Imperial College London

Modelling Freight Mode Choice Behaviour Accounting for Supply Chain Structures and Taste Heterogeneity

Kriangkrai Arunotayanun

Wednesday, 28 January 2009 - 16:00

Location: Room 609, Skempton (Civil Eng) Bldg, Imperial College London

Modelling Freight Mode Choice Behaviour Accounting for Supply Chain Structures

Mr Kriangkrai ARUNOTAYANUN

Centre for Transport Studies Department of Civil and Environmental Engineering Imperial College London

CTS Seminar, 28th January 2009

Centre for Transport Studies Imperial College London

Outline

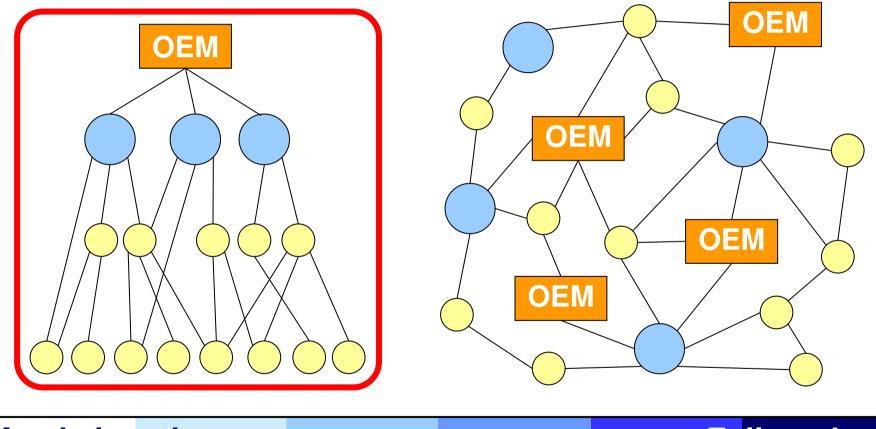
- Background
- Motivation
- Models
- Data Description
- Analysis and Results
 - Supply Chain Variables
 - Supply Chain Structures

Imperial College

02/23

London

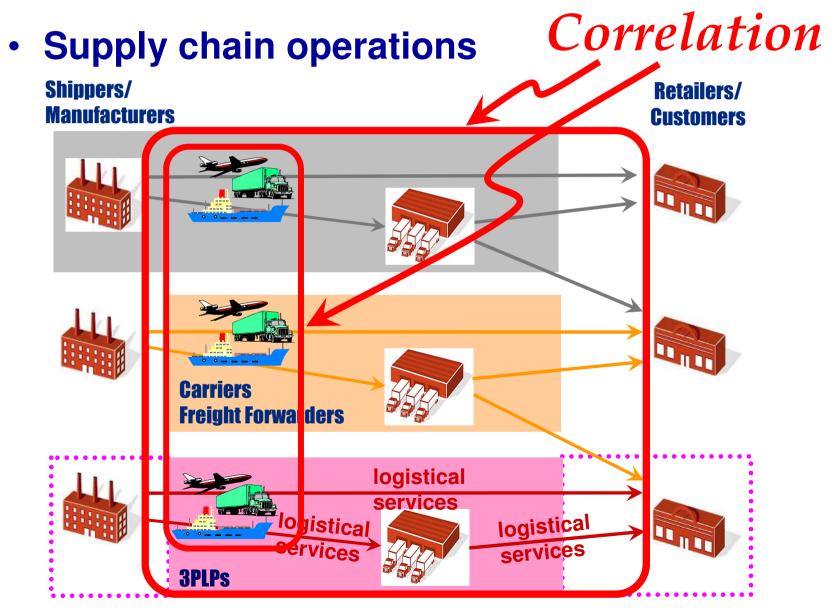
Conclusions


Background (1)

- Freight transport activities
- Key factors influencing the complexity of freight mode choice decisions
 - Characteristics of freight
 - Characteristics of firms
- Supply chains linking all vendors, service providers and customers

Centre for Transport Studies Imperial College London 03/23

Background (2)


