Am | just
dumb?

Xiao-Li Meng

| got more data, my model is more refined,
but my estimator is getting worse!
Am | just dumb?

Xiao-Li Meng
Department of Statistics, Harvard University

@ Meng and Xie (2012) "How can | find more information
for my estimation?”, for Econometric Reviews.
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Am | just
dumb?

@ Do more (correct) data imply better estimator?
@ Not so even for LSE
o Self Efficiency
o Self-efficient Estimating Equation

© Does making more (correct) assumptions help?
@ Not so even for bivariate normal
9 Preserving the Second Bartlett Identity
@ Using a Guiding Working Model (GWM)

9 Interaction between data pattern and model assumptions
@ AR(1) model

@ s Jeffreys prior really non-informative?
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“Sandwich” estimator of var:
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Am 1 just A Heteroscedastic Regression Model

dumb?
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Surprise: Even least-squares estimator ...

Am 1 just A Heteroscedastic Regression Model

dumb?

Xiao-Li Meng \/, = /BX, + 6,‘, €j ~ N(07 0-2X1'n)7 I = 17 crt n

Least-squares estimator: “Sandwich” estimator of var:

Elsoésoeven for B[_SE — Z?:]_ XI\/I \A/LSE _ Z?:l XI-2(Y,- — X,',BLSE)z

X X [or, x|

But 3L5E is not self-efficient (Meng, 1994) when 7 # 0:

. n_x2tn
V(ﬁLSE|X,9) _ 0_2 ZI;]. 12 5
[y X7]

Compare, when 1 = 0:

1

V(BREIX,0) = 0® =
Zi:l Xi2
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VEE =0.0214 < VIRE = 0.4049.




What went wrong?

Am | just
dumb?

iao-Li Meng

Take n =2 and X; = (101 — i)~!

VEE =0.0214 < VIRE = 0.4049.

But for MLE, the properly weighted LSE,

VIEE = 0.0156 > V{{5E = 0.01.




What went wrong?

Am | just
dumb?

iao-Li Meng

Take n =2 and X; = (101 — i)~!

VEE =0.0214 < VIRE = 0.4049.

But for MLE, the properly weighted LSE,

VIEE = 0.0156 > V{{5E = 0.01.

o With n =64, LSE is 73% efficient compared with MLE.
@ With n =100, LSE is only 2.5% efficient.



What went wrong?
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Take n =2 and X; = (101 — i)~!

VEE =0.0214 < VIRE = 0.4049.

But for MLE, the properly weighted LSE,

VIEE = 0.0156 > V{{5E = 0.01.

o With n =64, LSE is 73% efficient compared with MLE.
@ With n =100, LSE is only 2.5% efficient.

@ Those observations with large variabilities received more
weight than they deserve.
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know how to use them most effectively because



Please throw away some data ...

Am | just
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xiaoLi venz [l Weighting the Heteroscedastic Regression Model: W; = XI._"/2

W;Yi = B(WiXi))+&, €~ N(©0,6%), i=1,...,n

Not so even for
LSE

1
— ——
BmLE S X2

n 1-ny/. ~
LiaXi Vi . :’ V(BmielX,0) = o
Z;’:l Xi -

So it is justifiable to throw away some data points if you don't

know how to use them most effectively because

When the optimal W;'s have large variation, setting small
W;’s to zero better approximates the optimal weighting
scheme than “blindly” using equal weights.

J
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Not so even for
LSE

Don't sue me ...

