
Beyond Metropolis Sampling:
Gibbs & Hamiltonian Sampling

Andrew Jaffe
ICIC Workshop 2018

Sampling beyond MCMC
□ Simple MCMC is a good general tool, but
■ curse of dimensionality
■ requires tuning — e.g., proposal distributions
■ inefficient

□ Other sampling techniques exist
■ usually for cases when you have more information

about the distributions
■ Gibbs sampling — need to have the conditional

probabilities for different parameters, P(θ1|θ2,d)
■ Hamiltonian Monte Carlo — need derivatives ∂P(θ)/∂θ

Gibbs Sampling
□ Metropolis-Hastings with 

Proposal = conditional dist’n
■ all samples accepted
■ satisfies detailed balance
■ no adjustable parameters in the algorithm

□ suited to hierarchical models (often  
written in terms of the conditionals)

□ Algorithm:
■ x1(n+1) ~ P(x1|x2(n), x3(n),…)  

x2(n+1) ~ P(x2|x1(n+1), x3(n),…)  
x3(n+1) ~ P(x3|x1(n+1), x2(n+1),…)

■ Should change (reverse/randomize) the order 1, 2, 3,… in successive steps
□ Caveats: can fail badly if the distribution isn’t aligned with the axes and/or

highly curved
□ *Otherwise often use “metropolis-within-Gibbs”

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

McKay, Information Theory…

Especially good if these can be  
“analytically” sampled*

Gibbs Sampling
□ Algorithm:
■ x1(n+1) ~ P(x1|x2(n), x3(n),…)  

x2(n+1) ~ P(x2|x1(n+1), x3(n),…)  
x3(n+1) ~ P(x3|x1(n+1), x2(n+1),…)

□ Note that conditional distributions  
are just the full distribution with the  
other parameters held fixed  
(up to normalization).

□ In a hierarchical model, get the full posterior  
by multiplying out all the distributions that appear
■ See Alan Heavens’ talk later…

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

McKay, Information Theory…

P(x |y) =
P(x, y)
P(y)

∝ P(x, y)

Hamiltonian Monte Carlo (HMC)
□ (aka Hybrid Monte Carlo; Duane et al 1987)

□ Analogy with dynamical systems, which explore
(position, momentum) phase space over time
■ Potential U(θi) = −ln P(θi) w/ “positions” θi
■ KE K(ui) = ½u·u w/ “momenta” ui ~ N(0,σ2)
■ Hamiltonian H(θi, ui) = U(θi) + K(ui)
■ Density P(θi, ui) = e−H(θ, u)

□ 2N parameters!
■ Evolve as dynamical system
□ ignore (marginalize over)  

momenta

✓̇i =
@H

@ui
= ui

u̇i = �@H

@✓i
=

@ lnP

@✓i

□ Need to discretize the system 
(time derivatives)

□ Values of (θi, ui) at different times:  
proposed MC samples

□ If exact dynamics, H conserved,  
⟹ all samples accepted
■ in practice, approximate evolution (and, e.g., numerical

derivatives)
■ so, accept (θi, ui)* as step n+1 with probability

✓̇i =
@H

@ui
= ui

u̇i = �@H

@✓i
=

@ lnP

@✓i

min
h
1, exp

⇣
�H

⇤ +H
(n)

⌘i

HMC Algorithm (1)
□ Algorithm (Hajian PRD75 083525, 2007)

Random walk Metropolis

1: initialize x0

2: for i ! 1 to Nsamples

3: sample !x from the proposal distribution: !x" q#!xjx$
4: x% ! x&!x
5: draw !" Uniform#0; 1$
6: if !<min f1; p#x%$p#x$g
7: xi ! x%

8: else
9: xi ! x#i'1$
10: end for

In order for this method to be effective, samples must be
as uncorrelated and independent as possible. A common
problem of MCMC techniques is that samples can be
highly correlated. This makes the method inefficient. In
this case, although the samples are drawn from the correct
distribution, they sample the target density very slowly. A
huge number of samples might be needed for reliable
estimates.

C. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) belongs to the class of
MCMC algorithms with auxiliary variable samplers [21].
HMC is an MCMC technique in which a momentum
variable is introduced for each parameter of the target
pdf. In analogy to a physical system, a Hamiltonian H is
defined as a kinetic energy involving the momenta plus a
potential energy U, where U is minus the logarithm of the
target density. Hamiltonian dynamics allows one to move
along trajectories of constant energy, taking large jumps in
the parameter space with relatively few evaluations of U
and its gradient. The Hamiltonian algorithm alternates
between picking a new momentum vector and following
such trajectories. This algorithm is designed to improve
mixing in high dimensions by getting more uncorrelated
and independent samples. To explain this in more detail,
suppose we wish to sample from the distribution p#x$,
where x 2RD (RD is theD-dimensional parameter space
of our problem). We augment each parameter xi with an
auxiliary conjugate momentum u i, and define the potential
energy

 U#x$! ' ln p#x$; (9)

and the Hamiltonian

 H#x;u$! U#x$ & K#u$; (10)

where K#u$! uTu=2 is the kinetic energy. This is used to
create samples from the extended target density

p#x;u$ / exp#'H#x;u$$! exp#'U#x$$ exp#'K#u$$
! p#x$N #u; 0; 1$; (11)

where N #u; 0; 1$ is the D-dimensional normal distribu-

tion with zero mean and unit variance. This density is
separable, so the marginal distribution of x is the desired
distribution p#x$. This means, if we can sample #x;u$ from
the extended distribution p#x;u$, then the marginal distri-
bution of x is exactly the target distribution p#x$.

Each step in HMC consists of drawing a new pair of
samples #x;u$ according to p#x;u$ starting from the cur-
rent value of x and generating a Gaussian random variable
u. These are our initial conditions. The time evolution of
this system is then governed by Hamiltonian equations of
motion:

_x i ! u i _u i ! '
@H
@xi

: (12)

Because the Hamiltonian dynamics is time reversible,
volume-preserving, and total energy preserving, if the
dynamics are simulated exactly, the resulting moves will
leave the extended target density, p#x;u$, invariant. That
is, if we start from #x#0$;u#0$$ " p, then after the system
evolves for time t, the new configuration at time t,
#x#t$;u#t$$ also follows the distribution p. But in practice
the dynamics are simulated with a finite step-size, and as a
result, H will no longer remain constant. The Hamiltonian
dynamics in practice is simulated by the leapfrog algo-
rithm with a small step-size "

 u i

!
t& "

2

"
! u i#t$ '

"
2

!
@U
@xi

"

x#t$

xi#t& "$! xi#t$ & "u i
!
t& "

2

"

u i

!
t& "

2

"
! u i#t$ '

"
2

!@U
@xi

"

x#t&"$
:

(13)

Each leapfrog move is volume preserving and time revers-
ible. But it does not keep the H constant. The effect of
inexact simulation introduced by the nonzero step-size can
be eliminated by the Metropolis rule: the point reached by
following the dynamics is accepted with the probability of

 min f1; e'#H#x%;u %$'H#x;u $$g: (14)

The algorithm of HMC is shown below:

Hamiltonian Monte Carlo

1: initialize x#0$
2: for i ! 1 to Nsamples

3: u"N #0; 1$
4: #x%#0$;u%#0$$! #x#i'1$;u$
5: for j ! 1 to N
6: make a leapfrog move: #x%#j'1$;u

%
#j'1$$! #x%#j$;u%#j$$

7: end for
8: #x%;u%$! #x#N$;u#N$$
9: draw !" Uniform#0; 1$
10: if !<min f1; e'#H#x%;u%$'H#x;u$$g
11’’ x#i$! x%

12: else
13: x#i$! x#i'1$
14: end for

EFFICIENT COSMOLOGICAL PARAMETER ESTIMATION . . . PHYSICAL REVIEW D 75, 083525 (2007)

083525-3

Discretisation step!
(see problem sheet)

Only propose every N timesteps

HMC Algorithm (2)
□ R version (Neal, in Handbook of MCMC)MCMC Using Hamiltonian Dynamics 125

HMC = function (U, grad_U, epsilon, L, current_q)
{
q = current_q
p = rnorm(length(q),0,1) # independent standard normal variates
current_p = p

Make a half step for momentum at the beginning
p = p - epsilon * grad_U(q) / 2

Alternate full steps for position and momentum

for (i in 1:L)
{
Make a full step for the position
q = q + epsilon * p
Make a full step for the momentum, except at end of trajectory
if (i!=L) p = p - epsilon * grad_U(q)

}

Make a half step for momentum at the end.
p = p - epsilon * grad_U(q) / 2
Negate momentum at end of trajectory to make the proposal symmetric
p = -p

Evaluate potential and kinetic energies at start and end of trajectory

current_U = U(current_q)
current_K = sum(current_pˆ2) / 2
proposed_U = U(q)
proposed_K = sum(pˆ2) / 2

Accept or reject the state at end of trajectory, returning either
the position at the end of the trajectory or the initial position

if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))
{
return (q) # accept

}
else
{
return (current_q) # reject

}
}

FIGURE 5.2
The Hamiltonian Monte Carlo algorithm.

nonnegative, U(q) could never exceed the initial value of H(q, p) if no resampling for p
were done.

