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(i) A coin is tossed N = 250 times and it returns H = 140 heads. Evaluate
the evidence that the coin is biased using Bayesian model comparison
and contrast your findings with the usual (frequentist) hypothesis testing
procedure (i.e. testing the null hypothesis that pH = 0.5). Discuss the
dependency on the choice of priors.

(ii) In 1919 two expeditions sailed from Britain to measure the light deflection
from stars behind the Sun’s rim during the solar eclipse of May 29th.
Einstein’s General Relativity predicts a deflection angle

α =
4GM

c2R
,

where G is Newton’s constant, c is the speed of light, M is the mass of the
gravitational lens and R is the impact parameter. It is well known that
this result it exaclty twice the value obtained using Newtonian gravity.
For M = M� and R = R� one gets from Einstein’s theory that α = 1.74
arc seconds.

The team led by Eddington reported 1.61 ± 0.40 arc seconds (based on
the position of 5 stars), while the team headed by Crommelin reported
1.98± 0.16 arc seconds (based on 7 stars).

What is the Bayes factor between Einstein and Newton gravity from those
data? Comment on the strength of evidence.

(iii) Assume that the combined constraints from CMB, BAO and SNIa on the
density parameter for the cosmological constant can be expressed as a
Gaussian posterior distribution on ΩΛ with mean 0.7 and standard de-
viation 0.05. Use the Savage-Dickey density ratio to estimate the Bayes
factor between a model with ΩΛ = 0 (i.e., no cosmological constant) and
the ΛCDM model, with a flat prior on ΩΛ in the range 0 ≤ ΩΛ ≤ 2.
Comment on the strength of evidence in favour of ΛCDM.

(iv) If the cosmological constant is a manifestation of quantum fluctuations of
the vacuum, QFT arguments lead to the result that the vacuum energy
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density ρΛ scales as

ρΛ ∼
ch̄

16π
k4

max (1)

where kmax is a cutoff scale for the maximum wavenumber contributing to
the energy density (see e.g. [1]). Adopting the Planck mass as a plausible
cutoff scale (i.e., kmax = c/h̄MPl) leads to “the cosmological constant
problem”, i.e., the fact that the predicted energy density

ρΛ ∼ 1076GeV4 (2)

is about 120 orders of magnitude larger than the observed value, ρobs ∼
10−48GeV4.

(a) Repeat the above estimation of the evidence in favour of a non-zero
cosmological constant, adopting this time a flat prior in the range
0 ≤ ΩΛ/Ω

obs
Λ < 10120. What is the meaning of this result? What

is the required observational accuracy (as measured by the posterior
standard deviation) required to override the Occam’s razor penalty
in this case?

(b) It seems that it would be very difficult to create structure in a uni-
verse with ΩΛ � 100, and so life (at least life like our own) would be
unlikely to evolve. How can you translate this “anthropic” argument
into a quantitative statement, and how would it affect our estimate
of ΩΛ and the model selection problem?
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Solutions

(i) This is a model comparison problem, where we are comparing model M0

that the coin is fair (i.e., pH = 0.5) with a modelM1 where the probability
of heads is 6= 0.5. We begin by assigning under model 1 a flat prior to pH
between 0 and 1.

The Bayes factor (or ratio of the two models’ evidences) is given by

B =
P (H = 140|M1)

P (H = 140|M0)
=

H!(N−H)!
(H+1)!

(1/2)N

∣∣∣
N=250,H=140

=
140!110!

251!

(1/2)250
≈ 0.48 ∼ 2 : 1

(3)
(notice that we have cancelled the “choose” terms in the numerator and
denominators above). So there is not even weak evidence in favour of
the model that the coin is biased. The log of the Bayes factor is plotted
as a function of H in Fig. 1. By inspection it is apparent that values
107 ≤ H ≤ 143 favour the fair coin model (lnB < 0). In order to obtain
“strong evidence” in favour of the biased coin model (lnB > 5), it is
necessary that either H < 94 or H > 31.

The usual Frequentist hypothesis testing procedure would be to compute
the tail probability of obtaining data as extreme or more extreme than
have been observed under the null hypothesis, i.e., that the coin is fair.
This gives the p-value:

p-value =

(
1

2

)N N∑
H=Hobs

(
N

H

)
≈ 0.033 (4)

So for a Frequentist, the data would exclude the null hypothesis that the
coin is fair at more than the 95% CL.

How does the Bayesian result depend on the choice of prior for the al-
ternative hypothesis? Above we have given to pH a flat prior between 0
and 1. If we wanted to give the maximum possible advantage to a model
where the coin is not fair, we could put all of its prior probability in a
delta-function concentrated at the value of pH that maximizes the proba-
bility of what has been observed. So under this maximally advantageous
model for the unfairness hypothesis (let’s call this M2), we would select
a “prior” (in quotation marks, for this prior is actually selected after the
data have been gathered, so we are effectively using the data twice here!)
of the form P (pH) = δ(pH −H/N). In this case the odds in favour of this
new model are

B =
P (H = 140|M2)

P (H = 140|M0)
=

(H/N)H(1−H/N)N−H

(1/2)250

∣∣∣
H=140,H=250

≈ 6.1.

