := Q/VP

⇡ := Q/VD

⇢(v, vs, ve)

F := VP /VD

Not available information

⇡ = ⌘F
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AAPL, March-April 2008

Time series of metaorders active on the market for AAPL in the period March-April 2008. Buy 
(Sell)  metaorders  are  depicted  in  blue  (red).  The  thickness  of  the  line  is  proportional  to  the 
metaorder participation rate. More metaorders in the same instant of time give rise to darker colours. 
Each horizontal line is a trading day. We observe very few blanks, meaning that there is almost 
always an active metaorder from our database, which is of course only a subset of the number of 
orders that are active in the market.

A snapshot of the market



Distribution of the describing variables

F := VP /VDDuration ⌘ := Q/VPParticipation rate
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The participation rate η and the duration F are both well 
approximated by a truncated power-law distribution over 

several orders of magnitude
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f(⇡) = Y ⇡�

g(⇡) = a log10(1 + b⇡)

Ŷ =0.15±0.01 �̂ =0.47±0.02 ERMS =6.70

â =0.028±0.001 b̂ =465±33 ERMS =2.80

The price impact curve: excess concavity

Rescaled price

⇡ := Q/VD

A square-root model well describe price 
impact only in the central region (red 
curve).  

A logarithmic (more concave) model 
allows to capture the whole shape of the 
curve (blue curve). 

Price impact curve: the average relative price change between the end 
and the beginning of the execution, conditioning on the daily rate 

I(⇡) := E [✏ (s(ve)� s(vs))|⇡] s(v) := logS(v)/�D



Further conditioning…
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The price impact curve is quite stable and, 
with the exception of the small capitalisation 
conditioning, the logarithmic function always 

better explains the data



Further conditioning…
Participation rate Metaorder duration
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The price impact surface
Price impact surface: the average relative price change between the 
end and the beginning of the execution, conditioning on the 
participation rate                         and the duration  ⌘ := Q/VP F := VP /VD

I(⌘, F ) := E [✏ (s(ve)� s(vs))| ⌘, F ]

log
10 (⌘)

�3.0
�2.5

�2.0
�1.5

�1.0
�0.5
0.0

log10(F )

�2.5�2.0�1.5�1.0�0.50.0

lo
g 1

0
(I

tm
p
(⌦

=
{⌘

, F
})

)

�4.0

�3.5

�3.0

�2.5

�2.0

�1.5

�1.0

A double logarithmic function (blue surface) 
better describes the data compared with a 

double power-law functions (yellow surface)

It is possible to recover the price impact 
curve by averaging on regions such that  
π = ηF is constant (diagonal lines in the 

double logarithmic scale)



Analysis of the residuals

f(⌘, F |Y, �, �1) = Y · ⌘� · F �1 g(⌘, F |a, b, c) = a · log10(1 + b⌘) · log10(1 + cF )
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Price impact models:

Residuals of the fitted models:

Double power-law: a clear non-
random pattern emerges: positive 
residuals in the centre, negative 

residuals in the periphery 

Double logarithm: residuals are 
evenly distributed
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The price impact trajectory - during the execution
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We fix the participation rate and the duration of metaorders, and we follow the price 
impact trajectory during the execution:

The price impact trajectories (lines) 
deviate from the price impact curve/

surface (circles) 

The price impact trajectories revert 
during the execution of the metaorder



Price dynamics during execution: Almgren-Chriss
Continuous-time stock price model for a trader who impacts the price of the asset in 
linear permanent way. 
Trading occurs at a rate of q(t) shares per unit time

S(t) = S(0) + a

Z t

0
q(s)ds+ �

Z t
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Price dynamics during execution: TIM (propagator)
Continuous-time stock price model for a trader who can move the price of the asset. As long as the 
trader is not active, the asset price is determined by the other market participants and follows a 
brownian motion.

G(s) ⇠ s��
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Market impact decay: unconditional results

Decay of temporary market impact after the execution of the 
meteorder. We follow the normalised market impact path as a 
function of the time rescaled by the metaorder duration. The 
red horizontal line corresponds to 2/3, as predicted by the 

model of Farmer et al. (2013)



The price impact trajectory - after the execution
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Decay of temporary price impact after the execution of the meteorder. We follow the 
normalised price impact as a function of the rescaled variable z = v/F.

For small participation rates, the price impact 
trajectories of longer metaorders relax to levels 

which are higher than those of shorter 
metaorders.

For large participation rates, the price impact 
trajectories superimpose quite well one with 
each other. They relax very slowly and we do 
not observe any flattening of the curve. Quite 
interestingly, in this regime the price impact 

trajectories are well described by the prediction 
of the propagator model (black curve).



The role of metaorder sign autocorrelation
The picture emerging from the previous analysis can be partly clarified by taking into account the 
autocorrelation of the sign of metaorders. If different metaorders executed consecutively or in 
the same time period typically have the same sign, we expect that the effect of this correlation is 
to keep the price impact of a single metaorder relaxation artificially high. Moreover the effect of 
autocorrelation is  
• stronger for longer metaorders, since the probability of overlapping with other metaorders is 

larger, and for lower participation rates, since their effect on price can be considerably 
perturbed by metaorders with larger participation rates.  

