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Abstract 

Train service reliability is a key metro management objective and a major part of a 

successful operation. The occurrence of incidents in the network is likely to cause delays 

to the train service, perturbing the punctuality and regularity of the metro operation, and 

hence its service reliability. This suggests that one way to improve train service reliability 

is to reduce the occurrence of incidents in urban metro systems. This paper uses 

statistical techniques to identify the main factors explaining the variation in the number 

of delay incidents across 42 metro lines (of 15 different metro systems) over the period 

2005-2009. The results indicate that among the main factors explaining differences in 

incident performance across urban metro lines are the technology of the mode of train 

operation, the level of passenger demand, the service level operated during peak 

periods, and the practical capacity available. On the contrary, engineering, and usually 

fixed, metro factors such as the type of track support, the type of rail connection, the 

type of rolling stock wheel, do not have an effect on incident levels. The findings also 

suggest that metro-specific factors help explain the variation in incident performance, 

where such factors refer to differences in maintenance and management practices, 

operations management, health & safety procedures etc. [co-authors: Nigel G. Harris, 

Daniel J. Graham, Richard J. Anderson, Alexander Barron] 
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1. Railway and Transport Strategy 
Centre (RTSC)Centre (RTSC)
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� Established in 1992, the Railway and Transport Strategy Centre 

(RTSC) at Imperial College London was set up:
� To serve the transport industry on strategic, technology, economic and policy issues

� As a research unit within the Centre for Transport Studies, 

� As a commercial unit within the Department of Civil and Environmental Engineering 

at Imperial College, supporting the academic work of the College.

� Three key research themes:

Railway and Transport Strategy Centre

4444

� Three key research themes:
� Public transport operations, management and strategy

� Benchmarking & performance measurement

� Transport economics & policy

� Activities:  applied and academic research, consultancy, teaching



Imperial College London are World Leaders in the Field 
of Public Transport Benchmarking 

Sixteen year history of benchmarking projects facilitated by

1994 Group of Five heavy metros formed (incl. NYCT)

1996 Community of Metros (CoMET) founded (9 of the 
world’s largest 12 metros)

1998 Success of CoMET leads to formation of Nova group 
for medium-sized metros
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Significant benefits have driven continued participation:

NYCT is a member for CoMET for 16 years and the IBBG for 6 years

for medium-sized metros

2004 International Bus Benchmarking Group established

2005 Nova grows to 14 members, CoMET to 12

2010 Suburban Rail Benchmarking Group established
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Thirteen Bus Benchmarking Group members
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Ten members in the Suburban Rail Benchmarking Group
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2. Background & Objectives
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Background & Objectives (1)

� The occurrence of incidents often causes delays to rail service, 

perturbing the punctuality and regularity of the operation, and 

hence service reliability. 

� Service reliability can be targeted through incident prevention and � Service reliability can be targeted through incident prevention and 

incident recovery. This work is concerned with the former. 

� The objective is to identify the key factors underlying the 
variation in the number of delay incidents across urban metros 
through regression analysis.
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Background & Objectives (2)

� Previous research on service reliability tends to look at travel time 

reliability, either by focusing on the variability or the predictability of 

passenger travel times.

� Some studies have looked at the consequences of incidents on 

service level degradation. Surprisingly, we did not find any previous 
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service level degradation. Surprisingly, we did not find any previous 

evidence on the drivers of incidents.

� Since incident prevention is one way to improve service reliability it is 

important that metro operators have a better understanding of the 

factors influencing the occurrence of incidents in their systems. 



3. Data
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Data (1)

� Unbalanced panel of 42 metro lines of 15 different urban metros over the 
period from 2005 to 2009. 

� 17 lines (6 metros) are in the Americas.

� 18 lines  (5 metros) are in Europe.

� 7 lines (4 metros) are in Asia.

� On average, we observe each metro line 4.89 times over the 5 year period.

