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Lies, damn lies, and. . .

Mark Twain (1906)
Figures often beguile me, particularly when I
have the arranging of them myself; in which
case the remark attributed to Disraeli would
often apply with justice and force:

“There are three kinds of lies: lies, damned
lies, and statistics.”

Lie? That Disraeli ever said or wrote it!

Damned lie? That the statement was originally about statistics!
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Liars, damned liars, and. . .

Sir Robert Giffen (1892)

An old jest runs to the effect that there are three kinds of
comparison among liars. There are liars, there are outrageous
liars, and there are scientific experts.

This has lately been adapted to throw dirt upon statistics.
There are three degrees of comparisons, it is said, in lying.
There are lies, there are outrageous lies, and there are
statistics.

Statisticians can afford to laugh at and profit by jokes at their
expense. There is so much knowledge which is unobtainable
except by statistics. . .

“On international statistical comparisons,” Economic Journal (1892)

See http://www.york.ac.uk/depts/maths/histstat/lies.htm

http://www.york.ac.uk/depts/maths/histstat/lies.htm
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Binomial counts

...

... n2 heads in N flips

n1 heads in N flips

Suppose we know n1 and want to predict n2



Predicting binomial counts — known α

Success probability α → p(n|α) = N!
n!(N−n)!α

n(1− α)N−n ||N

Consider two successive runs of N = 20 trials, known α = 0.5

p(n2|n1, α) = p(n2|α) ||N

n1 and n2 are conditionally independent
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Model structure as a graph

• Nodes/vertices = known quantities (squares),
uncertain quantities (circles, gray = becomes known)

• Edges specify conditional dependence

• Absence of an edge indicates conditional independence

α

n1 n2 nN

α

ni

⇐⇒
nN

N − 1

p({ni}|α) =
∏

i

p(ni |α)

Knowing α lets you predict each ni , independently



Predicting binomial counts — unknown α
Consider the same setting, but with α unknown

Outcomes are physically independent, but n1 tells us about α →
outcomes are marginally dependent:

p(n2|n1,N) =

∫
dα p(α, n2|n1,N) =

∫
dα p(α|n1,N) p(n2|α,N)

Flat prior on α
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Graphical model — “Probability for everything”

α

n1 n2

Flow
of

Information

p(α, n1, n2) = π(α)
∏

i

p(ni |α) ≡ π(α)
∏

i

`i (α)
member likelihood

From joint to conditionals:

p(α|n1, n2) =
p(α, n1, n2)

p(n1, n2)
=

π(α)
∏

i `i (α)∫
dα π(α)

∏
i `i (α)

p(n2|n1) =

∫
dα p(α, n1, n2)

p(n1)

Observing n1 lets you learn about α
Knowledge of α affects predictions for n2 → dependence on n1



A population of coins/flippers

Each flipper+coin flips different number of times
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Success
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Data

p(✓, {↵i}, {ni}) = ⇡(✓)
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A simple multilevel model
Goal: Learn a population-level “prior” by pooling data

Generating the population & data

Beta
distribution

(mean, conc'n)

Binomial
distributions



Likelihood function for one member’s α



Learning the population distribution



Lower level estimates

Bayesian outlook

• Marginal posteriors are narrower than likelihoods

• Point estimates tend to be closer to true values than MLEs
(averaged across the population)

• Joint distribution for {αi} is dependent



Frequentist outlook

• Point estimates are biased

• Reduced variance → estimates are closer to truth on average
(lower MSE in repeated sampling)

• Bias for one member estimate depends on data for all other
members

Lingo

• Estimates shrink toward prior/population mean

• Estimates “muster and borrow strength” across population
(Tukey’s phrase); increases accuracy and precision of estimates



Population and member estimates
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Competing data analysis goals

“Shrunken” member estimates provide improved & reliable
estimate for population member properties

But they are under-dispersed in comparison to the true values →
not optimal for estimating population properties∗

No point estimates of member properties are good for all tasks!

We should view survey catalogs as providing
descriptions of source likelihood functions,

not “estimates with errors”

∗Louis (1984); Eddington noted this in 1940!