• milder for shorter metaorders, because of the lower probability of overlap, and larger 
participation rates, because the effect of metaorders with lower participation rates on price 
becomes negligible.

Average fraction of overlapping 
metaorders with the same sign



Introduction to optimal execution

5 / 85



Introduction to optimal execution: a multiscale problem

An investor wants to trade (buy or sell) a given number of shares and wants to
minimize cost by trading incrementally.

A three scale decomposition
First, the portfolio manager decides how to split the order across the di↵erent days.
Then, for each day the trader divides the day in “macroscopic” intervals, for example 5
or 15 minutes, and decides how much to trade in each of these intervals.
Lastly, one has to decide how to trade in each interval, specifying the type of orders
used (e.g. limit versus market orders) and the strategy to follow (for example, when to
cross the spread if the price moves in an adverse direction).

We focus here on the second level of optimization.
Discrete time (with data calibration)
Continuous time
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Discrete time: Objective function

An investor has X shares to trade in N time periods. Let vk (k = 1, ...,N) be the
(signed) number of shares to be traded in interval k. Let Pk be the price at which
the investor trades at interval k and P0 the price before the start of the execution

A very used objective function is the implementation shortfall defined as

C(v) ⌘
N
X

k=1

vk p̃k � Xp0 (1)

i.e. the di↵erence between the cost and the cost in an infinitely liquid market.

The implementation shortfall is in general a stochastic variable, therefore one often
wants to minimize E [C(v)]. This assumes a risk neutral profile.
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Almgren and Chriss

Almgren and Chriss assumed that the price of the stock at step k is equal to the previous
price plus a linear market impact term and a random shock

pk = pk�1 + ✓vk + ⌘k ⌘ ⇠ IID(0,�). (2)

They consider the e↵ective price p̃k payed as di↵erent from the average price pk in the
interval and they model it as

p̃k = pk + ⇢vk + sign(vk) · S/2, (3)

where sign(vk) · S/2 is the contribution from the bid ask spread S and ⇢vk represents a
linear temporary impact.

The temporary impact accounts for the resilience of the limit orders in the book, which
relaxes back to the steady state after a trade-induced price movement.
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Almgren and Chriss (2)

The equation for the execution costs becomes

C(v) =
N
X

k=1

vk p̃k � Xp0 =
N
X

k=1

(⌘k + ✓vk)
k

X

j=1

vj +
N
X

k=1

(sign(vk)S/2 + ⇢vk) vk (4)

and the expected value of the costs to be minimized is

E [C(v)] =
✓
2
X 2 + (⇢+ ✓)

N
X

k=1

v 2
k + ✓

X

i 6=j

vivj + S/2
N
X

k=1

|vk |, (5)

under the constraint
PN

k=1 vk = X

If one assumes that all vk have the sign of X , the last term becomes constant and equal
to XS/2.
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Almgren and Chriss (3)

Given the symmetry, the solution that minimizes the expected impact costs is

v

⇤ ⌘ argmin
v

E [C(v)] =

✓

X

N
,
X

N
, ...,

X

N

◆T

. (6)

showing that the solution simply consists in trading at a constant rate over the periods.

If the price has a drift

pk = pk�1 + µ+ ✓vk + ⌘k ⌘ ⇠ IID(0,�). (7)

Minimization of implementation shortfall gives

v⇤
k / X

✓

1
N

+
(N + 1)� 2k
2(2⇢+ ✓)

µ

◆

(8)

With positive drift, we will accelerate a buy order. The amount of the acceleration
depends positively on µ, of course, but it also depends inversely on ⇢ and ✓.
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Almgren and Chriss (4)

The second innovation in Almgren and Chriss is that they consider risk aversion for
optimal execution: they minimize the sum of expected cost and costs’ risk. By mimicking
the theory on portfolio optimization (Markowitz mean-variance) , Almgren and Chriss
consider as optimal trading schedule the solution of

argmin
v

(E [C(v)] + �Var [C(v)]) . (9)

where � is the coe�cient of risk aversion. The higher is the �, the more important is risk
with respect to cost. A risk neutral investor corresponds to � = 0. The set of solutions
to this problem for di↵erent values of � is called optimal frontier.
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Almgren and Chriss (5)

The variance of the execution cost is

Var [C(v)] = E
h

(C(v)� E [C(v)])2
i

= E

2

4

0

@

N�1
X

k=0

⌘k

N�1
X

j=k+1

vj

1

A

23

5 , (10)

We assumed the ⌘k are independent, so we have E [⌘i⌘j ] = 0 for i 6= j and thus:

Var [C(v)] = �2
N�1
X

k=0

(
N�1
X

j=k+1

vj)
2. (11)
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Almgren and Chriss (6)

By using the impact model of Eqs. 2 and 3 one obtains

vk = A cosh(�(N � k)), (12)

where A is a normalization constant and � solves the equation1

2[cosh(�)� 1] =
��2

⇢+ ✓
. (13)

By inverting this equation expressing � as a function of � and by taking the continuous

time limit (i.e. � ! 0) we have � '
q

��2

⇢+✓ .