� The data are collected by the RTSC for their urban metro benchmarking 
groups CoMET and Nova through special purpose designed questionnaires.

� Data verification and validation checking tests were conducted, including 
regular contacts with CoMET and Nova members.
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Data (2) - Distribution of Incident Rates

� Number of incidents per million car-
kilometres operated (average for 2005-2009).

� Wide variation across metro lines.
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Data (3) - Between-Metro Variation

� Wide variation in incident rates between

metros.
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Data (4) - Within-Metro Variation

� Wide variation in incident rates within 

metros.
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Data (5) - Incident Drivers

� Scale of operation

� Engineering factors

� What  factors explain the differences in 
incidents across metros? 

� Engineering factors

� Technological factors

� Management & other metro specificities

17171717



Data (6) - Scale of Operation

� Scale of operation: the number of incidents is determined by the size 
of the metro line, other factors remaining the same.

� e.g. longer metro lines may have more incidents just because they 
are longer.

� e.g. denser metro lines may have more incidents because of 
overcrowding, and higher pressure on resources.
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� The scale of operation can be represented by various measures: route 
length, number of stations, level of train service operated (e.g. number 
of car-kilometres), and the level of demand (e.g. number of passenger-
journeys). 



Data (7) - Engineering factors

Engineering Factors

Rolling Stock Wheel 
Technology 

Characteristics

Steel
Rubber

� Engineering factors: type of track support (e.g. ballasted, concrete), type of 
rail connection (e.g. jointed, welded), rolling stock physical technology (e.g. 
steel wheels, rubber tyres), etc.
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Data (8) – Technological factors

Technological Factors

Signalling Method

Characteristics

Manual

(Automatic) Fixed Block

� Technological factors: technology adopted to operate the rolling 
stock, signalling method, etc.
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Train Operation Mode

Manual
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Driverless

Moving Block

Trains per hourPractical capacity 



Data (9) - Management & other metro factors

� Management & other metro specificities: other dimensions of 
metros that can affect incidents.

� Observed/measured factors: peak service level (tph), age of the 
line, use Platform Screen Doors (PSD), use of staff for despatch 
purposes, maintenance effort, age of rolling stock, etc.

� Unobserved/unmeasured factors: organizational culture, 

21212121

� Unobserved/unmeasured factors: organizational culture, 
maintenance & operations management practices, training, 
safety legislation, etc.



4. Empirical Model
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Empirical Model (1)

� The variable of interest is the number of incidents occurring in a 

given year and metro line. This is a discrete variable that only takes 

non-negative values. 

� Least squares regression assumes a Normal distribution and can 

predict both negative and continuous values for the number of 

incidents, which is not appropriate. 

� Standard approach to model count data is to use a use a Poisson 
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� Standard approach to model count data is to use a use a Poisson 

regression model (PRM) or a Negative Binomial regression Model 

(NBRM). 

� According to the PRM, the probability that of a metro line i at time 

period t receiving yit incidents is
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Empirical Model (2)

� The PRM is estimated by specifying the expected value of the 

response variable (i.e. number of incidents) as a function of a series of 

explanatory variables [X].

� Yit: number of incidents reported for metro line i in year t.

T ..., 3, 2, 1,t n; 3,..., 2, 1,i              , ====
)itXβ(

ititit e]|XE[yµ
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� β: vector of model parameters.

� Xit : vector of the explanatory variables included in the regression 

model. 

� PRM assumes equidispersion between the conditional mean and 

variance of yit. This equality is often violated, commonly the 

variance is greater than the mean [overdispersion]. PRM unbiased 

but inefficient.



Empirical Model (3)

� Common alternative to the PRM is the Negative Binomial regression 

model (NBRM), which allows for overdispersion by adding an error that 

can capture unobserved cross-sectional heterogeneity:

� vit = e(εit) adds random variation in the model due to unobserved 

T ..., 3, 2, 1,t n; 3,..., 2, 1,i              , ====
+ )itεitXβ(

itititit eνµ]|XE[y
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� v = e(ε ) adds random variation in the model due to unobserved 
heterogeneity. 

