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Introduction

Scientific Objectives
Develop a comprehensive method to infer (properties of) the
distribution of source fluxes for a wide variety source populations.

Statistical Objectives

I Inference: Account for non-ignorable missing data (+more)

I Model Selection: Select the ‘best’ model for a given dataset

I Model Checking: Evaluate the adequacy of a given model
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Estimating Flux Distributions

Goal: Estimate the distribution of fluxes for the source population.

Knowing the specific relationship for different objects (e.g., stars,
galaxies, pulsars) gives a lot of information about the underlying
physics (e.g., the mass, age of galaxies).

Toy example: Uniformly distributed source population, same
intrinsic luminosity L0, then for telescopic sensitivity S , sources will
be detectable to d =

√
L0/4πS . The number of sources within

this distance is then:

N(< d) = N(> S) = n0

(
4π

3
d3

)
∝ S−3/2

Therefore, the convention is to plot the log (base 10) of the
cumulative number of sources as a function of log (base 10) flux.
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The Rationale for logN − log S Fitting

In the simple case we have:

log10 (N(> S)) = α− θ log10(S),

Since linearity has both theoretical and empirical support, a
commonly used generalization is a broken power-law:

log10 (1− FG (s)) =


α0 − θ0 log10(s) K0 < s < K1

α1 − θ1 log10(s) K1 < s < K2
...

...
αm − θm log10(s) Km < s

, (1)

subject to continuity constraints.

Primary Goal: Estimate θj ’s (the power law slopes), while properly
accounting for detector uncertainties and biases.
Note: There is uncertainty on both x− and y−axes (i.e., N and s).
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Probabilistic Connections

Under independent sampling, linearity on the log N − log S scale is
equivalent to the flux distribution being a Pareto distribution.
A piecewise linear log N − log S also has a probabilistic analogue.

Any distribution whose log N − log S curve is a broken power law
with M breakpoints, can be represented as a mixture of M truncated
Pareto distributions and one (untruncated) Pareto distribution.

Theorem

Example: A single break-point model is equivalent to:

Si
iid∼ IX0 + (1− I)X1

I ∼ Binomial (1; p) , p = (K1/K0)−θ0

X0 ∼ Truncated-Pareto (K0, θ0,K1) , X1 ∼ Pareto (K1, θ1) .

For short, we denote Si
iid∼ Broken-Pareto(θ,K , p).
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Physically Motivated Fitting

The insight from the probabilistic setting reveals that the broken
power-law model has a number of unphysical properties.

Notably, it implies an ‘initial source population’ with a sharp
cut-off, yielding to a secondary population above a threshold.

The unphysical nature of the Broken Power-law can be relaxed
quite easily, by removing the upper-truncation:

Si
iid∼ I0X0 + I1X1 + · · ·+ ImXm

Ij ∼ Multinomial (1; p0, p1, . . . , pm) ,

Xj ∼ Pareto (Kj , θj) .

For short, we denote Si
iid∼ Mixture-Pareto(θ,K , p).

Note: The resulting logN-logS plot is no longer piecewise-linear.
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Inference Roadmap

I DETECTOR EFFECTS:

Photon counts do not directly correspond to the source fluxes:

1. Background contamination
2. Natural (Poisson) variability
3. Effective exposure, detector sensitivity etc.

II INCOMPLETENESS:

Not all sources in the population will be detected:

1. Low intensity sources
2. Close to the limit: background, natural variability and

detection probabilities are important.

Missingness is non-ignorable: whether or not a source is
missing contains information about the parameters.
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The Bayesian Hierarchical Model

Assumed power-law flux distribution:

Si |Smin, θ
iid∼ Pareto (θ,Smin) i = 1, . . . ,N

Source and background photon counts:

Y tot
i |Si ,Bi , Li ,Ei

⊥⊥∼ Pois (λ(Si , Li ,Ei ) + k(Bi , Li ,Ei )) , i = 1, . . . ,N,

Incompleteness, missing data indicators:

Ii |Si ,Bi , Li ,Ei ∼ Bernoulli (g (Si ,Bi , Li ,Ei )) .