1The equation found in the original Almgren-Chriss paper is slightly di↵erent because they define the
temporary impact and the variance as proportional to the interval length ⌧ = T/N.
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Almgren and Chriss (8)
December 2000 Almgren/Chriss: Optimal Execution 17
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Figure 1: The e�cient frontier. The parameters are as in Table 1. The
shaded region is the set of variances and expectations attainable by some
time-dependent strategy. The solid curve is the e�cient frontier; the dashed
curve is strategies that have higher variance for the same expected costs.
Point B is the “näıve” strategy, minimizing expected cost without regard to
variance. The straight line illustrates selection of a specific optimal strategy
for � = 10�6. Points A,B,C are strategies illustrated in Figure 2.

the linear strategy, as in Figure 2. We demonstrate below that in a certain
sense, this is never an optimal strategy, because one can obtain substantial
reductions in variance for a relatively small increase in transaction costs.

Trajectory C has � = �2 � 10�7; it would be chosen only by a trader
who likes risk. He postpones selling, thus incurring both higher expected
trading costs due to his rapid sales at the end, and higher variance during
the extended period that he holds the security.

3 The Risk/Reward Tradeo�

We now o�er an interpretation of the e�cient frontier of optimal strategies
in terms of the utility function of the trader. We do this in two ways: by di-
rect analogy with modern portfolio theory employing a utility function, and
by a novel approach: value-at-risk. We conclude this section with some gen-
eral observations concerning the importance of utility in forming execution
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Figure 2: Optimal trajectories. The trajectories corresponding to the points
shown in Figure 1. (A) � = 2 � 10�6, (B) � = 0, (C) � = �2 � 10�7.

strategies.

3.1 Utility function

The utility function approach amounts to establishing that each point along
the e�cient frontier represents the unique optimal execution strategy for a
trader with a certain degree of risk aversion.

Suppose we measure utility by a smooth concave function u(w), where w
is our total wealth. This function may be characterized by its risk-aversion
coe�cient �u = �u��(w)/u�(w). If our initial portfolio is fully owned, then as
we transfer our assets from the risky stock into the alternative investment,
w remains roughly constant, and we may take �u to be constant throughout
our trading period. If the initial portfolio is highly leveraged, then the
assumption of constant � is an approximation.

For short time horizons and small changes in w, higher derivatives of
u(w) may be neglected. Thus choosing an optimal execution strategy is
equivalent to minimizing the scalar function

Uutil(x) = �uV (x) + E(x). (21)

The units of �u are $�1: we are willing to accept an extra square dollar of
variance if it reduces our expected cost by �u dollars.

Right. The e�cient frontier. Shaded region is attainable by some strategy. Solid curve is
the e�cient frontier. Dashed line is a strategy with higher variance but same expected
cost. Point B is the naive strategy of slice and dice (Bertismas and Lo)
Left. Optimal trajectories X �

Pk
i=1 v

⇤
i of the amount of shares still hold at time k.

In both panels we consider � > 0 (Point A, risk averse), � = 0 (Point B, risk neutral),
and � < 0 (Point C, risk lover)
From Almgren and Chriss 2001
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Almgren and Chriss (8)

The solution of Eq. 12 shows that the more risk averse is the investor (i.e. the higher is
�), the more front loaded is the trading schedule. This means that more volume is traded
at the beginning of the execution in order to minimize the uncertainty on execution price
of the last part of the trading schedule.
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Optimal execution with transient market impact
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Market impact with transient impact

Almgren and Chriss assume a market impact which is linear, fixed, and permanent.

We have seen in the previous lectures that, due to the correlation of the order flow,
market impact is transient, i.e. the past order flow a↵ects future price impacts.

One way of capturing this e↵ect is through the transient impact model (TIM)

TIM assumes that

pn = p�1 +
1
X

k=1

f (vn�k)G(k) +
X

k

⌘k (14)

where vn is the signed order flow. Thus

pn+1 � pn = G(1)f (vn) +
1
X

k=1

[G(k + 1)� G(k)]f (vn�k) + ⌘n (15)

The decay of G is such that prices are di↵usive (or approximately e�cient) given the
correlated order flow

E�ciency leads to
pn+1 � pn = K(vn � v̂n) + ⌘n (16)

where v̂n is the best predictor of vn given Fn.
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The propagator model in real time

We consider 5 minute intervals, t0 = 8:00, t1 = 8:05, t2 = 8:10, ...

pn is the log mid price right before time tn. We define the series of aggregated
volumes vn in terms of the volumes v tt

i of the single transactions, i.e.

vn =
X

[tn,tn+1]

v tt
i . (17)

We consider the normalized volume imbalance vnor
n as

vnor
n =

P

[tn,tn+1]
v tt
i

P

[tn,tn+1]
|v tt

i | (18)

The impact function f (vnor ) of the normalized volume imbalance is

f (vnor ) = E [rn|vnor
n ]. (19)

The propagator model in real time becomes

rj ⌘ pk+1 � pk =
j�1
X

k=0

G(k)f (vnor
j�k) + ⌘j . (20)

where we defined G(k) ⌘ G(k + 1)� G(k), and G(0) = 0.
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Market impact in real time

