Bayesian multilevel modeling of cosmic populations

Truths, subtle truths, and hierarchical Bayes

Tom Loredo Dept. of Astronomy, Cornell University

With David Chernoff, Martin Hendry, David Ruppert, Kunlaya Soiaporn, Ira Wasserman

Funded by NSF AAG & NASA ADAP programs

ICIC - 21 Aug 2012

Isaac D'Israeli 1766–1848 Man of letters

Isaac D'Israeli 1766–1848 Man of letters

Vikimedia Commons

Benjamin Disraeli

1804–1881 Prime Minister, 1874–1880

Fogg Museum, Harvard

"There are three kinds of lies: lies, damned lies, and statistics."

Mark Twain (1906)

Figures often beguile me, particularly when I have the arranging of them myself; in which case the remark *attributed to* Disraeli would often apply with justice and force:

"There are three kinds of lies: lies, damned lies, and statistics."

Mark Twain (1906)

Figures often beguile me, particularly when I have the arranging of them myself; in which case the remark *attributed to* Disraeli would often apply with justice and force:

"There are three kinds of lies: lies, damned lies, and statistics."

Lie? That Disraeli ever said or wrote it!

Mark Twain (1906)

Figures often beguile me, particularly when I have the arranging of them myself; in which case the remark *attributed to* Disraeli would often apply with justice and force:

"There are three kinds of lies: lies, damned lies, and statistics."

Lie? That Disraeli ever said or wrote it!

Damned lie? That the statement was originally about statistics!

Liars, damned liars, and...

Sir Robert Giffen (1892)

An old jest runs to the effect that there are three kinds of comparison among liars. There are liars, there are outrageous liars, and there are *scientific experts*.

This has lately been adapted to throw dirt upon statistics. There are three degrees of comparisons, it is said, in lying. There are lies, there are outrageous lies, and there are statistics.

Liars, damned liars, and...

Sir Robert Giffen (1892)

An old jest runs to the effect that there are three kinds of comparison among liars. There are liars, there are outrageous liars, and there are *scientific experts*.

This has lately been adapted to throw dirt upon statistics. There are three degrees of comparisons, it is said, in lying. There are lies, there are outrageous lies, and there are statistics.

Statisticians can afford to laugh at and profit by jokes at their expense. There is so much knowledge which is unobtainable except by statistics...

"On international statistical comparisons," Economic Journal (1892)

See http://www.york.ac.uk/depts/maths/histstat/lies.htm

Truths, subtle truths, and hierarchical Bayes

1 Multilevel modeling: Key ideas

2 Example applications in astronomy

3 Future directions

Agenda

1 Multilevel modeling: Key ideas

Dependence—conditional vs. marginal Graphical models Shrinkage; borrowing strength Cautions: Priors, model checking

2 Example applications in astronomy

3 Future directions

Binomial counts

 \bullet \bullet n_1 heads in N flips

 \bullet \bullet n_2 heads in N flips

Suppose we know n_1 and want to predict n_2

Predicting binomial counts — known α

Success probability
$$\alpha \to p(n|\alpha) = \frac{N!}{n!(N-n)!} \alpha^n (1-\alpha)^{N-n} \qquad || N$$

Consider two successive runs of N = 20 trials, known $\alpha = 0.5$

$$p(n_2|n_1, \alpha) = p(n_2|\alpha) \qquad || N$$

 n_1 and n_2 are conditionally independent

Model structure as a graph

- Nodes/vertices = known quantities (squares), uncertain quantities (circles, gray = becomes known)
- Edges specify conditional dependence
- Absence of an edge indicates conditional *in*dependence

Knowing α lets you predict each n_i , independently

Predicting binomial counts — unknown α

Consider the same setting, but with α unknown

Outcomes are *physically* independent, but n_1 tells us about $\alpha \rightarrow$ outcomes are *marginally dependent*:

$$p(n_2|n_1,N) = \int d\alpha \ p(\alpha,n_2|n_1,N) = \int d\alpha \ p(\alpha|n_1,N) \ p(n_2|\alpha,N)$$

