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1 Cosmology with Supernovae Ia

The aim of this exercise is to write an MCMC code to infer cosmological parameters from supernova Ia
data. Supernova Ia are standard candles (or can be made so), so can be used to measure the contents
of the Universe.

2 Theory and parameters

The flux from a supernova of luminosity L is given by

f =
L

4πD2
L

where DL is the Luminosity Distance. In Big Bang cosmology it is given by

DL =
(1 + z)c

H0

√
|1− Ω|

Sk(r),

where

r(z) =
√
|1− Ω|

∫ z

0

dz′√
Ωm(1 + z′)3 + Ωv + (1− Ω)(1 + z′)2

.

and Sk(r) = sin r, r, sinh r, depending on whether Ω ≡ Ωm + Ωv is > 1,= 1, or < 1, and z is the
observed redshift of the supernova. Ωm,Ωv and H0 are the density parameters (today) in matter,
vacuum energy, and the Hubble constant. It is beyond the scope of these notes to derive this, but it
is standard material for an undergraduate cosmology course.

For a flat Universe (Ω = 1), this simplifies to

DL(z) = 3000h−1(1 + z)

∫ z

0

dz′√
Ωm(1 + z′)3 + 1− Ωm

Mpc,

where H0 = 100hkm s−1 Mpc−1. To avoid evaluating integrals to calculate DL, we can use an accurate
fitting formula (valid for flat universes only), given by U.-L. Pen, ApJS, 120, 49 (1999):

DL(z) =
c

H0
(1 + z)

[
η(1,Ωm)− η

(
1

1 + z
,Ωm

)]
where

η(a,Ωm) = 2
√
s3 + 1

[
1

a4
− 0.1540

s

a3
+ 0.4304

s2

a2
+ 0.19097

s3

a
+ 0.066941s4

]−1/8
and s3 ≡ (1− Ωm)/Ωm. This is accurate to better than 0.4% for 0.2 ≤ Ωm ≤ 1.

Fluxes are usually expressed in magnitudes, where m = −2.5 log10 F+constant. The distance
modulus is µ = m−M , where M is the absolute magnitude, which is the value of m if the source is
at a distance 10pc. With DL in Mpc1, this is

µ = 25− 5 log10 h+ 5 log10

(
D∗L
Mpc

)
1There is a simplification in the exercise here; we assume we know what the absolute magnitude (or luminosity) of

type I supernovae are, but in fact unless we have supernovae with known distances, we don’t. In fact M and h are
degenerate, since M is set from low-redshift supernovae where we assume Hubble’s law to give us the distance. For the
purpose of this exercise, we will cheat.
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The Hubble constant has been factored out of DL: D∗L ≡ DL(h = 1).
If we have measurements of µ, then we can use Bayesian arguments to infer the parameters

Ωm,Ωv, h. For anyone unfamiliar with cosmology, these numbers are somewhere between 0 and 1.

3 Data

The data file (from the ‘JLA’ sample - see http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
for more detail) consists of data from about 700 supernovae, which are averaged together in 31 narrow
bins of redshift, to give a distance modulus µ for each bin.

The sample file (jla_mub.txt from the website, at http://astro.ic.ac.uk/content/icic-data-analysis-
workshop-2016) contains n = 31 pairs of (z, µ), corresponding to bins containing supernovae with
z < 1.3.

4 Exercise

Write an MCMC code to infer h and Ωm from the supernova dataset, assuming the Universe is flat
and the errors are gaussian2, i.e. assume that the likelihood is

L ∝ exp

−1

2

n∑
i,j=1

[µi − µth(zi)]C
−1
ij [µj − µth(zj)]


where µth is the theoretical value of the distance modulus, for which you will need to compute the
integral for D∗L numerically, using the fitting formula (for a flat Universe). For clarity, we have not
written the full dependence of µth; we should write µth(z; Ωm, h), and indeed it also depends on the
(LCDM) model M .

C is the 31× 31 covariance matrix of the data, provided as a list of numbers in an obvious order,
from the website, in the file jla_mub_covmatrix.txt.

• h and Ωm are positive, and have values of the rough order of unity

• Assume uniform priors on the parameters (so you compute the likelihood)

• You might like to start with a very simple ‘top-hat’ proposal distribution, where the new point
is selected from a rectangular region centred on the old point. For this you will need a simple
random number generator. Or use a gaussian for each parameter.

• Explore visually the chain when you have (a) a very small proposal distribution, and (b) a very
large proposal distribution, for a maximum of 1000 trials. What do you conclude?

• Show how the acceptance probability changes as you change the size of the proposal distribution
from very small (say 0.001) to very large (say 100).

• Once you have settled on a ‘reasonable’ proposal distribution, compute the average value of the
parameters under the posterior distribution, and their variances and covariance.

• Optionally, generalise to non-flat Universes and include Ωv as an independent parameter.

2This is largely justified by the averaging over large numbers of supernovae, and using the central limit theorem
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4.1 Tips

If you are estimating h, Ωm and Ωv, you can precalculate DL for h = 1 as a function of Ωm and Ωv,
and do a bilinear interpolation when you are running the chains (and divide by h). You only need
to do this at the 31 redshifts of the JLA sample. This will be much faster than computing DL every
time you change parameters. This is not necessary if your parameters are h and Ωm only.

5 Extensions

• Importance sampling. Consider a non-flat prior, so the target distribution is the posterior, not
the likelihood. We can still sample from the likelihood (as you have been doing), and construct
the posterior by weighting the points with the prior to get the target. This is an example of
importance sampling, where we sample from a different distribution from the one we eventually
want. Apply a prior on the Hubble constant to your chain, assuming a gaussian prior with mean
0.738 and standard deviation 0.024. Now plotting all the points in the chain will give a graph
which looks the same as your previous graphs, so what should you do? Compute the mean h,Ωm

with and without the prior.

• Write and apply a Gelman-Rubin convergence test, and deduce roughly how long the chains
should be for convergence.

• Extend to perform Hamiltonian Monte Carlo. You might like to try to compare the performance
of MCMC and HMC; you will need to decide what the right criterion is.

For HMC, the algorithm is (from Hajian 2006):

Hamiltonian Monte Carlo
1: initialize x(0)

2: for i = 1 to Nsamples

3: u ∼ N (0, 1) (Normal distribution)
4: (x∗(0),u

∗
(0)) = (x(i−1),u)

5: for j = 1 to N
6: make a leapfrog move: (x∗(j−1),u

∗
(j−1))→ (x∗(j),u

∗
(j))

7: end for
8: (x∗,u∗) = (x(N),u(N))
9: draw α ∼ Uniform(0,1)
10: if α < min{1, e−(H(x∗,u∗)−H(x,u))}
11: x(i) = x∗

12: else
13: x(i) = x(i−1)
14: end for

H = − lnL + K, where K = u · u/2. One approach is to approximate U by a bivariate gaussian
with covariances estimated from the MCMC code (or you can try computing the derivative exactly):

U =
1

2
(θ − θ0)αC−1αβ (θ − θ0)β.

You can evolve the system with a näıve Euler method (not recommended in general for stability
reasons), or use the leapfrog algorithm:
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ε

2
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2

(
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)
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.

Issues to consider are how many integration steps per point in the chain, and how big those steps
are. For some discussion, see Hajian (2006), astroph/0608679.
Alan Heavens
Sept 2018
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