Supply chain relationships

Arm's length relationship

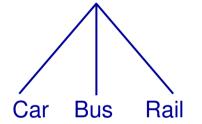
Full vertical integration

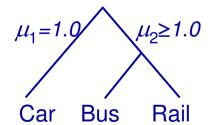
Background (3)

Motivation

Existing modelling approaches

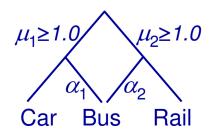
- Ignore the influence of supply chain and logistics concepts
- Rely on conceptual and methodological approaches developed in the passenger sector


Conventional logit models


Models

Generalised Extreme Value (GEV)

$$P(a \mid C) = \frac{e^{V(a)}G_a(e^{V(1)}, \dots, e^{V(n)})}{\mu G(e^{V(1)}, \dots, e^{V(n)})} = \frac{e^{V(a) + \ln G_a(e^{V(1)}, \dots, e^{V(n)})}}{\sum_{h \in C} e^{V(h) + \ln G_h(e^{V(1)}, \dots, e^{V(n)})}}$$



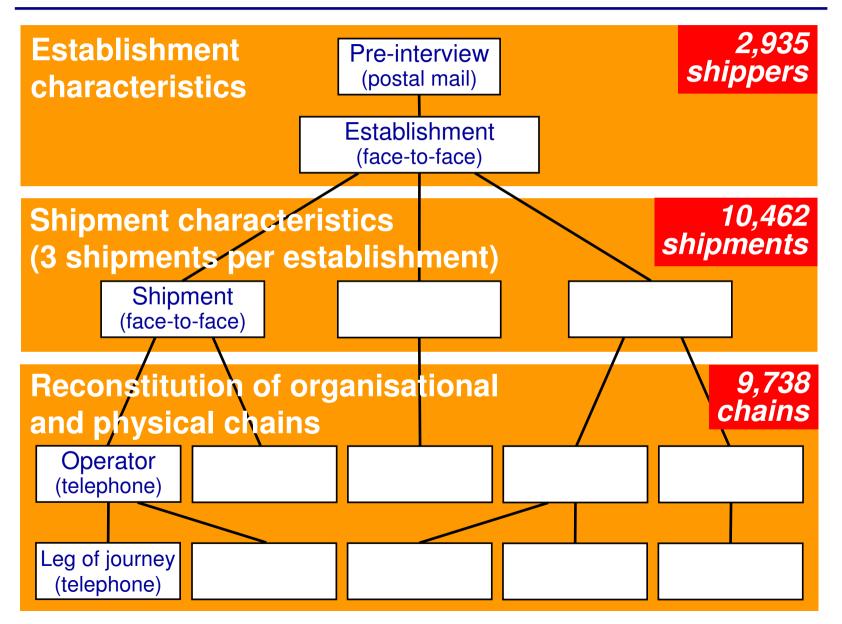
Multinomial logit (MNL) $G(Y_1,...,Y_n) = \sum_{h \in C} Y_h^{\mu}$

Nested logit (NL)

$$G(Y_1,...,Y_n) = \sum_{k=1}^{K} \left(\sum_{h \in C_k} Y_h^{\mu_k} \right)^{\mu/\mu_k}$$

Cross-nested logit (CNL) $G(Y_1,...,Y_n) = \sum_{k=1}^{K} \left(\sum_{h \in C_k} \left(\alpha_{hk}^{1/\mu} Y_h \right)^{\mu_k} \right)^{\mu/\mu_k}$

07/23


Data Description (1)

2004 French shipper survey (ECHO)

Centre for Transport Studies Imperial College London 08/23

Data Description (2)

Data Description (3)

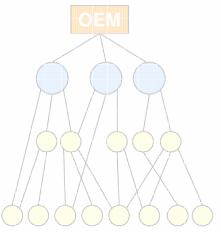
- Level-of-service attributes
 - Transport cost (%) Travel time (hour)
 - Delay (%)

4 alternative land transport modes

- Own account road
 For-hire road
- Rail
 Combined road-rail
- 542 shippers (38 business sectors)
- 1,095 shipments (1,080 completed chains)
- Variables relating to shipper, shipment and flow characteristics