Flat prior on α

Prior: $\alpha = 0.5 \pm 0.1$

Graphical model — "Probability for everything"

 $p(\alpha, n_1, n_2) = \pi(\alpha) \prod_i p(n_i | \alpha) \equiv \pi(\alpha) \prod_i \ell_i(\alpha)$

member likelihood

From joint to conditionals:

$$p(\alpha|n_1, n_2) = \frac{p(\alpha, n_1, n_2)}{p(n_1, n_2)} = \frac{\pi(\alpha) \prod_i \ell_i(\alpha)}{\int d\alpha \pi(\alpha) \prod_i \ell_i(\alpha)}$$
$$p(n_2|n_1) = \frac{\int d\alpha p(\alpha, n_1, n_2)}{p(n_1)}$$

Observing n_1 lets you learn about α Knowledge of α affects predictions for $n_2 \rightarrow$ dependence on n_1

A population of coins/flippers

Each flipper+coin flips different number of times

$$p(\theta, \{\alpha_i\}, \{n_i\}) = \pi(\theta) \prod_i p(\alpha_i|\theta) \ p(n_i|\alpha_i)$$
$$= \pi(\theta) \prod_i p(\alpha_i|\theta) \ \ell_i(\alpha_i)$$

A simple multilevel model

Goal: Learn a population-level "prior" by pooling data

Likelihood function for one member's $\boldsymbol{\alpha}$

Learning the population distribution

Bayesian outlook

- Marginal posteriors are narrower than likelihoods
- Point estimates tend to be closer to true values than MLEs (averaged across the population)
- Joint distribution for {α_i} is *dependent*

Frequentist outlook

- Point estimates are biased
- Reduced variance → estimates are closer to truth on average (lower MSE in repeated sampling)
- Bias for one member estimate depends on data for all other members

Lingo

- Estimates *shrink* toward prior/population mean
- Estimates *"muster and borrow strength"* across population (Tukey's phrase); increases accuracy and precision of estimates

Population and member estimates

Competing data analysis goals

"Shrunken" member estimates provide improved & reliable estimate for population member properties

But they are *under-dispersed* in comparison to the true values \rightarrow not optimal for estimating *population* properties*

No point estimates of member properties are good for all tasks!

We should view survey catalogs as providing descriptions of source likelihood functions, not "estimates with errors"

*Louis (1984); Eddington noted this in 1940!

From flips to fluxes

- $\alpha_i \rightarrow$ source flux, F_i
- Upper level $\pi(\alpha) \rightarrow \log N$ -log S dist'n
- $n_i \rightarrow \text{counts in CCD pixels}$
- \Rightarrow "Eddington bias" in disguise

Cautions

Hyperpriors for population parameters

- Information gain from the data weakens going up the hierarchy
- Weakens dependence of lower level inference on upper levels
 → some robustness
- Improper priors that are okay for single-level inference can be dangerous (e.g., $1/\sigma$ is bad!)

Model checking

• Sinharay & Stern 2003:

"[With posterior predictive checks] it is very difficult to detect violations of the assumptions made about the population distribution of the paramters unless the extent of violation is huge or the observed data have small standard errors."

• Bayarri & Castellanos 2007:

"Both the posterior empirical Bayes and predictive posterior measures are *extremely* conservative, indicating almost perfect agreement of the observed data with the quite obviously wrong null models."

Advocate partial posterior predictive p-values

Agenda

1 Multilevel modeling: Key ideas

2 Example applications in astronomy

Marked point process framework Number-size dist'ns for GRBs... Directional coincidence assessment

3 Future directions

Surveying and "Un-surveying"

 \Leftarrow Inference goes this way!