Prior distributions:

p(Bi , Li ,Ei |N), p(Smin)

N ∼ NegBinom (α, β) ,

θ ∼ Gamma(a, b).
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Model Overview

For all versions of the model (regular, broken and mixture-Pareto),
inference about θ, N and S is based on the observed data posterior
distribution.

Computation is performed using MCMC.

Skip MCMC Visualization



Counts by location (size proportional to # photons):



Flux by location (red=missing) size proportional to flux Si ):



Histogram of flux distribution:



Complete-data logN-logS plot:



Visualizing Posterior Inference:



Application: Chandra Deep Field North

We now apply our method to a subset of the Chandra Deep Field
North (CDFN) dataset.

I One of the deepest available X-ray surveys

I Tabulated observation-specific joint distribution of
background, exposure map and off-axis

I 225 sources

Apply model selection criteria to select ‘best’ model. Verify model
assumptions using ppc checks.



Statistical Objectives

X Inference: Account for non-ignorable missing data (+more)

I Model Selection: Select the ‘best’ model for a given dataset

I Model Checking: Evaluate the adequacy of a given model



Model Selection

Given an assortment of candidate models (e.g., single vs. Broken
vs. Mixture-Pareto), we need a criteria to select the best model.

This allows us to address the most important question:
“Is there sufficient evidence of a ‘break’ in the logN-logS plot?”

We use a Bayesian model selection technique based on the
Deviance Information Criterion (Spiegelhalter et al., 2002).
Alternatives include Bayesian Predictive Information Criterion
(Ando, 2007). DIC also has a model checking aspect.

In a simplified but realistic context (no incompleteness), > 80%
classification success can be achieved (Wong, Baines, Lee, Aue;
2012).



Model Selection

How often can we recover the true number of breakpoints?

For no background setting (Wong et al, 2012):

True B B̂
1 2 3 4

1 BIC 195 5 0 0

2 BIC 10 190 0 0

3 BIC 0 32 168 0

Table: Number of pieces B̂ selected by BIC (True B=1,2,3)

With background but no incompleteness we obtain ≈ 80% success.
With background, incompleteness and all effects. . . needs work ,
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CDFN: Model Selection

For CDFN, including incompleteness and all uncertainties, top
candidates models (by DIC) are:

Model Type K0 K1 |θ1 − θ0| DIC

Broken-Pareto -16.4 -15.59 0.27 3473.87
Broken-Pareto -16.4 -15.68 0.24 3474.90
Broken-Pareto -16.4 -15.77 0.22 3475.15
Regular -16.4 — — 3475.70

Data suggests a Broken Power-law, with (θ̂1, θ̂2) = (0.60, 0.87).
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Model Checking

The posterior predictive p−value (Rubin, 1984), is a tool for
assessing the adequacy of the model fit for Bayesian models based
on the the posterior predictive distribution p(y∗|y).

Consider testing the hypothesis:

H0 : The model is correctly specified , vs.,

H1 : The model is not correctly specified .

Select a test statistic T (x) to perform the test, then we define the
posterior predictive p−value to be:

pb = P (T (y∗) ≥ T (y)|y ,H0) .

Freedom of choice for T (·). Examples for the CDFN dataset. . .







Statistical Objectives

X Inference: Account for non-ignorable missing data (+more)

X Model Selection: Select the ‘best’ model for a given dataset

X Model Checking: Evaluate the adequacy of a given model







Conclusions & Future Work

Conclusions:

1. Probabilistic insight allows us to build statistical procedures
that correspond to more physically realistic models

2. Hierarchical modeling allows for us to account for multiple
types of uncertainties

3. Flexible framework for computation (e.g., distributional
assumptions for fluxes)

4. Provides a recipe for assessing goodness-of-fit

5. Provides a recipe for selecting between single and
broken-pareto models

6. Explicity handles non-ignorable missing data

Future Work:

1. Break-point estimation for multiple power-law setting

2. Extension to non-Poisson regimes
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