From flips to fluxes

• αi → source flux, Fi

• Upper level π(α) → logN–log S dist’n

• ni → counts in CCD pixels

⇒ “Eddington bias” in disguise



Cautions

Hyperpriors for population parameters

• Information gain from the data weakens going up the hierarchy

• Weakens dependence of lower level inference on upper levels
→ some robustness

• Improper priors that are okay for single-level inference can be
dangerous (e.g., 1/σ is bad!)



Model checking

• Sinharay & Stern 2003:
“[With posterior predictive checks] it is very difficult to detect

violations of the assumptions made about the population

distribution of the paramters unless the extent of violation is huge

or the observed data have small standard errors.”

• Bayarri & Castellanos 2007:
“Both the posterior empirical Bayes and predictive posterior
measures are extremely conservative, indicating almost perfect
agreement of the observed data with the quite obviously wrong null
models.”

Advocate partial posterior predictive p-values
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Surveying and “Un-surveying”
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⇐ Inference goes this way!

Inverse methods

• Try to “correct” or “debias” data via adjustments/weights

• Focus on moments & empirical dist’n function (EDF)

Forward modeling methods

• Try to predict data by applying obs. process to pop’n model

• Focus on likelihood



Selection Effects and Measurement Error

BATSE Gamma-ray
burst peak fluxes
(EDF)

• Selection effects (truncation, censoring) — obvious (usually)
Typically treated by “correcting” data
Most sophisticated: product-limit estimators

• “Scatter” effects (measurement error, etc.) — insidious
Classical “bias corrections” in some cases (Eddington. . . )
Sometimes ignored (average out???)



Marked point process framework

Catalog construction

• Systematically search through a scan space for sources

• GRBs, cosmic rays: Scan in time

• Stars/galaxies: Scan in direction

• Estimate observable source characteristics for candidates

• GRBs: time, direction, peak flux, hardness, duration. . .

• Cosmic rays: time, direction, energy. . .

• Stars/galaxies: direction, multiband photometry. . .

• Collect information about non-detections:
limits for candidates, thresholds, exposure/detection efficiency



Multilevel modeling of catalog data

• Model sources as a point process in the scan space, with
source observables as marks

• Phenomenological models: Model observables directly
(e.g., logN–log S)

• Physical models: Model in a population space; map to
observables

• Measurement error: Data produce source likelihoods, `i (O)

• Straightforward to handle candidate sources/upper limits

• Model detection and nondetection data, accounting for
detection criteria (thinning/truncation, η(O))
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N

D

N

Detections Non-detections
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parameters

Observable source
characteristics

Data

Unknown number
of non-detections

Di

Summarize via
source likelihoods

Summarize via
detection efficiency

Known but
informative

η(O)�i(Oi) ≡ p(Di|Oi)
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Modeling GRB fluxes and directions

Loredo & Wasserman 1993, 1995, 1998

Observables: time, peak flux, direction (ignorable for cosmo
models)

R(Oi ; θ) = Poisson point process intensity function for O

p(θ, {Oi}|D,D) ∝ π(θ) exp

[
−
∫

dO η(O)R(O; θ)

] N∏

i=1

`i (Oi )R(Oi ; θ)

Oi integrands are conditionally independent ⇒ marginalize with
1-D or 1⊗ 2-D quadrature rules



Modeling GRB fluxes and directions

"EDF" and
broken power law CDF

Phenomenological models (isotropic):

• Power law (PL)

• Broken power laws

Astrophysical models:

• Cosmological: Std candles, density
evolution, power-law luminosity
function

• Cosmo + halo models

Compare with Bayes factors vs. PL
(all ∼ .2 to 5)



Bayesian Coincidence Assessment
Luo, Loredo & Wasserman 1996; Graziani & Lamb 1996

Budavári & Szalay 2008
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Challenge: Large hypothesis spaces

For N = 2 events, there was a single coincidence hypothesis, H1

For N = 3 events:

• Three doublets: 1 + 2, 1 + 3, or 2 + 3

• One triplet

The number of alternatives (partitions, $) grows combinatorially!