Inverse methods

- Try to "correct" or "debias" data via adjustments/weights
- Focus on moments & empirical dist'n function (EDF)

Forward modeling methods

- Try to predict data by applying obs. process to pop'n model
- Focus on likelihood

Selection Effects and Measurement Error

BATSE Gamma-ray burst peak fluxes (EDF)

- Selection effects (truncation, censoring) obvious (usually) Typically treated by "correcting" data Most sophisticated: product-limit estimators
- "Scatter" effects (measurement error, etc.) insidious Classical "bias corrections" in some cases (Eddington...) Sometimes ignored (average out???)

Marked point process framework

Catalog construction

- Systematically search through a *scan space* for sources
 - GRBs, cosmic rays: Scan in time
 - Stars/galaxies: Scan in *direction*
- Estimate *observable source characteristics* for candidates
 - GRBs: time, direction, peak flux, hardness, duration...
 - Cosmic rays: time, direction, energy...
 - Stars/galaxies: direction, multiband photometry...
- Collect information about *non-detections*: limits for candidates, thresholds, exposure/detection efficiency

Multilevel modeling of catalog data

- Model sources as a *point process in the scan space*, with *source observables as marks*
 - Phenomenological models: Model observables directly (e.g., log N-log S)
 - Physical models: Model in a population space; map to observables
- Measurement error: Data produce *source likelihoods*, $\ell_i(\mathcal{O})$
 - Straightforward to handle candidate sources/upper limits
- Model detection and nondetection data, accounting for detection criteria (thinning/truncation, η(O))

Modeling GRB fluxes and directions

Loredo & Wasserman 1993, 1995, 1998

Observables: time, peak flux, direction (ignorable for cosmo models)

 $R(\mathcal{O}_i; \theta) =$ Poisson point process intensity function for \mathcal{O}

$$p(\theta, \{\mathcal{O}_i\}|D, \overline{D}) \propto \pi(\theta) \exp\left[-\int d\mathcal{O} \eta(\mathcal{O}) R(\mathcal{O}; \theta)\right] \prod_{i=1}^N \ell_i(\mathcal{O}_i) R(\mathcal{O}_i; \theta)$$

 \mathcal{O}_i integrands are conditionally independent \Rightarrow marginalize with 1-D or 1 \otimes 2-D quadrature rules

Modeling GRB fluxes and directions

Phenomenological models (isotropic):

- Power law (PL)
- Broken power laws

Astrophysical models:

- Cosmological: Std candles, density evolution, power-law luminosity function
- Cosmo + halo models

Compare with Bayes factors vs. PL (all \sim .2 to 5)

Bayesian Coincidence Assessment

Luo, Loredo & Wasserman 1996; Graziani & Lamb 1996 Budavári & Szalay 2008

Not associated

Associated

$$p(d_1, d_2|H_0) = \int d\boldsymbol{n}_1 \ p(\boldsymbol{n}_1|H_0) \ \ell_1(\boldsymbol{n}_1)$$
$$\times \int d\boldsymbol{n}_2 \cdots$$

$$p(d_1, d_2|H_1) = \int d\boldsymbol{n} \ p(\boldsymbol{n}|H_1) \ \ell_1(\boldsymbol{n}) \ \ell_2(\boldsymbol{n})$$

Challenge: Large hypothesis spaces

For N = 2 events, there was a single coincidence hypothesis, H_1 For N = 3 events:

- Three doublets: 1 + 2, 1 + 3, or 2 + 3
- One triplet

The number of alternatives (partitions, ϖ) grows combinatorially!

- Model building: Assign sensible priors to partitions
- Computation: Find & sum over important partitions

Hunting for ultra-high energy cosmic ray sources

69 UHECRs from Pierre Auger Observatory (PAO) 17 AGN from a volume-complete survey to 15 Mpc

Arcs connect each CR to its nearest AGN

Bayesian treatments: Watson⁺ 2011; Soiaporn⁺ 2012

Estimation of magnetic deflection (κ), AGN fraction (f)

Also assignment probabilities, change point models, predictive checks...

