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Abstract 

The multinomial logit model is widely used in transport research. It has long been known that the Gumbel 

distribution forms the basis of the multinomial logit model. Although the Gumbel distribution is a good 

approximation in some applications, it is chosen mainly for mathematical convenience. This can be restrictive 

in many scenarios in practice. We show in this presentation that the assumption of the Gumbel distribution 

can be substantially relaxed to include a large class of distributions that is stable with respect to the minimum 

operation. The distributions in the class allow heteroscedastic variances. We then seek a transformation that 

stabilizes the heteroscedastic variances. We show that this leads to a semiparametric choice model which links 

travel-related attributes to the choice probabilities via a sensitivity function. This sensitivity function reflects 

the degree of travellers’ sensitivity to the changes in the combined travel cost. Empirical studies were 

conducted using the developed method.  
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Introduction

 Why multinomial logit model?

 Widely used in transport research

 Simple and easy to understand in terms of both statistical

inference and computation

 Particularly attractive in many modelling scenarios due to the

nature that it is linked to the decision-making process via the

maximising (minimising) the utility (travel cost)



Introduction

 The underlying assumptions for the logit model

In the derivation of the closed-form multinomial logit model, there are

three underlying assumptions (McFadden, 1978; Ben-Akiva and

Lerman, 1985; Train, 2003; Bhat et al., 2008; Koppelman, 2008), i.e.

the random variables of interest are assumed

 to be independent of each other (assumption I)

 to have equal variability across cases (assumption II)

 to follow the Gumbel distribution (assumption III)

 Extensions of the multinomial logit model may be classified into two

categories: open-form and closed-form. We mainly focus on the

closed-form choice models



Introduction

 Existing researches for the closed-form logit model

 Relaxation of assumption I to allow dependence or correlation

 The nested logit model and generalized extreme value (GEV)

family (McFadden, 1978)

More recent development: paired combinatorial logit (PCL),

cross-nested logit (CNL), and generalized nested logit (GNL)

 Relaxation of assumption II to allow unequality of the variance

HMNL: the heteroscedastic multinomial logit model allows the

random error variances to be non-identical across

individuals/cases (Swait and Adamowicz, 1996)

COVNL: the covariance heterogeneous nested logit model

was developed on the basis of the nested logit model and it

allows heterogeneity across cases in the covariance of nested

alternatives (Bhat, 1997)



Introduction

 The research in this study

 The purpose of this study is to relax assumption III on the

underlying distribution: the Gumbel distribution

 Practical motivations:

Logit model is used in a variety of the problems in transport

research. It is hard to believe that a single statistical distribution

(the Gumbel) can accommodate such a variety of applications

 Theoretical motivations:

 Castillo et al. (2008) have proposed using the Weibull

distribution as an alternative to the Gumbel distribution

 Fosgerau and Bierlaire (2009) show that the assumption of

the Weibull distribution is associated with the discrete choice

model having multiplicative error terms

 Research question: Are there any other distributions?



A new distribution class

 Extension from the Gumbel to a general distribution class

 Context

Discrete choice analysis can be investigated in various contexts.

Consider several travellers who wish to minimize their travel costs

 Notation

 Cn denotes the feasible choice set of each individual n

 Yin denotes the random travel cost for traveler n when

choosing alternative i

 We assume the random costs are independent of each other

 Theory of individual choice behaviour

The probability that any alternative i in Cn is chosen by traveler n is

Pn(i) = Pr{Yin < Yjn for all j in Cn } = Pr{Yin < min(Yjn) for ij }



A new distribution class

Ordinary logit model

 Assumed distribution:

Gumbel distribution

 Equal variability assumption

the variance retains constant

across all i and n

 Closed under the min-operation

If Yjn are independent of each

other and all follow the Gambel,

then min{Yjn} also does

New choice model

 Assumed distribution:

Fin(t)=Pr{ Yin < t}= 1  [1 F(t)]αin

where the base function F(t)

can be any CDF

 Unequal variability assumption

the variance varies across

different cases

 Closed under the min-operation

If Yjn are independent of each

other and all follow a distribution

from the above distribution

class, then min{Yjn} also does



A new distribution class

 The new class of distributions

Fin(t)=Pr{ Yin < t }= 1 [1 F(t)]αin

 This distribution class includes both the Gumbel and Weibull
distributions as its special cases, as well as many others such as

 Pareto

Gompertz

 Expoenetial

Rayleigh

 generalised logistic



A new distribution class

 The parametric approach

Fin(t)=Pr{ Yin < t }= 1 [1 F(t)]αin

 Have knowledge of the random variables a priori

 Specify a base function F(t) in the stage of modelling

 The statistical inference focuses on several unknown parameters

 A semiparametric approach

 Have little knowledge of the distribution of the random variables

 Do not specify a base function F(t) in the stage of modelling

 The statistical inference includes both the unknown parameters
AND the unknown base function

 From a practical perspective, the assumption that the random
travel costs Fin(t) follow any distribution from the distribution
family with an unspecified base function F(t) allows researchers
great flexibility to accommodate different problems



A new distribution class

 Variance-stabilizing transformation

Theorem 1. Suppose that random variables Yi (i=1,…,m) have the

following CDFs:

Fi(t)=Pr{ Yi < t }= 1 [1 F(t)]αi with (i=1,…,m),

where F(t) is any chosen CDF. Then there exists a monotonically

increasing transformation h(t) such that the transformed random

variables have a common variance.