� The most commonly used version of the NBRM is known as NB2. It has 
conditional mean µit and the variance is a quadratic function of the mean 
and the overdispersion parameter α: µit(1+ α µit). [Cameron and Trivedi, 
2005]

� In addition to the NBRM, we also estimate a random effects 

PRM/NBRM, which allow for metro-specific heterogeneity.



Empirical Model (4)

� Models estimated:

� Negative Binomial Regression Model (NBRM) which allows for 

overdispersion in the data.

� To allow for metro-specific heterogeneity we also estimated: 

(i) Random effect PRM: allows for a metro-specific random intercept. 

(ii) Random effect NBRM: allows the dispersion parameter to vary 
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(ii) Random effect NBRM: allows the dispersion parameter to vary 

randomly between metros.

� Random effect models help explain part of the variation in incident 

levels without creating identification issues due to collinearity 

between some of the covariates and the metro-specific dummy 

variables. 



5. Results
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Results (1)

� Key data & estimation issues:

� Missing data (e.g. maintenance)

� Multicollinearity (e.g. fixed engineering factors)

� Simultaneity (e.g. PSD, use of staff for despatch)

� Overdispersion test rejects null of overdispersion, so NBRM should be 

preferred to the PRM.
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preferred to the PRM.

� Metro-specific heterogeneity helps to explain the differences in 

incident levels across metro lines, as reflected by the improvement in 

the goodness of fit of the models allowing for metro specific variation.

� Goodness of fit statistics [AIC and BIC indices] further indicate that 

the NBRM with random metro-specific variation is the best model.



Results (2) - Detailed Table

Negative Binomial 

Model (NBRM)

PRM, with random 

metro variation

NBRM, with random 

metro variation

b SS b/SE b SS b/SE b SS b/SE

Line age (years) 0.0051 -0.85 0.0065 *** -16.25 0.0067 ** -2.31

Route length (km) 0.0337 *** -2.72 -0.0012 1.20 0.0088 -1.11

Rolling stock age  (years) 0.0015 -0.15 0.0163 *** -20.38 0.0025 -0.32

Peak frequency (tph) 0.1365 *** -4.27 0.1112 *** -46.33 0.0431 ** -2.22

Practical capacity (tph) 0.0281 -0.84 -0.0460 *** 17.04 -0.037 ** 2.23

Log of Passenger journeys -0.4074 ** 2.44 0.1787 *** -12.95 0.2884 *** -3.10

Train operation is ATO driver or driverless (vs. 

Manual) -1.5218 *** 6.20 -0.5223 *** 36.02 -0.4031 *** 2.87
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Rubber-tyred  trains  (vs. steel trains) 1.9063 *** -4.01 2.4189 -1.19 -1.0850 1.29

Overhead (vs. third rail) 0.9876 *** -2.75 0.7420 *** -24.01 0.1178 -0.53

Proportion of concreted track  (vs. ballasted) -0.6091 * 1.75 0.1634 *** -4.29 0.1358 -0.51

Proportion of jointed track connection (vs. welded) 0.3829 -1.00 9.4787 *** -9.56 -0.2424 0.29

Proportion of track in open area (vs. underground) -0.8558 1.31 0.6639 *** -12.89 0.5812 -1.41

+dummy for years (2005 reference) 0.83 381.91 *** 3.14

Observations 106 106 106

LR/Wald chi2 113.16*** 10761.7*** 168.72***

LL (model) -2,649 -687

Number groups (metros) 11 11 11

Likelihood-ratio test of no overdispersion 

(H0:alpha=0) 16,129*** - 12,333***

Hausman test (FE versus RE) 2,069*** 1.57

McFadden's pseudo R2 0.070 0.882 0.491

AIC 1,538 5,334 1,411

BIC 1,586 5,382 1,462



Results (3) - Summary Table

Explanatory factors Elasticity 

Line age (years) 0.26

Route length (km) -

Rolling stock age  (years) -

Peak frequency (trains per hour) 0.92

Practical capacity (trains per hour) -0.93

� Based on the results from the preferred model we calculated elasticity 
values to evaluate the importance of the different factors.
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Practical capacity (trains per hour) -0.93