Simplistic models + significant issues due to "tuning" of published data \rightarrow results only suggestive

Agenda

1 Multilevel modeling: Key ideas

2 Example applications in astronomy

3 Future directions

Likelihood function catalogs Adaptive scatter distortion corrections Bayesian FDA for light curve ensembles

Likelihood function catalogs

MLM lessons

- Data are conditionally independent at lowest level
- Data enter both source-level and population-level inference via $\ell_i(\mathcal{O}) \equiv p(D_i|\mathcal{O})$
- No collection of point estimates is optimal for both source-level and population-level inference

Implications for survey reporting

- Report $\ell_i(\mathcal{O})$ to enable optimal inferences
- Naive likelihood summaries are *not* optimal estimates of source properties
- The required summaries are *not pdfs* for source properties; independent pdfs are typically not possible
- Report probabilistic summaries of non-detection data
- For targeted (counterpart) surveys replace "upper limits" with l_i(O) summaries for candidate sources

This is in progress for BATSE GRBs, CFHTLS galaxy shapes

Adaptive scatter distortion corrections

Landy & Szalay on "Malmquist bias" for distances (1992)

Data D_i provide estimates \hat{r}_i ; true distances are r_i Prior $p(r_i) \propto r^2 n(r)$; likelihood $\mathcal{L}(r_i) = \text{lognormal}$

$$p(r_i|D_i) = \frac{r_i^2 n(r_i) \mathcal{L}(r_i)}{p(D_i)}$$
$$p(D_i) = \int dr_i r_i^2 n(r_i) \mathcal{L}(r_i)$$

LS92 set $p(D_i) = p(\hat{r}_i) = \Psi(\hat{r}_i)$, a smoothed fit to $\{\hat{r}_i\}$

ightarrow moments of $p(r_i|\hat{r_i})$ can be found from $\Psi(\hat{r_i})$

Use these to calculate corrections to \hat{r}_i

A quasi-empirical Bayes approach

Issues

- "Double counts" the data
- Doesn't account for uncertainty in n(r) from r̂_i uncertainty or finite sample size

\rightarrow Revisit this as an explicit MLM

Light curve ensembles

Current (CRTS, PTF, Pan-STARRS...) and future (LSST...) synoptic surveys \rightarrow *large ensembles of multi-band light curves*

Underlying dynamic spectrum: $F(\lambda, t)$

Fluxes in bands: $F_{\alpha}(t) = \int d\lambda R_{\alpha}(\lambda) F(\lambda, t)$

Data produce sparse, asynchronous, noisy estimates of $\{F_{\alpha_i}(t_i)\}$ Simulated LSST RR Lyr Observations

Functional data analysis

Caricature: "Curves as data points"

Analysis of data probing *ensembles of functions* on a continuum: curves, surfaces, pdfs *over* time, space, wavelength...

Ramsey & Silverman 2005 (2nd ed.)

Figure 1.1. The heights of 10 girls measured at 31 ages. The circles indicate the unequally spaced ages of measurement.

Figure 1.6. Mean monthly temperatures for the Canadian weather stations. In descending order of the temperatures at the start of the year, the stations are Prince Rupert, Montreal, Edmonton, and Resolute.

Emerging generalization: *Object oriented data analysis*—collections of curves, points on a shape manifold, graphs/trees...

FDA themes

- Registration of curves
- Smoothing of individual curves (estimate a function from samples)
- Nonparametric modeling
- Dimension reduction (functional PCA)
- Functional regression (using functions to predict scalars)
- Until recently:
 - Many samples
 - Synchronous samples
 - Negligible measurement error

Emerging area: Bayesian FDA

Arising for treatment of sparse, misaligned data with significant measurement errors

Motivation (Morris⁺ 2001):

- Frequentist study of colon cancer growth in rats fed corn or fish oil using parametric and kernel-based regression
- DNA indicators measured sparsely and non-coincident in time/space, with measurement error
- Key insight: Accurate population-level inference requires *under*smoothing of individual functions

This is a functional counterpart to Eddington bias

Subsequent work by M. D. Anderson group uses wavelet-based nonparametric regression in a MLM framework

Mandel's BayeSN SN la light curve model