Centre for Transport Studies Imperial College London 10/23

Analysis and Results

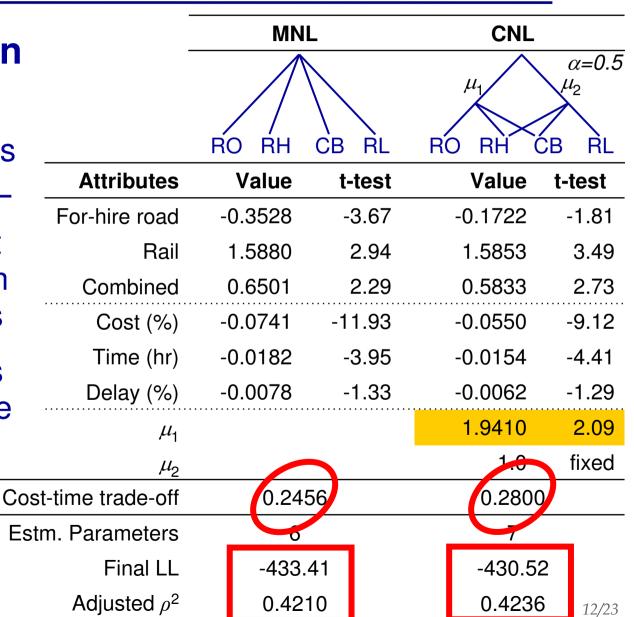

Supply chain variables

- Unobserved correlation amongst different modes
- Degree of closeness (e.g. type of contract)
- Supply chain structures
 - Unobserved correlation along two choice dimensions: transport mode and supply chain

Imperial College

11/23

London


Supply Chain Variables

Basic specification

- CNL leads to an improvement in terms of model fit over MNL
- There is a significant amount of correlation amongst alternatives
- MNL underestimates the value of cost-time trade-off

Centre for

Transport Studies

Supply Chain Variables

Detailed specification

- 20 additional explanatory variables are all statistically significant
- There is no statistical difference in model fit between MNL and CNL
- Unobservable correlation now becomes observable