 The fact that the proposed distribution class allows unequal
variances suggests that it is more flexible to accommodate
various practical problems

 The unequal variances may be stabilized via a suitable
transformation h(t)



A new distribution class

 The mean function

Let Vin denote the expectation of random travel cost Yin , i.e. EYin =Vin

Theorem 2. Suppose that random variables Yi (i=1,…,m) have the

following CDFs:

Fi(t)=Pr{ Yi < t }= 1 [1 F(t)]αi with (i=1,…,m),

where F(t) is any chosen CDF. Then there exists a monotonically

decreasing function H(t)>0 such that expectations EYi =Vi are linked

to the parameter αi

αi = H(Vi )

 Special case: H(t) = 1/ t for the exponential distribution



Semiparametric discrete model

 Choice probability

 We suppose that the expectations EYin =Vin are linked to a linear

function of a q-vector of attributes that influences specific discrete

outcomes: Vin = xin
Tβ

 Combining the mathematical expectations Vin = xin
Tβ with the

mean function αin = H(Vin) gives αin = H(xin
Tβ)

 Note that min{Yjn} follows the same distribution as Yin

 It can be shown that the choice probability is

Pn(i) = Pr{Yin < Yjn for all j in Cn } = Pr{Yin < min(Yjn) for ij }

= H(xin
Tβ) / {Σj H(xjn

Tβ)}



Semiparametric discrete model

 Sensitivity function S(.)

Define S(.)=log[H(.)] so the range of S(.) is the whole real line:

Pn(i)=exp[S(xin
Tβ)] / {Σj exp[S(xjn

Tβ)]}

 S(.) reflects how sensitive a traveler is to the changes in the

combined travel cost (including travel time, travel expenses, etc.)

 When S(t)=θt, the model reduces to the logit model and the

corresponding underlying distribution is the Gumbel.

 The above semiparametric choice model extends the logit model

by allowing an unspecified functional form S(.) can address

issues: (a) nonlinearity; and (b) variance stabilization.



Semiparametric discrete model

 A linear function S(t) provides a

benchmark for comparison

 The dotted line represents the

scenario where travelers are

more sensitive to one unit

increment in travel costs

 The broken line represents the

scenario where travelers are

more tolerable to the increment

in the combined travel cost



Model estimation 

 The parametric model

 If the base function is specified in the stage of modelling, it is required 

to estimate the coefficients of the attributes, β

 The estimation can be done similar to the logit model

 The semiparametric model

 Since the base function is not specified in the stage of modelling, it is 

required to estimate the coefficients of the attributes β and the 

sensitivity function S(.)



Model estimation 

 Identifiability

 Identifiable up to a level constant and scale constant

 Let S(t) = R(bt), then S(xTβ) = R(xTβb)

{S(t) , β} and {R(t) , βb} fit the given data equally well

 Let S(t) = R(a+t), then S(xTβ) = R(a+xTβ)

 Due to the issue of identifiability, it is required that the linear 

combination of attributes xTβ does not include an intercept, and that β

has unit length and one of its entry (say the first one) has a positive 

sign

 Following Ichimura (1993), some further conditions need to be 

imposed. In particular S(.) is required not to be constant on the 

support of xTβ. The vector of attributes x should also admit at least 

one continuously distributed component. 



Model estimation 

 How to estimate the unknown sensitivity funciton

 Use B-splines to approximate S(.):  

S(t)   Σj wjBj(t), 

where Bj(t) (j=1,…,m) are known basis functions (cubic splines) and wj

are unknown weights to be estimated

 The accuracy of the approximation is guaranteed as m is large

 Since the basis functions Bj(t) (j=1,…,m) are known, we only need to 

estimate weights wj



Model estimation 

 Bayesian analysis

Performing Bayesian analysis to draw statistical inference

 Data: 

 Let yin be 1 if traveller n chose alternative i and 0 otherwise. 