We compute the impact dependence on normalized volume

Figure: Impact (top) and propagator (bottom) from 5 min imbalance data

At this level of aggregation, impact is roughly linear
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Market impact at di↵erent aggregations (# of trades)
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Market impact is a strongly concave function of volume at short scales, but becomes
progressively more linear on longer scales (Bouchaud, Farmer, Lillo, 2009)
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Propagator in aggregated real time

We computed the propagator G(k) over 5 min intervals by linear regression

The TIM fits data quite well also on aggregated (time or trades) data.
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Optimal execution

The e↵ective log-midprice p̃k is the logarithm of the average mid-price at which we
trade the shares vk between time tk and time tk+1. We assume that

p̃k =
pk + pk+1

2
. (21)

The equation that describes the dynamics of e↵ective price is therefore

p̃n = p0 +
n

X

k=0

[⌘k + f (vk)G̃(n � k)] (22)

where we defined the e↵ective propagator G̃0 as

G̃(0) =
G(1)
2

, G̃(1) =
G(1) + G(2)

2
, G̃(2) =

G(2) + G(3)
2

, ... (23)

We define the logarithmic transaction costs c(v) as

c(v) ⌘
N�1
X

k=0

vk(p̃k � p0) ⇡
N�1
X

k=0

vk log

✓

P̃k

P0

◆

'
N�1
X

k=0

vk

✓

P̃k � P0

P0

◆

=
C(v)
P0

. (24)
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Optimal execution with TIM

The expected implementation shortfall is

E [C(v)] =
N
X

n=1

vn[
n

X

k=1

f (vk)G̃(n � k)] (25)

We now assume that instantaneous impact is linear, f (vk) = ✓kvk . We can rewrite

E [C(v)] = 2
X

k,j

✓k G̃(|k � j |)vkvj = v

TIv. (26)

where I is a Toeplitz matrix (diagonal constant)

We thus have a quadratic optimization problem (as in portfolio optimization)

v

⇤ = argmin
v

v

TIv s.t.
X

k

vk ⌘ 1

T
v = X (27)

that can be solved with a Lagrange multiplier with solution

v

? =
X

1

TI�1
1

I�1
1. (28)

23 / 85



Solution

With G(k) = a(c + k)�� ⇠ k��

Figure: An example of theoretical optimal solution of the optimal execution problem. As a
function of real time, the plot shows the amount of shares to be traded (in arbitrary units).

The solution is symmetric around N/2
Note that the U shape does not depend on the intraday profile of volume.
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Adding a risk term

The variance of the execution cost under the propagator model is

Var [c(v)] = E
h

(c(v)� E [c(v)])2
i

= E [(
N
X

k=1

vk

k�1
X

j=0

⌘j)
2] =

= E [(
N
X

k=1

⌘k

N
X

j=k

vj)
2] = �2

N
X

k=1

(
N
X

j=k

vj)
2 =

X

k,j

Vk,jvkvj . (29)

where �2 is the variance of the residuals. The variance of the cost is a bilinear form.
We define F ⌘ I + �V. By using again Lagrange multipliers, we have therefore the
optimal trading schedule

v

? = z F�1
1 =

X

1

TF�1
1

F�1
1. (30)
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Including the risk term

More risk aversion leads to more trading at the beginning of the program

Figure: � = 0 (top), � = 0.2 (bottom left), � = 0.9 (bottom right)
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Optimal execution: calibration on real data (no risk aversion)

Figure: Optimal solution for two stocks

The optimal execution for a buy trade includes buys and sells !!

The cost is positive (no price manipulation), but transaction triggered price
manipulation.

We’ll see later conditions leading to this result.
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Including spread costs (no risk aversion)

In this derivation we have neglected any cost term related to trading (fees, spread).
While fixed and proportional fees do not a↵ect the qualitative properties of the results,
spread costs change them significantly.
The model for price becomes

p̃n = p0 +
n

X

k=0

[⌘k + f (vk)G̃(n � k)] + sign(vk)�k , (31)

because we pay half the bid-ask spread on execution. We have defined

�k ⌘ sk/2
P

=
Ak � Bk

Ak + Bk
. (32)

where Ak and Bk are the ask and the bid.
The objective function of the optimization with spread costs is

F [v] = E [C(v)] + BA(v) = v

TIv +D

T |v|. (33)

where D = ({�k})T is a vector describing the spread cost during execution. We assume
for simplicity that D = �1
The absolute value prevents an analytical solution and we use numerical optimization.
The shape of the solution does not qualitatively change.
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Optimal execution: calibration on real data with spread (no risk aversion)

Figure: Spread costs regularize the solution (no sells for a buy program)

29 / 85



Comments

The alternating (buy-sell) solution and the regularization achieved by the bid ask
term is similar to what happens in portfolio optimization.