WHEN IT SEEMS DESIRABLE TO
IGNORE DATA

Herman Chernoft
Massachusetts Institute of Technology

ABSTRACT

An experiment designed to detect the relative motion of two
astronomical objects raised the problem of testing, against shift
alternatives, the hypotehsis HO that two energy distributions
are equivalent., The relevant data consist of independent Poisson
counts XiA with means AjpijTi.j where Xj is the intensity of
radiation from the jth object, pij is the probability that a
random photon from the Jjth object has energy in a small interval
centered about e and Tij is the time duration allocated to
the count Xij' The hypothesis HO implies that Pi1 = Pip for
i=1,2, ..., m

N A natural test uses the statistic Zei(ﬁiz - 511) where the
pij are estimates of pi" For intervals where the pij were

anticipated to be small, the experimenter ¢hose small values




Need a bit more: Self-efficiency
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Definition of Self-efficiency (Meng, 1994):

Let W, be a data set, and W, be a subset of W, created by a
selection mechanism. A statistical estimation procedure 4(-) for
0 is said to be self-efficient (with respect to the selection
mechanism) if 6(W,) has the smallest MSE in the linear class
{(1 = NO(W,) + NI(W,), X e R}

Self Efficiency
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A Geometrical Characterization of Self-efficiency

Am | jusi 1
m | just Orthogonality

Xiao-Li Meng

(3( YCOm) (3( Yobs )

i (1= NO(Yeom) + A(Yobs)

Equation
Pythagoras Identity

E(B(Yobs) —0)* = E(B(Yeom) — 0)? + E(B(Yobs) — (Yeom))?

ot



A Geometrical Characterization of Self-efficiency

Am | jusf 1
m | just Orthogonality

Xiao-Li Meng

(3( Ycom) (3( Yobs )

e (1 = N)A(Yeom) + AD(Yobs)

Equation
Pythagoras Identity
2




Self-efficient Estimating Equations

Am | just
dumb?

Estimating Equation

Xiao-Li Meng . ~
Let the estimators 6( Ycom) and 6( Yops) be derived from
Sc:om(Ycom; 9) =0 and Sobs(yobs; 0) =0,

which satisfy certain regularity conditions.

Self-efficient
Estimating
Equation



Self-efficient Estimating Equations
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Estimating Equation
Let the estimators A( Yeom) and 0(Yeps) be derived from
Scom(Ycom; 9) =0 and Sobs(Yobs; 0) =0,

which satisfy certain regularity conditions.

iao-Li Meng

-

The Characterization

The estimating procedure f(-) is self-efficient if and only if

£ (- 220)] " (sueT)E (-2 & (Seam)

Self-efficient
Estimating
Equation

ot



Self-efficient Estimating Equations

Am | just
dumb?

Estimating Equation
Let the estimators A( Yeom) and 0(Yeps) be derived from
Scom(Ycom; 9) =0 and Sobs(Yobs; 0) =0,

which satisfy certain regularity conditions.

iao-Li Meng

-

The Characterization

The estimating procedure f(-) is self-efficient if and only if

£ (- 220)] " (sueT)E (-2 & (Seam)

@ Can be viewed as a generalization of the second Bartlett
identity.

Self-efficient
Estimating
Equation

ot



Examples of Self-efficient Procedures

Am | just Holds for Arbitrary Pattern of the Observed Data
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@ Maximum Likelihood Estimators

@ Bayesian Estimators

Self-efficient
Estimating
Equation



Examples of Self-efficient Procedures

Am | just Holds for Arbitrary Pattern of the Observed Data
dumb? (asymptotically)

Xiao-Li Meng

@ Maximum Likelihood Estimators

@ Bayesian Estimators

Holds for “Regular Pattern” of the Observed Data

Self efficient If Yeom is an i.i.d. sequence and Y ps is a random subset of it
Equation . .
o (i.e., MCAR), i.e

Ycom = (Y17' B Yn)

Yobs = (%17"'7\/1'",)-

Then any estimating equation with the form

(Yeom: 0) = ZU Yi; 6)

is self-efficient.



Checking Self-efficiency of LSE under ARCH(1)

A M ARCH(1) Regression Model (Eagle, 1982)

Xiao-Li Meng

Yt:Xt/8+€t7 t:]_,,N

Vietlej,j < t] = ap + 0416371

with ag > 0, a3 > 0, and ¢g = Yy an unknown fixed parameter.