• Model building: Assign sensible priors to partitions

• Computation: Find & sum over important partitions



D1D2

n1 n2 nM

D3 D5D8 D4 D9

θ Astrophysical model parameters

Sites, labels/partition{nk,λi} λi = k : Di assigned to nk



Hunting for ultra-high energy cosmic ray sources
69 UHECRs from Pierre Auger Observatory (PAO)
17 AGN from a volume-complete survey to 15 Mpc
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Bayesian treatments: Watson+ 2011; Soiaporn+ 2012



Estimation of magnetic deflection (κ), AGN fraction (f )

Also assignment probabilities, change point models, predictive checks. . .

Simplistic models + significant issues due to “tuning” of published data
→ results only suggestive
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Likelihood function catalogs
MLM lessons

• Data are conditionally independent at lowest level
• Data enter both source-level and population-level inference via
`i (O) ≡ p(Di |O)

• No collection of point estimates is optimal for both source-level and
population-level inference

Implications for survey reporting

• Report `i (O) to enable optimal inferences
• Naive likelihood summaries are not optimal estimates of source

properties
• The required summaries are not pdfs for source properties;

independent pdfs are typically not possible
• Report probabilistic summaries of non-detection data
• For targeted (counterpart) surveys replace “upper limits” with `i (O)

summaries for candidate sources

This is in progress for BATSE GRBs, CFHTLS galaxy shapes



Adaptive scatter distortion corrections

Landy & Szalay on “Malmquist bias” for distances (1992)

Data Di provide estimates r̂i ; true distances are ri

Prior p(ri ) ∝ r2n(r); likelihood L(ri ) = lognormal

p(ri |Di ) =
r2i n(ri )L(ri )

p(Di )

p(Di ) =

∫
dri r

2
i n(ri )L(ri )

LS92 set p(Di ) = p(r̂i ) = Ψ(r̂i ), a smoothed fit to {r̂i}
→ moments of p(ri |r̂i ) can be found from Ψ(r̂i )

Use these to calculate corrections to r̂i

A quasi-empirical Bayes approach



Issues
• “Double counts” the data

• Doesn’t account for uncertainty in n(r) from r̂i
uncertainty or finite sample size

→ Revisit this as an explicit MLM



Light curve ensembles
Current (CRTS, PTF, Pan-STARRS. . . ) and future (LSST. . . )
synoptic surveys → large ensembles of multi-band light curves

Underlying dynamic spectrum: F (λ, t)

Fluxes in bands: Fα(t) =
∫
dλRα(λ)F (λ, t)

Data produce sparse, asynchronous, noisy estimates of {Fαi (ti )}
Simulated LSST RR Lyr Observations

Universal Cadence Deep Drilling Cadence

200 days Oluseyi+ 2012



Functional data analysis

Caricature: “Curves as data points”

Analysis of data probing ensembles of functions on a continuum:
curves, surfaces, pdfs over time, space, wavelength. . .

Ramsey & Silverman 2005 (2nd ed.)

Emerging generalization: Object oriented data analysis—collections of
curves, points on a shape manifold, graphs/trees. . .



FDA themes

• Registration of curves

• Smoothing of individual curves (estimate a function from
samples)

• Nonparametric modeling

• Dimension reduction (functional PCA)

• Functional regression (using functions to predict scalars)

• Until recently:

• Many samples

• Synchronous samples

• Negligible measurement error



Emerging area: Bayesian FDA

Arising for treatment of sparse, misaligned data with significant
measurement errors

Motivation (Morris+ 2001):

• Frequentist study of colon cancer growth in rats fed corn or
fish oil using parametric and kernel-based regression

• DNA indicators measured sparsely and non-coincident in
time/space, with measurement error

• Key insight: Accurate population-level inference requires
undersmoothing of individual functions

This is a functional counterpart to Eddington bias

Subsequent work by M. D. Anderson group uses wavelet-based
nonparametric regression in a MLM framework
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light curve model, e.g.,
Gaussian process,
smoothing spline,
probabilistic PCA



A prototype

Mandel's BayeSN
SN Ia light curve model
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