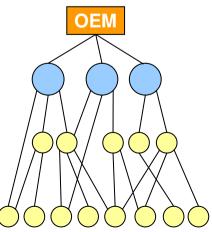
Imperial College

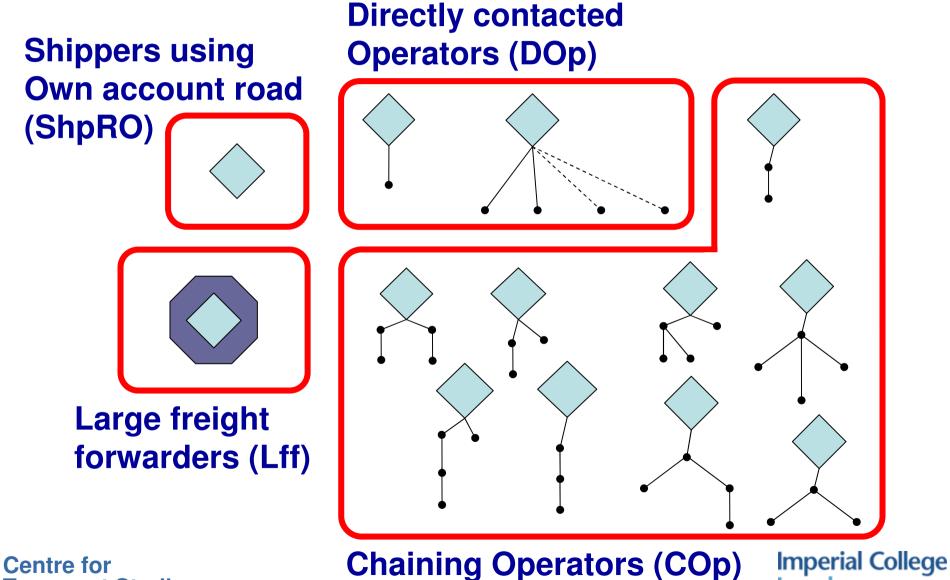
13/23

London

	Attributoo	MNL		CNL	
	Attributes	Value	t-test	Value	t-test
For-hire road constant		1.2059	1.83	1.1758	1.61
	Rail constant	1.7140	2.00	1.6840	2.11
	Combined road-rail constant		-0.99	-1.5709	-0.98
Level-of-se	ervice attributes				
	Cost (%)	-0.0709	-11.74	-0.0694	-4.33
	Time (hour)	-0.0200	-3.32	-0.0197	-3.25
	Delay (%)	-0.0066	-0.98	-0.0066	-1.00
Shipper ch	Shipper characteristics				
RH,RL,CB	Annual tonnage shipped	0.0018	2.93	0.0018	2.38
СВ	Combined used in the last 12 months	4.3639	3.13	4.2911	2.89
RO	No. of own truck; \geq 3.5 tons	0.0508	4.33	0.0497	3.14
RL, CB	Use of warehouse	1.2857	2.22	1.2643	1.98
RH,RL,CB	Contract type (long-term=2, equal=1, occasionally=0)	0.3199	2.64	0.3124	2.22
RO	Transport organised by shippers	0.6308	3.10	0.6139	2.26
CB	Transport organised by providers	-1.7199	-3.78	-1.6905	-3.29
RH	Access to domestic parking area	-0.5700	-1.94	-0.5567	-1.76
RH	Zone type of parking; specific to freight	-4.3809	-5.74	-4.2758	-3.32

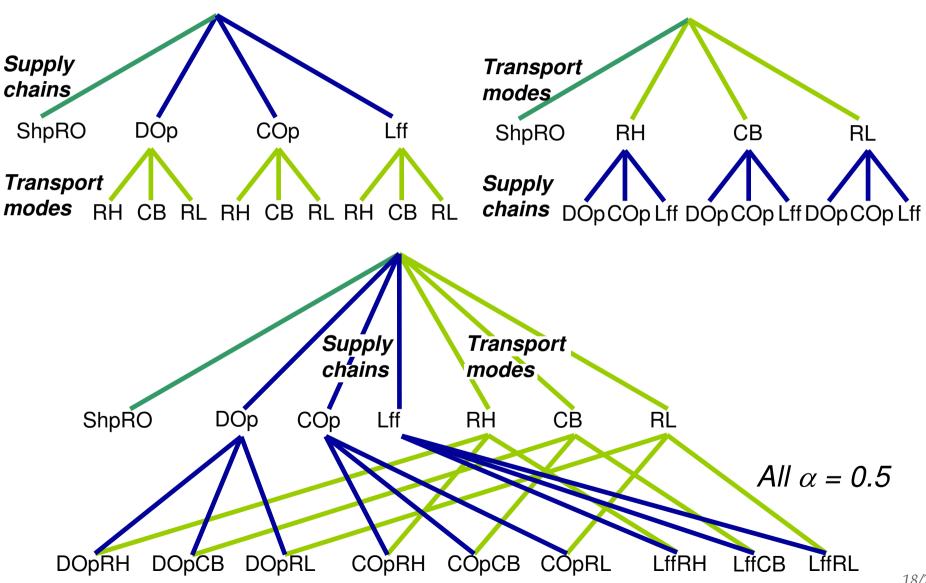
	Attributes	MNL		CNL		
	Attributes	Value	t-test	Value	t-test	
Shipment & flow characteristics						
RO	Time of departure	-1.1818	-5.38	-1.1553	-3.30	
CB	Time of departure	-2.0395	-2.17	-2.0138	-2.16	
RO	Distance	-0.0022	-2.81	-0.0021	-2.19	
RH	Fragile products	-1.4942	-3.68	-1.4653	-3.27	
RL, CB	Fragile products	-3.6384	-2.70	-3.5893	-2.75	
RO	Bulky products	-1.1214	-3.03	-1.0994	-2.68	
RL, CB	Weight of shipment	0.0455	1.90	0.0449	1.88	
RH	Shipment is a part of journey	-0.6565	-2.85	-0.6432	-2.52	
CB	Shipment is a part of journey	4.0222	3.19	3.9522	2.82	
RH	RFID or electronic labels	0.8830	3.07	0.8631	2.64	
СВ	RFID or electronic labels	2.3871	2.39	2.3449	2.31	
	μ_1			1.0356	0.10	
	μ_2			10	fixed	
	Cost-time trade-off	0.28	0.2821		0.2839	
	Estimated Parameters	20		21		
	Final LL	-317	-317.25		-317.25	
	Adjusted p ²	0.54	0.5478		0.5464	