It is known that adding to Markowitz objective function a penalty proportional to
the sum of the absolute values of the portfolio weights stabilizes the solution and
corresponds to an exclusion of short positions (Brodie et al 2009). ) L1 (or
LASSO) regularization

By choosing a � parameter much smaller than the fractional spread, one still
recovers the U-shaped solution.
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E�cient frontier

Figure: 2 � 3% gain with respect to Almgren-Chriss on all the frontier
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Optimal execution in real time

Up to now we have considered the problem in discrete time

Either transaction time or aggregated real time

This is mathematically simpler and more applicable to real data, neglecting
microstructure

Some computations and theorems are more easily obtainable by considering
continuous time
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Problem setting

t 2 [0,T ]: time interval of execution

Xt : asset position at time t. Find the optimal position

X0 > 0 (X0 < 0) for a sell (buy)

XT+ = 0

S0 = (S0
t )t�0 exogenously given asset price dynamics, here assumed to be a

martingale on a probability space

SX = (SX
t )t�0 asset price dynamics when the strategy X = (Xt)t�0 is used.
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Key quantities

Revenues

RT (X ) = �
Z T

0

SX
t dXt (34)

Liquidation costs
CT (X ) = X0S

0
0 �RT (X ) (35)

Both are stochastic quantities

dXt : number of shares traded in [t, t + dt]
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Predoiu, Shaikhet and Shreve

If the cost depends on the stock price only through the term

Z T

0

StdXt (36)

and St is a martingale, then, integrating by parts

E



Z T

0

StdXt

�

= E



STXT � S0X0 �
Z T

0

XtdSt

�

= �S0X0 (37)

”There is no longer a source of randomness. We may restrict the search for an optimal

strategy to non random functions of time”.
This means that statically optimal strategies are also dynamically optimal.
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Price manipulation

Definition

A round trip is an order execution strategy X with X0 = XT = 0. A price manipulation
strategy is a round trip with

E [RT (X )] > 0 (38)

It is not possible to open and close a position with a positive expected profit

Huberman and Stanzl (2004)

Average profits versus almost sure profits (e.g. in derivative pricing)
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Transaction-triggered price manipulation

Definition

(Alfonsi et al 2012). A market impact model admits transaction-triggered price
manipulation if the expected revenues of a sell (buy) program can be increased by
intermediate buy (sell) trades. In other words, 9X0,T > 0, X̃ , such that

E [RT (X̃ )] > sup{E [RT (X )]|X is monotone} (39)

Definition

A market impact model has negative expected liquidation costs if

E [CT (X )] < 0 (40)

i.e. E [RT (X )] > X0S0.
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Relation between manipulations

Proposition

(Klöck et al 2011)

Any market impact model that does not admit negative expected liquidation costs
does also not admit price manipulation.

Suppose that asset prices are decreased by sell orders and increased by buy orders.
Then the absence of transaction-triggered price manipulation implies that the model
does not admit negative expected liquidation costs. In particular, the absence of
transaction-triggered price manipulation implies the absence of price manipulation in
the usual sense.
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The Almgren-Chriss model

Given two non-decreasing functions h and g with h(0) = g(0) = 0, an absolutely
continuous strategy (Xt)t�0 leads to a price trajectory

SX
t = S0

t +

Z t

0

g(Ẋs)ds + h(Ẋs) (41)

where it is typically assumed that

S0
t = S0 + �Wt (42)

and Wt is a Wiener process.

h(Xt) corresponds to temporary price impact

the term
R t

0
g(Xs)ds describes permanent price impact
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The Almgren-Chriss model

The revenues are

RT (X ) = �
Z T

0

SX
t dXt = (43)

�
Z T

0

S0
t dXt �

Z T

0

Ẋt

Z t

0

g(Ẋs)ds dt �
Z T

0

Ẋth(Ẋt)dt (44)

= X0S0 +

Z T

0

XtdS
0
t �

Z T

0

Ẋt

Z t

0

g(Ẋs)ds dt �
Z T

0

k(Ẋt)dt (45)

where k(x) ⌘ xh(x)

Proposition

(Huberman and Stanzl 2004, Gatheral 2010). If the Almgren-Chriss model does not
admit price manipulation, then g(x) = �x with � � 0

This means that non-linear permanent market impact is inconsistent with the principle of
no price manipulation.
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Almgren-Chriss with linear permanent impact

If g(x) = �x the revenues simplify to

RT (X ) = X0S0 +

Z T

0

XtdS
0
t � �

2
X 2

0 �
Z T

0

k(Ẋt)dt (46)

Proposition

If g(x) = �x and f is convex, then the strategy vt = X0/T maximizes the expected
revenues.

The second term in Eq. (46) vanishes in expectation because S0 is a martingale

Since f is convex, by Jensen inequality

E



Z T

0

k(Ẋt)dt

�

�
Z T

0

k
⇣

E
h

Ẋt

i⌘

dt = Tk

✓

X0

T

◆

(47)

Almgren et al (2005) estimate k(x) / |x |1+� with � ' 0.6.

The constant velocity strategy is called VWAP (or TWAP), i.e. Volume (Time)
Weighted Average Price.
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Euler-Lagrange solution of the Almgren-Chriss model and linear permanent
impact

Let us assume h(x) = ⌘x and g(x) = �x . The trading velocity is vt = �Ẋt . Minimizing
the cost means minimizing

E



Z T

0

(SX
t )vtdt

�

= const + ⌘

Z T

0

v 2
t dt (48)

In order to find the extremum, let us apply the Eulero-Lagrange equations,

@L
@X

� d

dt

@L
@v

= 0 (49)

with the boundary conditions Xt=0 = X0 and XT = 0 obtaining

vt =
X0

T
Xt = X0

⇣

1� t

T

⌘

(50)
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Optimal execution in the Almgren-Chriss model (with risk)