Self-efficient
Estimating
Equation



Checking Self-efficiency of LSE under ARCH(1)

A M ARCH(1) Regression Model (Eagle, 1982)

Xiao-Li Meng

Yt:Xt/8+€t7 t:]_,,N
Vietlej,j < t] = agp + aze?_;
with ag > 0, a3 > 0, and ¢g = Yy an unknown fixed parameter.

Self-efficient
Estimating
Equation

Given Yops = {Y4,,..., Ys,} and assume X; = 1.

o Let V4 ¢, = V(BLSE) based on Yops, and n/N — r > 0.




Checking Self-efficiency of LSE under ARCH(1)

Am | just
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ARCH(1) Regression Model (Eagle, 1982)

Xiao-Li Meng

Yt:Xt/8+€t7 t:]_, N

)
Vietlej,j < t] = ap + 0416371

with ag > 0, a3 > 0, and ¢g = Yy an unknown fixed parameter.

Self-efficient
Estimating
Equation

Given Yops = {Y4,,..., Ys,} and assume X; = 1.

o Let V4 ¢, = V(BLSE) based on Yops, and n/N — r > 0.

@ Then LSE is (asymptotically) self-efficient with respect to
randomly selecting a consecutive segment if and only if
Vin

lim =
n—oo Vt17tn

@ This holds if and only if a; < 1.
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So what about making more assumptions?

Am | just

ettt Estimating correlation p based on bivariate normal data
Xiao-Li Meng {(XI, yl)‘ I _ 1’ . n}

AMLE _ Sxy — Xy 2
n =X = hn(¢n, Sxy),
SxSy

where ¢, = {X,¥,5sx, sy} is MLE for ¢ = {px, pty, 04,0, }.
@ What if we know both margins are N(0,1), and hence
¢ =¢o=1{0,0,1,1}7

@ Should it be obvious then to replace qg,, by its true value?

n
PLUG _ Sy —0 1 -
T T T L

i=1

Not so even for
bivariate normal

@ This is an unbiased but terrible estimator!
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P St — (242~ 1)pt 5 =0

V(pSMLE) = 1(11— P22)2
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Not so even for
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How bad is “partial plug-in"?

Am | just
dumb?

The MLE for p conditioning on ¢ = ¢q is a root of

Xiao-Li Meng

P2 — 0% — (52 + 53 —1)p+sy =0.

R 1 1_p22
V(pSMLE):—( )

n 1+ p?
Compare with
1
VHIE) = (1 - )2

n

Not so even for
bivariate normal

X 1
V(pp"0) = ~(1+7)

@ NOTE: The validity of these estimators and their variances
does not depend on the normality.
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It made a difference, but in the wrong direction!

Am | just
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Conditional MLE
— — — Partial plug-in

Relative efficiency
o
o] -

0.6 N 1
Not so even for ~
bivariate normal ~
0.4f N 1
0.2} S~ A
O Il Il Il L — _
0 0.2 0.4 0.6 0.8 1
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Puzzle of the Day:

Am | just
dumb?

@ How could the information about the marginal
variances help estimate the correlation, which is
invariant to scale (and location) transformation?

Not so even for
bivariate normal
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Identity




How does MLE get it correctly?

fom 1 s Fisher information for 6 = (61, 6>)

dumb?

2 2 ((11)  (12)
ao-Li Meng 111 112 -1 o / 1
i2]_ i22 > & | (‘9) - ( I'(21) I'(22) )
Fisher information for 64:
I'2
1(61) = [i(V] 7! = iy — 22,
122
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How does MLE get it correctly?

fom 1 s Fisher information for 6 = (61, 6>)

dumb?

I'(ll)

iao-Li Meng _ Il]_ Il2 -1 S ]

B
N
N
=

v

Fisher information for 64:

1(61) = [Vt = iy — i

Fisher information for 8; given 6,:

Preserving the . 1(01 ’02) = i].l . )
Second Bartlett

Identity



How does MLE get it correctly?

fom 1 s Fisher information for 6 = (61, 6>)

dumb?

Xiao-Li Meng 1 i jar)y
=22 & o=l jo)

Fisher information for 8; given 6,:

1(01’02) = i11.