A function that implements a single iteration of the HMC algorithm, written in the R
language,∗ is shown in Figure 5.2. Its first two arguments are functions: U, which returns

∗ R is available for free from www.r-project.org

Single L-step trajectory

Leapfrog method}

HMC vs Metropolis-Hastings

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

388 30 — Efficient Monte Carlo Methods

Algorithm 30.1. Octave source
code for the Hamiltonian Monte
Carlo method.

g = gradE (x) ; # set gradient using initial x
E = findE (x) ; # set objective function too

for l = 1:L # loop L times
p = randn (size(x)) ; # initial momentum is Normal(0,1)
H = p’ * p / 2 + E ; # evaluate H(x,p)

xnew = x ; gnew = g ;
for tau = 1:Tau # make Tau ‘leapfrog’ steps

p = p - epsilon * gnew / 2 ; # make half-step in p
xnew = xnew + epsilon * p ; # make step in x
gnew = gradE (xnew) ; # find new gradient
p = p - epsilon * gnew / 2 ; # make half-step in p

endfor

Enew = findE (xnew) ; # find new value of H
Hnew = p’ * p / 2 + Enew ;
dH = Hnew - H ; # Decide whether to accept

if (dH < 0) accept = 1 ;
elseif (rand() < exp(-dH)) accept = 1 ;
else accept = 0 ;
endif

if (accept)
g = gnew ; x = xnew ; E = Enew ;

endif
endfor

Hamiltonian Monte Carlo Simple Metropolis

(a)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(c)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(b)

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1

(d)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 30.2. (a,b) Hamiltonian
Monte Carlo used to generate
samples from a bivariate Gaussian
with correlation ρ = 0.998. (c,d)
For comparison, a simple
random-walk Metropolis method,
given equal computer time.

MacKay,  
Information Theory…

Two  
trajectories

Four  
trajectories

3. MCMC from Hamiltonian dynamics 19

0 200 400 600 800 1000

−3
−2

−1
0

1
2

3

iteration

la
st

 p
os

iti
on

 c
oo

rd
in

at
e

Random−walk Metropolis

0 200 400 600 800 1000

−3
−2

−1
0

1
2

3

iteration

la
st

 p
os

iti
on

 c
oo

rd
in

at
e

Hamiltonian Monte Carlo

Figure 6: Values for the variable with largest standard deviation for the 100-dimensional
example, from a random-walk Metropolis run and an HMC run with L = 150. To match
computation time, 150 updates were counted as one iteration for random-walk Metropolis.

rate works only when, as here, the distribution is tightly constrained in only one direction.

Sampling from a 100-dimensional distribution. More typical behaviour of HMC and
random-walk Metropolis is illustrated by a 100-dimensional multivariate Gaussian distribu-
tion in which the variables are independent, with means of zero, and standard deviations of
0.01, 0.02, . . . , 0.99, 1.00. Suppose we have no knowledge of the details of this distribution,
so we will use HMC with the same simple, rotationally symmetric kinetic energy function as
above, K(p) = pTp/2, and use random-walk Metropolis proposals in which changes to each
variable are independent, all with the same standard deviation. As discussed below in Sec-
tion 4.1, the performance of both these sampling methods is invariant to rotation, so this ex-
ample is illustrative of how they perform on any multivariate Gaussian distribution in which
the square roots of the eigenvalues of the covariance matrix are 0.01, 0.02, . . . , 0.99, 1.00.

For this problem, the position coordinates, qi, and corresponding momentum coordinates,
pi, are all independent, so the leapfrog steps used to simulate a trajectory operate indepen-
dently for each (qi, pi) pair. However, whether the trajectory is accepted depends on the
total error in the Hamiltonian due to the leapfrog discretization, which is a sum of the errors
due to each (qi, pi) pair (for the terms in the Hamiltonian involving this pair). Keeping this
error small requires limiting the leapfrog stepsize to a value roughly equal to the smallest
of the standard deviations (0.01), which implies that many leapfrog steps will be needed to
move a distance comparable to the largest of the standard deviations (1.00).

Consistent with this, I applied HMC to this distribution using trajectories with L = 150
and with ε randomly selected for each iteration, uniformly from (0.0104, 0.0156), which
is 0.013 ± 20%. I used random-walk Metropolis with proposal standard deviation drawn
uniformly from (0.0176, 0.0264), which is 0.022 ± 20%. These are close to optimal settings
for both methods. The rejection rate was 0.13 for HMC and 0.75 for random-walk Metropolis.