By adding the variance of the cost as a penalizing risk term

Var



Z T

0

XtdS
X
t

�

= �2
Z T

0

X 2
t dt (51)

we obtain the functional
Z T

0

(⌘Ẋ 2
t + ��2X 2

t )dt (52)

The Eulero-Lagrage equation gives

Ẍt � Xt = 0 (53)

with solution

Xt = X0
sinh((T � t))

sinhT
 =

s

��2

⌘
(54)
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Transient impact models

Up to now we have considered fixed and permanent impact models

Empirical evidences in many markets (equity, futures, etc) shows that the impact is
transient, i.e. it decays with time. We now explore optimal execution in such models

We neglect the temporary impact h and the risk term, present in Almgren and Chriss

Under these conditions, a possible continuous time generalization of the TIM model
is

SX
t = S0 +

Z T

0

f (Ẋs)G(t � s)ds +

Z t

0

�dWt (55)

The expected cost is

E [CT (X )] =

Z T

0

Ẋtdt

Z t

0

f (Ẋs)G(t � s)ds (56)
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Obizhaeva-Wang model

Impact is linear and decays exponentially in time

The decay is intepreted as the relaxation of the limit order book when shocked by a
trade

Remembering that vt = �Ẋt , the price during the execution is modeled as

SX
t = S0 + ⌘

Z T

0

vse
�⇢(t�s)ds +

Z t

0

�dWt (57)

The expected cost is

E [CT (X )] = ⌘

Z T

0

vtdt

Z t

0

vs exp[�⇢(t � s)]ds (58)
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Obizhaeva-Wang model:solution

The Eulero-Lagrange equation gives

Z T

0

vse
�⇢|t�s|ds = A (59)

where A is an integration constant.

This is a Fredholm integral equation of the first kind, whose exact solution is

vt = (X0 � ⇢T )�(t) + ⇢+ (X0 � ⇢T )�(t � T ) (60)

where �(x) is the Dirac delta.
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Generalization?

Is it possible to generalize to the model

SX
t = S0 + ⌘

Z T

0

f (vs)e
�⇢(t�s)ds +

Z t

0

�dWt (61)

i.e. a non-linear and exponentially decaying impact?

Gatheral (2010) showed that this is not possible, in fact

Proposition

If temporary market impact decays exponentially, price manipulation is possible unless
f (v) / v
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Linear case

Let us assume first that the instantaneous impact is linear, f (v) = �v , then

SX
t = S0

t +

Z

s<t

G(t � s)dXs (62)

C(X ) ⌘ E [CT (X )] =
1
2

Z T

0

Z T

0

G(|t � s|)dXsdXt (63)

Proposition

(Bochner Theorem) C (X ) � 0 if and only of G(|x |) can be represented as the Fourier
transform of a positive finite Borel measure µ on R, i.e.

G(|x |) =
Z

e ixzµ(dz) (64)

48 / 85



Linear case: solution

Theorem

Suppose G is positive definite. Then X ⇤ minimizes C(X ) if and only if 9� such that X ⇤
t

solves 8t
Z T

0

G(|t � s|)dX ⇤
s = � (65)

and thus C (X ⇤) = 1
2�X0.

(Important) Example: let G(t � s) = (t � s)�� then the integral equation is the Abel
equation with solution

vs =
B

[s(T � s)](1��)/2
(66)

and

X0 =

Z T

0

vsds = B
p
⇡

✓

T

2

◆� �
�

1+�
2

�

�
�

1 + �
2

� (67)
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Linear case: transaction-triggered price manipulation

Theorem

Suppose G is convex, satisfies
R t

0
G(t)dt < 1, and there is an admissible strategy. Then

there exists a unique admissible optimal strategy X ⇤
t which is monotone, i.e. there is no

transaction-triggered price manipulation.

Examples:

G(t) = 1
(1+t)2

is convex, no transaction triggered price manipulation

G(t) = 1
(1+t2)

is concave around zero, the optimal soultion displays transaction

triggered price manipulation
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Non-linear transient impact

Let us consider now the most general model

SX
t = S0 +

Z T

0

f (Ẋs)G(t � s)ds +

Z t

0

�dWt (68)

with
Z T

0

vtdt = X0 (69)

The optimal solution is not known

If we consider a VWAP strategy, Vt = X0/T , the expected cost is

CVWAP =
1
T
f

✓

X0

T

◆

Z T

0

dt

Z t

0

G(t � s)ds (70)

Theorem

(Gatheral 2010): If G(t) is finite and continuous at t = 0 and f is nonlinear, then there
is price manipulation
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A special, yet important, class

We consider the case where

f (v) = c

✓

|v |
V

◆�

sign(v) G(t � s) = (t � s)�� (71)

Theorem

(Gatheral 2010). If G(t) = t�� with � 2 (0, 1) and f (x) / |x |�sign(x) with � > 0, then
price manipulation exists when one of the two following conditions is verified:

� + �  1 �  �⇤ = 2� log 3
log 2

' 0.415 (72)
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A special, yet important, class

The expected cost of a VWAP is

CVWAP =
c

(1� �)(2� �)
X �+1

0

V �
T 1���� (73)

and the impact is

E [ST � S0] =
c

1� �

✓

X0

V

◆�

T 1���� (74)

Interestingly, if � + � = 1 the expected impact and cost do not depend on the
execution time.