Preserving the
Second Bartlett
Identity

The gain in information for 6; due to the knowledge of 65:

2
G(61]02) = 1(61]62) — 1(61) = 2—2 = inrd, > 0.
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Making Bartlett adjustment before plug-in

Am | just

dumb? Adjust EE S(Y;0) to Sa(Y;6) = A(0)S(Y;0) to ensure
XieoliMens S Bartlett Identity (BI)

9Sa(Y:0)
06 '

This implies A(8) = JT(0)V~1(S(Y;0)) where
aS(v;0)\ "
(%w) |

e @ To plug-in 6 = 950), take the rows of Sa(Y;0)

Identity ) T
corresponding to (%}1,9)) in JT(0) as the estimating

equations for A1, and then plug-in 6, = 9&0).

V(Sa(Y;0)) = E [

JTH)=E




A conditional normal working model
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dumb?

e VolFaif ~ Ny(®), 770), j=1,on

Using a Guiding
Working Model
(GWM)



A conditional normal working model
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Xiao-Li Meng

=5 (9) + s (6) =0

Using a Guiding

Working Model
(GWM)
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Using a Guiding
Working Model
(GWM)

A conditional normal working model

.....

Sn(0) = S¥(0) + s (0) =0

SP(6)1-3 " 4(6) [%] S (#0) - ) “Z;
= j j=1 J

° E[S,(,“)(G)] = 0 only requires p;(0) correctly specified.

] |
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Using a Guiding
Working Model
(GWM)

A conditional normal working model

.....

Sn(0) = S¥(0) + s (0) =0

SP(6)1-3 " 4(6) [%] S (#0) - ) “Z;
= j j=1 J

° E[S,(,“)(G)] = 0 only requires p;(0) correctly specified.
° E[S,(,T)(H)] = 0 also requires 7;(6) correctly specified.

] |
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Xiao-Li Meng

Using a Guiding
Working Model
(GWM)

A conditional normal working model

Let Y ={Yy,..., Ye,}, Fj—1 = o{ Yy, i <j}, and assume

Sn(0) = S¥(0) + s (0) =0

SP(6)1-3 " 4(6) [%] S (#0) - ) [EZ;
= j j=1 J

° E[S,(,“)(G)] = 0 only requires p;(0) correctly specified.
° E[S,(,T)(H)] = 0 also requires 7;(6) correctly specified.

) COV(S[SH)(H), S,ST)(G)) =0 as long as E[dj3|-7:171] =0,
under which S,(0) also satisfies BI.

] |
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Xiao-Li Meng

7,(9) = T¥(6) + 71 (6). (A1)

7(0) = Y El&(0)E] (9)): (A2)
j=1

7(0) =2 Elni(0)n] (6)] (42)

j=1




Two Kinds of Information Additivity

Am | just
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Xiao-Li Meng

T,(0) = T4(0) + znT)(e).
7(0) = >_ElG(0)¢ (0)]

750
j=1

) =2 En(8)n] (6

)

@ Model-Reduction Additivity: (A;)




Two Kinds of Information Additivity
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Xiao-Li Meng

T,(0) = I)(0) + In”w)- (A1)
7(0) = Y El&(0)E] (9)): (A2)
j=1
i0(0) =2 El;(0)n] ()] (42)
j=1

@ Model-Reduction Additivity: (A;)
@ Data-Augmentation Additivity: (Ap)
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AR(1) model with spacing

Am | just AR(1) model for the complete data;
dumb?
Xiao-Li Meng Yt - th—l + G € 1}\(} N(O, 02)7 t = 1’ e N,




AR(1) model with spacing

Am [ just AR(1) model for the complete data;

dumb?