Log of Passenger journeys 0.29

Train operation is ATO driver or driverless (vs. manual)* -0.33

Rubber-tyred  trains  (vs. steel trains) -

Overhead (vs. third rail) -

Proportion of concreted track  (vs. ballasted) -

Proportion of jointed track connection (vs. welded) -

Proportion of track in open area (vs. underground) -

Only statistically significant results are shown.*Pseudo elasticity since the covariate is a binary variable.



Results (4) - Factors that help reduce incidents

Moving from manual to 

automatic train operation

-33%

Incidents
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+1 tph practical capacity -3.7%

Incidents



Results (5) - Factors that can increase incidents

+ 0.67%

Incidents

+1 year line age
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+ 4.31%

Incidents

+1 peak tph

+10% pax journeys + 2.9%

Incidents



Results (6) - Factors that do not affect incidents

� Evidence suggests that engineering and fixed metro attributes do not 
determine incidents:

Factors not relevant to incidents

Rail connection (welded vs. jointed)
Rolling stock steel wheels vs. rubber 

tyres

33333333

tyres

Track support  (concrete vs. ballast) Proportion of track in open area



6. Conclusions
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Conclusions (1)

� One of the key results is that moving from manual to some form of 
automatic train operation can reduce incidents substantially.

� It is important to distinguish the effects of different types of automatic train 
operation (ATO with driver vs. fully driverless); this was not possible due to 
insufficient data for fully automatic train operation.
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� Increasing levels of demand (passenger journeys) and peak train service 
frequencies can increase incidents, especially if there is no alleviation of 
the pressure placed on the fixed resources available through additional 
practical capacity. 



Conclusions (2)

� Engineering and fixed metro factors do not explain the differences in 
the number of incidents across metro lines.This is good news to metro 
companies, because changing these attributes would not only be very costly 
but essentially impractical.

� Metro-specific heterogeneity helps to explain the differences in � Metro-specific heterogeneity helps to explain the differences in 
incident levels across metro lines. Examples include maintenance and 
management practices, operations management, health & safety procedures, 
etc. But it is difficult to test for these factors because they are very difficult or 
impossible to measure.
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Thank you for your attention

Contact:  patricia.melo@imperial.ac.ukContact:  patricia.melo@imperial.ac.uk
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Results (5) - Factors that can increase incidents

� Increasing passenger-journeys by 10% is associated with an increase in 
incidents of 3%, all other factors remaining constant. 

� Increasing service levels during peak periods without increasing the 
available practical capacity can also increase incidents. The elasticity of 
incidents with respect to peak trains per hour suggests that a 10% increase 
in service levels is associated with an increase in incidents of 9.2%.
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in service levels is associated with an increase in incidents of 9.2%.

� A 10% increase in line age is associated with an increase in incidents of 
2.6%, reflecting the wearing of fixed infrastructure and assets over time. To 
counter this effect on incident occurrence metros need to invest in the 
maintenance and upgrading of the various components of the network.



Results (4) - Factors that help reduce incidents

� Moving from manual to some form of automatic train operation is 
associated with a reduction in incidents of 33%. This suggests to metro 
companies that automatic train operation modes are more reliable than 
manual operation modes. 

� Increasing practical capacity by 10% is associated with a reduction in 
incidents of about 9.3%. 
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incidents of about 9.3%. 

� Metro-specific heterogeneity helps to explain the differences in incident 
levels across metro lines. These differences relate to procedures 
implemented by the different metros to achieve incident reduction, but are 
difficult to measure.