If � = � = 0.5, the impact is

E [ST � S0] = 2c

r

X0

V
= 2c

p

Td

r

X0

ADV
(75)

which is the celebrated square root impact formula
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Transforming the cost minimization into an integral equation

Dang (2014) shows that, given f 2 C 1 (R) and G 2 L1 [0,T ], for the class of
functions x on [0,T ] satisfying

x is absolutely continuous on (0,T ),
f � v 2 L1 [0,T ],

the following necessary condition for the stationarity of the cost functional holds:

Z t

0

f (v (s))G (t � s) ds + f 0 (v (t))

Z T

t

v (s)G (s � t) ds = �, (76)

where � is a constant set by the constraint equation.

In the concave (� < 1) case there is no guarantee that the minimum is global

This is a weakly singular Urysohn integral equations of the first kind (very hard to
solve!!)
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Integral equation

Equation 76 is a weakly singular Urysohn equations of the first kind

Z T

0

G (|t � s|) F (v (s) , t) ds = � (77)

where

F (v (s) , t) =

(

f (v (s)) , s  t

v (s) f 0 (v (t)) , s > t,
(78)

Two nonlinearities: one related to f and one related to F .

The term with the first derivative entangles the susceptibility of response at time t
with the future trading rates, i.e. a coupling between present and future values of v .
This implies that Eq. 78 cannot be classified as a weakly singular nonlinear
Fredholm equation, because the function F depends both on t and on s.

For concave f , the integral equation becomes meaningless when v = 0
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The linear case

In the linear case, f (v) = v , the integral equation becomes a Friedholm integral equation
of the Abel type, which can be solved analytically as we have seen above:

v (t) =
c

[t (T � t)]
1��
2

, (79)

where c is uniquely determined by the normalization constraint

c = X/

✓p
⇡

✓

T

2

◆� � ((1 + �) /2)
� (1 + �/2)

◆

, (80)

where � (·) is the Euler’s function.

This solution has a U shape and is symmetric under time reversal, i.e. v(t) = v(T � t) ,
t 2 [0,T/2].
In the following we will refer to this solution as the GSS solution.
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Perturbative approach
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Figure: Solution of the weak nonlinear Fredholm integral equation for � = 0.5, ✏ = 0.02 and
X = 0.1. The full line represents the solution v (s) = u (s) + ✏w (s). The solution is not
symmetric for time reversal. The dotted line represents the GSS solution, i.e. the solution valid
for the linear impact case.

We perform an expansion f (v) = v 1�✏, with 0 < ✏ ⌧ 1 and we solve exactly the
perturbed equation
No symmetry for time reversal: front loading for concave impact (� < 1), back loading
for convex impact (� > 1).
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Homotopy Approach

We solve the integral equation by means of the Discrete Homotopy Analysis Method
(DHAM), i.e. as a continuous transformation of a given solution (never crossing
v = 0)
Given the following general equation

N [v (t)] = 0, (81)

we construct the so-called zero-order deformation equation

(1� p)L
h

� (t; p)� v 0 (t)
i

= p }H (t)N [� (t; p)] , (82)

where p 2 [0, 1] and v 0(t) is an initial guess

� (t; 0) = v 0 (t) , � (t; 1) = v (t) . (83)

Expanding � (t; p) in Maclaurin series with respect to p, we have

� (t; p) = v 0 (t) +
1
X

m=1

vm (t) pm, (84)

where

vm (t) =
1
m!

@�m (t; p)
@pm

�

�

�

p=0
. (85)
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Homotopy Approach for market impact

The operator is

N [v(t)] = ��+

Z T

0

G (|t � s|) F (v(s), t) ds . (86)

Choosing L and H(t) as the identity operators, the zero-order deformation equation
is

(1� p)
h

� (t; p)� v 0 (t)
i

= } pN [� (t; p)] . (87)

Di↵erentiating m times we get

vm (t) = vm�1 (t) + }Rm
⇣

v

m�1
⌘

, (88)

where for m > 1

Rm
⇣

v

m�1
⌘

=
1

(m � 1)!
@m�1N [� (t; p)]

@pm�1
|p=0

=

Z T

0

G (|t � s|)
⇢

1
(m � 1)!

@m�1F (� (s; p) , t)
@pm�1

�

�

�

p=0

�

ds .

(89)
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Discrete Homotopy Approach: Results
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Figure: The logarithm of the squared residual E7 (}) is illustrated on the left panel, the minimum
is attained for } = �55.7 where we have E7 = 3.2 ⇥ 10�6. The GSS guess and the DHAM
solution are reported on the right panel respectively by a full green line with circles and a dashed
blue line with circles, are reported also the results of the seven deformation equations. 61 / 85