 Let X and Y denote the data matrices comprising  xjn and yin

 Likelihood:   L(Y; β, w, X) = ΠnΠi [Pi(n)]yin

 Prior distribution:  non-informative p(β, w) 

 Posterior distribution: p(β, w | Y, X)  L(Y; β, w, X) p(β, w) 

 Markov chain Monte Carlo (MCMC): simulate draws from the 

posterior distribution p(β, w | Y, X) 



Empirical studies 

 Data

 Fosgerau et al. (2006) carried out a large-scale Danish value-of-

time study that involved stated preferences about two train-related

alternatives and two bus-related alternatives respectively

 Travel time for public transport users was broken down into four

components: (a) access/egress time (other modes than public

transport, including walking, cycling, etc.); (b) in-vehicle time; (c)

headway of the first used mode; and (d) interchange waiting time

 The attributes considered in their study included these four travel

time components, plus the number of interchanges and travel

expenses. The travellers’ time values were inferred from binary

alternative routes characterised by these attributes

 The original stated preferences are panel data. For illustration

purposes, we selected only 100 different travellers from each

dataset, and then randomly chose one observation for each

traveller (hereafter referred to as ‘train data’ and ‘bus data’

respectively) in the following analyses



Empirical studies 

 Settings in the computation

 The splines used in the following analyses included seven cubic

basis functions (j=1,…,7) on the support [0, 1]

 The total number of iterations in the MCMC simulation was set as

10,000. The first 5,000 iterations were considered as burnt-in

period and the corresponding draws were discarded. The results

are reported below using the remaining 5,000 draws



Empirical studies 

 Models used in the analyses

Let x1, …, x6 represent the six attributes: access-egress time,

headway, in-vehicle-time, waiting time, number of interchanges, and

travel expenses. Following Fosgerau and Bierlaire (2009), the

coefficient of travel expenses was normalized to unit so that other

coefficients can be interpreted as willingness-to-pay indicators

 the ordinary multinomial logit model

S(xTβ) = θ (β1x1+ …+ β6x6 )

 the multiplicative choice model

S(xTβ) = θ log(β1x1+ …+ β6x6 )

 the semi-parametric model

S(xTβ) = S(u+v((β1x1+ …+ β6x6 ))

where u and v has two scaling parameters so that S(.) is on [0, 1]



Study I: the train data



Study I: the train data

 The middle part of obtained

sensitivity function is not

sensitive to the change of the

combined travel cost

 Towards to the both extreme

ends of the support, it increases

(or decreases) rapidly

 Each unit increment in the

combined travel cost does not

impact on the train users equally



Study  II: the bus data



Study  II: the bus data

 The obtained sensitivity function

is quite close to a linear function.

 The semiparametric model

produced similar estimates to

that of the ordinary multinomial

logit model

 Due to its simplicity, it seems that

the ordinary multinomial logit

model is a sensible choice



Discussion and conclusions  

 Relaxation of assumption III

 The assumption of underlying distributions is extended from the

Gumbel to a much wider distribution class

 It also retains a crucial property in discrete decision analysis, i.e., it

is closed under the minimum operation

 It allows unequal variances across cases

 Semiparametric choice model and sensitivity function

 In the modeling stage the distribution needs not to be specified

 A semiparametric choice model is derived that links travel-related

attributes to the choice probabilities via a sensitivity function

 When the sensitivity function is nonlinear, travelers’ response to

the travel cost does not change in a proportionate manner. This

has important practical implications for the policy makers



Further extension

 The logit model assumptions revisited

 Three assumptions for the multinomial logit model:

 Independence across the cases (assumption I)

 Equal variability across cases (assumption II)

 The Gumbel distribution (assumption III)

 The semiparametric model has substantially relaxed Assumption

III and hence Assumption II

 Assumption I? --- Can the correlation structure be relaxed?

For stated preferences data, for instance, random effect of

individual should be taken into account:

Yin =Vin + dn + ein

where the errors ein are independent but for the same traveller, Yin

and Yjn are correlated due to the common random effect dn



Further extension

 The way to take forward

 The multinomial logit model is frequently used as a building block

in discrete choice analysis to handle more complex scenarios

 In particular, the multinomial logit model can be combined with a

random-coefficients structure, leading to the mixed logit (Train,

2003; Bhat et al., 2008)

 Question

For the semiparametric model, can it be combined with a random-

coefficients structure to relax Assumption I?



Further extension

 A random coefficient structure

 Following the mixed logit, we assume that the coefficients vary

across travellers in the population with density q(β) so that the

heterogeneity across travellers can be taken into account

 For each traveller, it is assumed that the semiparametric choice

probability still holds

Lin(β) =exp[S(xin
Tβ)] / {Σj exp[S(xjn

Tβ)]}

 For each traveller n, since the researcher observes xjn but not β,

the unconditional choice probability is the integral of over all

possible variable of β:

Pn(i) = ∫ Lin(β) q(β) dβ

 This mixed version of the semiparametric model does not exhibit

the IIA property and thus is more flexible



Further extension

 How the variability is modelled?

 The existing mixed logit model

The ordinary multinomial logit assumes equal variance. Hence all

heterogeneity across travellers and across alternatives are

modeled solely by q(β)

 The mixed semiparametric choice model

The heterogeneity across alternatives and the heterogeneity

across travelers are dealt with separately:

 Variability within a traveller: F(.) allows unequal variances

across alternatives within a traveller

 Variability between travellers: it is modeled by q(β)

Different sources of variability are modeled separately. It is

more straightforward for model specification and interpretation

in the mixed semiparametric choice model