Figure 6 shows results from runs of 1000 iterations of HMC (right) and of random-walk

Neil,  
Handbook of MCMC

HMC with millions of parameters
□ From large-scale structure

observations to the primordial
density field
■ forward physics model from

primordial density to observed
galaxy distribution 

■ Related work from Jasche, Lavaux,,
Kitaura

F. Leclercq & B.Wandelt

HMC as a generic tool
□ Gelman et al, STAN (http://mc-stan.org/)
□ Uses automatic differentiation to get derivatives for

~anything that can be built up from elementary
functions

□ e.g., SED fitting

http://mc-stan.org/

Stan Code
data {

 int<lower=1> N_comp; // # of greybody components
 // (fixed model parameter)

 int<lower=1> N_band; // number of photometric bands
 vector[N_band] nu_obs; // observed frequency
 vector[N_band] flux; // observed flux
 vector[N_band] sigma; // error
 real z; // redshift

}

transformed data {

 vector[N_band] nu; // rest frame frequency
 nu = (1+z)*nu_obs;

}

functions {

 real greybody(real beta, real T, real nu) {
 // greybody, normalized to unit flux at nu=nu_0
 real h_over_k;
 real x;
 real nu_bar;
 real x_bar;

 nu_bar = 1000;

 h_over_k = 0.04799237; // K/Ghz
 x = h_over_k * nu / T;
 x_bar = h_over_k * nu_bar / T;
 return (pow(nu/nu_bar, 3+beta) *

 expm1(x_bar) / expm1(x));
 }

}

parameters {

// nb. N_comp, N_band are data
 vector<lower=0>[N_comp] amplitude;
 positive_ordered[N_comp] T;

// greybody factor
 vector<lower=0, upper=3>[N_comp] beta;

}

model {

 real fluxes[N_band, N_comp];
 vector[N_band] totalflux;

 for (band in 1:N_band) {
 for (comp in 1:N_comp) { // vectorize over this?
 fluxes[band, comp] = amplitude[comp] *  

greybody(beta[comp], T[comp], nu[band]);
 }
 totalflux[band] = sum(fluxes[band]);
 }

 // try a proper prior on temperature;
 // needed since ordered vectors don't have limits
 T ~ uniform(3,100);
 flux ~ normal(totalflux, sigma);

}

Inference from a Gaussian:
Averaging

□ The simplest “linear model”
□ Consider data = signal + noise,
□ di = µ + ni for data points i=1…N
■ Noise, ni, has zero mean, known variance σ2

□ Assign a Gaussian to (di – µ)
■ Alternately: keep ni as a parameter and marginalize over it with

p(di|ni µ I) = δ(di-ni-µ)

■ Prior for s (i.e., a and b)?
□ To be careful of limits, could use Gaussian with width Σ,

take Σ→∞ at end of calculation
■ Same answer with unifom dist’n in (-Σ1,Σ2)→(-∞,∞)

→calculation

Inference from a Gaussian:
Averaging

□ Posterior:

■ best estimate of signal is average ± stdev:
□ μ = d ̄± σb = d ̄± σ/√N

■ What if we don’t know σ? try Jefferys P(σ|I)∝1/σ

□ marginalize over µ:

□ Student t or Cauchy distribution
□ (very broad distribution!)

P(μ |d) =
1

2πσ2
b

exp [−
1
2

(μ − d̄)2

σ2
b]

P(μ |d) ∝ [μ2 − 2μd̄ + d̄2]
−1/2

A toy model:  
estimating the mean and variance
□ Back to our averaging problem,  

di = s + ni

□ P(ni|I) = Gaussian w/  
⟨ni⟩=0, ⟨n2⟩= σ2

□ P(s|I) = Uniform

□ Toy version of measuring
cosmological maps and power
spectra (see Alan Heaven’s
talk)

□ Take σ2 unknown w/ prior  
 
P(σ) ∝ 1/σ (improper…)

□ Hierarchical model  
(see Alan's talk):

µ ni

di

σ

Measured

A toy model:  
estimating the mean and variance
□ Back to our averaging problem, di = µ + ni

■ Unknown noise variance σ2, Uniform prior on µ
■ Posterior is Gaussian in µ, Gamma in 1/σ2

■ Conditionals are known for Gibbs.

□ Algorithm:

µ ni

di

σ

Measured

P(μ, σ |d) =
1
σ

1
(2πσ2)n/2

exp [−
n

2σ2 (d̄2 − 2μd̄ + μ2)]
∝

1
σn+1

exp −
1
2

(μ − d̄)2

σ2/n
exp [−

n
2σ2 (d̄2 − d̄2)]

μ | (σ2, d) ← Normal (d̄, σ2/n)
σ2 | (μ, d) ← InvGamma (n − 1

2
,

n
2 [d̄2 − 2μd̄ + μ2])

Case study
□ Estimating a mean and variance.

mekon.ph.ic.ac.uk:8000/user/jaffe/notebooks/Desktop/Stats/ICIC%20Workshop%202018/gaussian%20mean%20and%20variance.ipynb