Discrete Homotopy Approach: Costs

VWAP GSS DHAM VWAP GSS DHAM
� � = 0.45 � = 0.45 � = 0.45 � = 0.5 � = 0.5 � = 0.5
1.0 0.0117 0.0116 0.0116 0.0133 0.0132 0.0131
0.95 0.0132 0.0130 0.0130 0.0150 0.0148 0.0148
0.90 0.0148 0.0146 0.0143 0.0168 0.0166 0.0164
0.85 0.0166 0.0164 0.0162 0.0188 0.0186 0.0185
0.80 0.0186 0.0184 0.0179 0.0211 0.0209 0.0204
0.75 0.0209 0.0206 0.0198 0.0237 0.0234 0.0227
0.70 0.0234 0.0231 0.0218 0.0266 0.0263 0.0249
0.65 0.0263 0.0260 0.0235 0.0298 0.0295 0.0274
0.60 0.0295 0.0291 0.0251 0.0335 0.0331 0.0297
0.55 0.0331 0.0327 0.0275 0.0376 0.0372 0.0323
0.50 0.0422 0.0417 0.0347

Table: Costs for three di↵erent strategies, VWAP, GSS, and DHAM, in the no-dynamic-arbitrage
region for � = 0.45, 0.5. The numbers in boldface are those achieving the smallest cost. The
di↵erence between costs increases with the degree of non-linearity, i.e. � < 1. In this case we use
a GSS initial guess to obtain the DHAM solution.

The DHAM solution has a cost up to 20% smaller than the GSS, while the latter has a
cost which is only 1% smaller than the VWAP
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Fully numerical solutions

DHAM solution is a continuous deformation of a VWAP or a GSS solution

Therefore it is smooth and, more important, has always the same sign

What happens if we minimize numerically the cost on a discrete grid of N intervals
in [0,T ] (piecewise constant solution)?

argmin
N
X

i=1

N
X

j=1

vn
i f

�

vn
j

�

Aij s.t.
N
X

i=1

vi =
NX

T
(90)

where the Aij are elements of a Toeplitz matrix that describes the decay kernel G (t � s)

Aij = 0; j > i ,

Aii =
1

(1� �) (2� �)

✓

T

N

◆2��

;

Aij =
1

(1� �) (2� �)

✓

T

N

◆2��
n

(i � j + 1)2�� � 2 (i � j)2�� + (i � j � 1)2��
o

; j  i .
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Fully numerical solution: A N = 2 period motivating example

Let us consider the case of a buy program over N = 2 periods
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Figure: Cost function C [v1, 2X � v1] for X = 0.1, � = 0.5. For � = 1 the minimum is at v1 = X .
In the nonlinear case there are two local minima.

For a buy program with strong nonlinearity (� & 0.5)
With the constraint vi � 0 the optimal solution is to trade only in the second period
Without constraints, it is optimal to sell in the first period and buy more in the
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SQP numerical optimization

We perform an in-depth numerical optimization of the cost function when N is large
(⇠ 100)

We use Sequential Quadratic Programming (SQP) with a large number of starting
points on the simplex

PN
i=1 vi = NXT�1

We find a very large number of distinct extremal points and we select the one with
the smallest cost

We use second order condition to verify that a very large fraction of extremal points
are minima

By computing the eigenvalue spectra of the Hessian of the cost function a the
minima, we exclude that the landscape of cost is sloppy (i.e. does not depends
strongly on a few number of directions in the state-space).

The landscape is in fact rugged (i.e. composed by many local minima with similar
cost)

Many suboptimal minima correspond to similar trading patterns (see below)
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”Optimal” strategies with the constraint v � 0

The optimal strategy is to trade in bursts separated by no trading periods
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The unconstrained ”optimal” solution for a buy program
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Figure: Optimal solution given by the SQP-algorithm for a buy-program where X = 0.1, i.e. 10%
of a unitary market volume. We report the volume to be traded in each interval of time.

Under strong non-linearity, the optimal buy program is composed by few intense buying
periods interspersed by long weak selling periods

For strong nonlinearity ! Negative costs!! ! Possibility of price manipulation
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Price manipulation and its regularization

The no-arbitrage condition � + � > 1 is not su�cient to guarantee the absence of
price manipulation.

Any non-linear impact leads to price manipulation strategies for su�ciently large
discretization.
It is possible to regularize the solutions with two approaches:

Adding a spread cost

C =
NX

i=1

NX

j=1

vi f
�
vj
�
Aij + �S

T

N

NX

i=1

|vi |, (91)

where �S is half the bid-ask spread. This is equivalent to a L1 or LASSO regularization
widely used in computer science.
Modifying the impact function f (v) to

fG (v) = c sign (v)

(✓
|v |

|v | + V

◆�

+ d
|v | (|v | + V )

V 2

)
, (92)

where V = XM/T is the market volume per unit time. This is concave for small v and
convex for large v (illiquidity wall)

Both regularization succeed (in some parameter regime) to avoid negative costs
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Spread regularization
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Figure: Optimal solution given by the SQP algorithm for a buy-program where X = 0.1, i.e. 10%
of a unitary market volume, in presence of a spread cost for � = 0.45 and � = 0.55. The
liquidation cost is CSQP = 0.026 for large spread cost (left) and CSQP = 5.9 ⇤ 10�3 for small
spread cost (right).

The larger the spread, the stronger the regularization, the smaller the contribution from
sell trades
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Concave-convex impact
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Figure: Top. Concave-convex impact function for values of parameters:
c = 1, � = 0.55, XM = 1, T = 1. Bottom. Optimal solution given by the SQP-algorithm for a
buy-program
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