Analysis and Results


- Supply chain variables
 - Unobserved correlation amongst different modes
 - Degree of closeness (e.g. type of contract)
- Supply chain structures
 - Unobserved correlation along two choice dimensions: transport mode and supply chain

Imperial College

16/23


London

Transport Studies

London 17/23

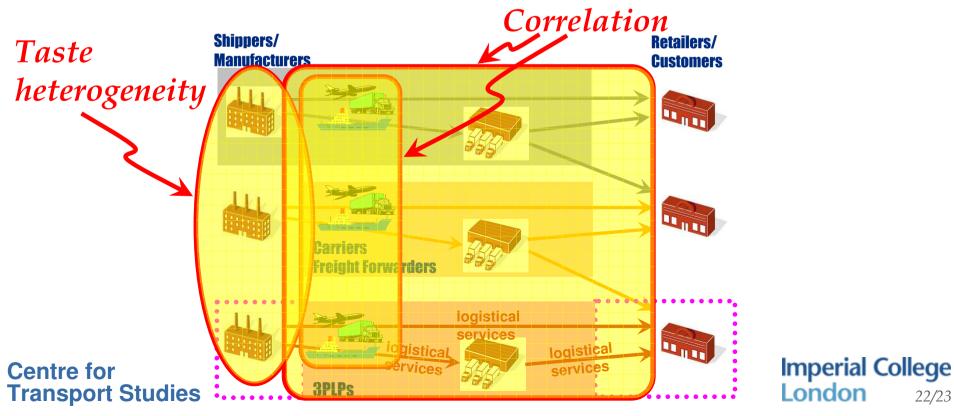
- Both NL models do not statistically outperform the MNL model
- Correlations exist amongst alternatives within the nests of Directly Contacted Operators chain and Combined road-rail mode
- CNL provides the best model fit
- MNL overestimates the value of cost-time trade-off

Structural Parameters	MNL	CNL		_	CNL Re-estimated		
(<i>µ</i>)	-	Value	t-test	Value	t-test		
ShpRO		1.0	fixed	1.0	fixed		
DOp		5.301	1.99	11.382	2.65		
СОр		1.128	0.18	1.0	fixed		
Lff		1.0	fixed	1.0	fixed		
RH		1.014	4.26	1.0	fixed		
CB		1.837	1.52	2.943	3.47		
RL		1.095	0.03	1.0	fixed		
Cost-time trade-off	0.2515	0.22	271	0.2420			
Estimated Parameters	24	29		26	26		
Final LL	-704.10	-702.04		-700	-700.56		
Adjusted ρ^2	0.5328	0.5309		0.53	0.5338		
Imperial College London 19/23					College 19/23		

Choice elasticities

- Shippers with complicated supply chains are more sensitive to time *than* shippers with simple chains
- For-hire road: more competitive to the other modes in the same chain *than* the same mode in the other chains
- Rail and Combined road-rail: more competitive to the same modes in the other chains *than* the other modes in the same chain

Centre for Transport Studies Imperial College London 20/23


Conclusions (1)

- Apart from cost and time, logistical and supply chain attributes are also the major determinants of demand
- Unobserved correlation amongst mode and/or supply chain alternatives must be properly taken into account
- The study offers greater insight into shippers' choice behaviour with respect to modes and supply chains
- Failure to properly account for these observed and unobserved supply chain influences leads to
 - Degraded explanatory power of freight demand models
 - Increased risks of misinterpreted results and violated policy implications

Conclusions (2)

- Future work
 - Interdependent choice process amongst agents
 - Models accounting for inter-alternative correlation and inter-agent taste heterogeneity simultaneously

22/23

Contact Information

Mr Kriangkrai ARUNOTAYANUN

Centre for Transport Studies Dept. of Civil & Environmental Engineering Skempton Building Imperial College London Exhibition Road London SW7 2AZ

e-mail address: k.arunotayanun@imperial.ac.uk

Centre for Transport Studies Imperial College London 23/23