Xiao-Li Meng Yi =pYi1 + €, € iid N(07 02)7 t=1,..., N,

/-1

= Y| Yo ~ N(p* Vs, ke_s(p)o®), with ki(p) = p¥.
j=0




AR(1) model with spacing

Am | just AR(1) model for the complete data;
dumb?
Xiao-Li Meng Yt — th—l = € 1}\(} N(O, 02)7 t = 1’ e N,

1 [ Y8ALA(p) +0*Ban(p) O tim(p)Yo
T (9) = = 0 0 0

t171(p) Yo 0 pnlp)

") 1 ‘71 J::l 512(P) o? }7:1 di(p) O
I (0)=5= | © j=1 9j(p) a 0
0 0 0




Interaction between Data Pattern and Model

Assumptions

Suppose tj;1 —t; = 5. Then

iao-Li Meng o
(s=1), | 2y _ Ynlplo?) 1
RE(plo?) = "0 < =
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Interaction between Data Pattern and Model

Assumptions

Suppose tj 1 —tj =s. Then
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iao-Li Meng o
(s=1), 2y _ Ga(plo?) 1
Rn (p|0 ) - In(p) < n—1’
) 2
1-— 1
(=2)(plp2) = > P 1




Interaction between Data Pattern and Model

Assumptions

Suppose tj;1 —t; = 5. Then
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iao-Li Meng o
(s=1), | 2y _ Ynlplo?) 1
Ry (plo”) = Z.00) <—
° 2
R(S—Z) 2y_ _t7 P <2
)
= 2(1 — p?)(1 +2p%)?
) (plo?) = . unbounded!
R (plo®) 2+ 2 +1) ; unbounde



Interaction between Data Pattern and Model

Assumptions

Suppose tj;1 — tj = s. Then

Xiao-Li Meng )

Am | just
dumb?

Rt = A7) < L
° ) L 1
R (plo?) = 52 =3
]

= 2(1 — p?)(1 + 2p%)?
REI(plo®) = - unbounded!

Because

V(Yt+s|yt) = (1 + p2 Al oo ot ,02(5_1))02




Optimal spacing for estimating p with given n
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e For large n

Xiao-Li Meng (s) 2 2(s—1)
i e S 55~ = H(s,p).
P

n—oco N 1-—




Optimal spacing for estimating p with given n

Am | j
e For large n

Xiao-Li Meng S —
Ip) 2D

nler;o e pz = H(s, p).

For given p, H(s, p) is maximized at

1.59362...

smax(P) = =




Optimal spacing for estimating p with given n
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For large n

(s) 2 2(s—1)
. In'(p) _sp _
i, =55 = S =HE)

Xiao-Li Meng

For given p, H(s, p) is maximized at
1.59362...
—logp?

For optimizing integer s, we have

@ s=1is optimal as long as |p| < 372 =0.577...;

smax(p) =




Optimal spacing for estimating p with given n

Am | j
e For large n

Xiao-Li Meng

(s) 2 2(s—1)
. In'(p) _sp _
i, =55 = S =HE)

For given p, H(s, p) is maximized at

1.59362...

smax(P) = =

For optimizing integer s, we have
@ s=1is optimal as long as |p| < 372 =0.577...;
@ s =2 is optimal when
V105 -5

0.577 </ X——==072..
<|pl < 10




Optimal Spacing and Relative Gain

Am | just
dumb?

optimal s
I R R S R S

05 055 06 065 07 075 08 08 09

Figure: Optimal spacing.
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Figure: Optimal spacing.
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Figure: Relative efficiency.
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Log Relative Efficiency: Fixed n vs Fixed N
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logarithm of relative efficiency

Figure: Fixed n; N = ns
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Figure: Fixed n; N = ns Figure: Fixed N, n= N/s
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Bayesians are not automatically immune ...

Amljuft For | T 2 s—1 _ 2s5)\-1/2 h is th .
dumb? or large n, Z, =~ ns“p°*~ (1 — p=*) , Where s is the spacing.
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@ Jeffreys prior is the same as p?* ~ Beta(1/2,1/2).




Bayesians are not automatically immune ...

Amljuft For | T 2 s—1 _ 2s5)\-1/2 h is th .
dumb? or large n, Z, =~ ns“p°*~ (1 — p=*) , Where s is the spacing.
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@ If it seems like a good Lintuition, don't jump on it!
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