(5)
Even in this most favourable setup for the hypothesis that the coin is
biased, we find only weak evidence (odds of 6 to 1) against the model of a
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Figure 1: Natural log of the Bayes factor between the model “the coin is biased”
(with flat prior) and the model ”the coin is fair”, as a function of the number
of heads (H) in 250 flips, see Eq. (3). Values lnB > 0 favour the biased coin
model. The Jeffreys’ threshold for “strong evidence” is at lnB = 0

fair coin. Therefore we can safely conclude that the data do not warrant
to conclude that the coin is unfair.

(ii) We are comparing here two models which both make exact predictions for
the deflection angle, with no free parameters. If you prefer, you might
consider the prior on α under each theory to be a delta-function centered
at the predicted value. This of course neglects the uncertainty associated
with M� and R�.

In this case, the evidence is thus simply the likelihood function for the
observed data under each theory (you can convince yourself that this is
correct by explicitly computing the evidence for each model assuming the
delta-function prior above). This gives for the Bayes factor in favour of
Einstein gravity vs Newton (assuming Gaussian likelihoods)

B =
L0 exp

(
− 1

2
(α̂−αE)2

σ2

)
L0 exp

(
− 1

2
(α̂−αN )2

σ2

) (6)

where αE = 1.74′′, αN = 87′′, α̂ is maximum likelihood value of the
experiment and σ is the standard deviation.

Using the supplied data from Eddington, one obtains B ∼ 5, so “weak
evidence” in favour of Einstein theory according to the Jeffreys’ scale for
the strength of evidence. The Crommelin data instead give B ∼ 1010,
so very strong evidence for Einstein. Notice that this comes about be-
cause the measurement from Crommelin is on the high side (i.e., higher
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than Einstein prediction, even), and therefore the assumed Gaussian tail
becomes tiny for α = αN . It is worth noticing that, although the above
calculation is formally correct, it is likely to overestimate the evidence
against Newton, because the Gaussian approximation made here is cer-
tain to break down that far into the tails (i.e, αN is ∼ 11σ away from the
value measured by Crommelin. No distribution is exactly valid that far
into the tails!).

(iii) Here we are comparing two nested model, M0 with ΩΛ = 0 and a more
complicated model, M1,where ΩΛ ≤ 0 and a flat prior P (ΩΛ|M1) =
1/2 for 0 ≤ ΩΛ ≤ 2 and 0 elsewhere (notice that the prior needs to be
normalized, hence the factor 1/2). We can therefore use the Savage-Dickey
density ratio to compute the Bayes factor between M0 and M1:

B01 =
P (ΩΛ = 0|CMB+BAO+SN,M1)

P (ΩΛ = 0|M1)
=

1√
2πσ

exp
(
− 1

2
(0−Ω̂Λ)2

σ2

)
1/2

, (7)

where we have assumed thart the posterior under M1 can be approxi-
mated as a Gaussian of mean Ω̂Λ = 0.7 and standard deviation σ = 0.05.
Numerical evaluation gives B01 ∼ 10−42, so with this prior the model
that ΩΛ = 0 can be ruled out with very strong evidence. Another way
of looking at this result is the following: if, after having seen the data,
you remain unconvinced that indeed ΩΛ > 0, this means that the ratio
in your relative degree of prior belief in the two models should exceed
P (M0)/P (M1) > 1042.

(iv) (a) The calculation of the Bayes factor proceeds as above, but this time
with a much larger prior range for the alternative model, ΩΛ > 0.
This means that the prior height, P (ΩΛ = 0|M1) , appearing in the
denominator of Eq. (7) is very small, i.e. P (ΩΛ = 0|M1) = 10−120,
as the prior needs to be normalized. Repeating the above calculation,
we get for the Bayes factor in favour of M0 (i.e., that ΩΛ = 0)

B01 ∼
10−42

10−120
∼ 1088. (8)

Now the Bayes factor is positive (and huge), a reflection of the enor-
mous amount of prior range wasted by M1. Therefore under this
new prior, the Bayesian model comparison favour the hypothesis that
there is no cosmological constant despite the fact that the likelihood
peaks about 0.7/0.05 ∼ 14σ away from ΩΛ = 0. This is an extreme
example of Occam’s penalty.

In order for the Occam’s factor to be overruled by the likelihood, we
require that B01 = 1 (i.e., equal odds for the two models). This trans-
lates in the approximate condition for the number of sigma detection,
λ:

exp

(
−1

2
λ2

)
∼ 10−120, (9)
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where we have dropped the term 1/σ in front of the likelihood for sim-
plicity (as the likelihood is going to be dominated by the exponential
anyhow). Solving for λ gives

λ ∼
√

240 ln 10 ≈ 23. (10)

So we would need a ∼ 23σ detection of ΩΛ > 0 to override completely
the Occam’s razor penalty.

(b) The outcome of the model comparison changes dramatically if one
is willing to impose a much more stringent upper cutoff to the prior
range of ΩΛ, based e.g. on anthropic arguments. The observations
that structures cannot form if ΩΛ � 100 (and therefore there would
be no observers to measure dark energy, see e.g. the original argu-
ment by Weinberg [2]) can be approximately translated in a prior
range extending perhaps to ΩΛ ∼ 103. With this choice of range, the
Bayes factor becomes

B01 ∼
10−42

10−3
∼ 10−39, (11)

thus swinging back to support M1 with enormous odds. This illus-
trate that Bayesian model comparison can be difficult (and strongly
dependent on the theoretical prior range adopted) in cases where
there is no compelling (or unique) argument to define the prior.
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