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1 Testing gravity with gravitational lensing

The aim of this exercise is to write an MCMC code to analyse photographic plates from Eddington’s
1919 eclipse expedition, to determine whether the data favour Newtonian gravity or Einstein’s General
Theory of Relativity. Light from stars that passes close to the Sun is deflected, and during an eclipse,
these stars can be detected and their displacements measured, when compared with photographs taken
when the Sun is far away.

General Relativity predicts that light passing a mass M at distance r will be bent through an
angle

θGR(r) =
4GM

rc2
, (1)

whereas an argument based on Newtonian gravity gives half this:

θN(r) =
2GM

rc2
. (2)

We can either treat this as a parameter inference problem, modelling the bending as

θN(r) =
αGM

rc2
, (3)

and inferring α, or as a model comparison problem (see later in the course). For this exercise we will
do the former. For GR, the bending is 1.75 arcsec for light passing close to the limb of the Sun.

We might conclude that equation (3) is the model, with a single parameter α. We assume that
GM , c and r are known perfectly, from measurements of planet orbits etc. However, the experiment
has some other parameters as well, which we investigate below.

Figure 1: One of the photographs from the expedition.
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Figure 2: The data model.

2 Underlying theory

3 Data

The Dyson, Eddington and Davidson 1920 paper (Phil. Trans. R. Society, 220, 571) is open access at
http://rsta.royalsocietypublishing.org/content/roypta/220/571-581/291.full.pdf

and contains the data we need. The figures in this document are taken from there.

4 Data model and model parameters

A displacement of the star images will be caused not just by bending of light, but by changes in
the scale of the photographic plate (caused e.g. by changes in temperature), rotation of the plate
with respect to the comparison plate, and offsets. We are not very interested in these effects, which
introduce nuisance parameters, but we need to include them. The data model is then given by the
equations in Fig 2, i.e.

Dx = ax+ by + c+ αEx

Dy = dx+ ey + f + αEy. (4)

Thus there are 4 parameters for the displacement in x, and 4 for the y displacement. Only the light
bending parameter, α is common. The data use units measured on the plate, and you will do the
same. Dyson et al. do not give errors in the displacements. Assume they are 0.05 in the units given.

The positions of the stars are shown in Fig. 3, or you can read them in the table in Fig.2, which
also gives the expected bend angle due to General Relativity for each star, as the coefficient of α. This
is in a strange unit, so your number α will need to be rescaled to translate it to arcseconds at the
limb. To translate the inferred value of α from the units they used to the bending angle
for light grazing the Sun, in arcsec, you need to multiply it by 19.8.

The displacements are measured and shown in Fig. 4, for 7 plates (I,II,. . .VIII; VI was not used.)
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Figure 3: The x, y positions of the stars measured. Note that only seven stars are used, numbers
11, 5, 4, 3, 6, 10, 2.

Figure 4: The displacements Dx and Dy, as measured on 7 plates (I,II,. . . VII). Note that you have to
subtract the number at the bottom of each column - e.g. add 1.5 to the numbers in the first column.
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5 Exercise

Write an MCMC code to sample from the posterior joint probability of a, b, c and α, using the Dx
displacement data for Plate II. The units are weird, so multiply α by 19.8 to translate it to the bending
inferred at the limb of the Sun (in arcsec), and compare with the Newtonian result (0.9) and the GR
result (1.75). Note that Dyson et al. make a correction of about 10% because of errors arising from
measuring indirectly the displacements, but we will ignore that here.

• Assume uniform priors on the parameters (so you compute only the likelihood). What do you
assume for the form of the likelihood?

• You might like to start with a very simple ‘top-hat’ proposal distribution, where the new point
is selected from a 4D ‘rectangular’ region centred on the old point. For this you will need a
simple random number generator. Alternatively use a gaussian for each parameter.

• Explore visually the chain when you have (a) a very small proposal distribution, and (b) a very
large proposal distribution, for a maximum of 1000 trials. What do you conclude?

• Show how the acceptance probability changes as you change the size of the proposal distribution
from very small (say 0.0001) to very large (say 10).

• Once you have settled on a ‘reasonable’ proposal distribution, compute the average value of the
parameters under the posterior distribution, and their variances and covariance.

• Marginalise over the nuisance parameters and plot the posterior distribution of α.

• Now see what happens if you don?t consider the nuisance parameters (i.e. set them all to zero, or
include a gaussian prior on each one, that keeps them close to zero). What would you conclude
about the light bending at the limb of the Sun, and what would be your conclusion about gravity
physics?

6 Extensions

• Include some more data, e.g. Dy for Plate II, or more plates.

• Write and apply a Gelman-Rubin convergence test, and deduce roughly how long the chains
should be for convergence.

• Extend to perform Hamiltonian Monte Carlo. You might like to try to compare the performance
of MCMC and HMC; you will need to decide what the right criterion is.

• Actually, we have two separate theories, with two different discrete values of α. How would you
do model comparison in this case? If you have time, you might like to do it, and compute the
relative probabilities of GR and Newtonian gravity, given these data.

For HMC, the algorithm is (from Hajian 2006):
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Hamiltonian Monte Carlo
1: initialize x(0)

2: for i = 1 to Nsamples

3: u ∼ N (0, 1) (Normal distribution)
4: (x∗

(0),u
∗
(0)) = (x(i−1),u)

5: for j = 1 to N
6: make a leapfrog move: (x∗

(j−1),u
∗
(j−1))→ (x∗

(j),u
∗
(j))

7: end for
8: (x∗,u∗) = (x(N),u(N))
9: draw α ∼ Uniform(0,1)
10: if α < min{1, e−(H(x∗,u∗)−H(x,u))}
11: x(i) = x∗

12: else
13: x(i) = x(i−1)

14: end for

H = − lnL + K, where K = u · u/2. One approach is to approximate U by a bivariate gaussian
with covariances estimated from the MCMC code (or you can try computing the derivative exactly):

U =
1

2
(θ − θ0)αC−1

αβ (θ − θ0)β. (5)

You can evolve the system with a näıve Euler method (not recommended in general for stability
reasons), or use the leapfrog algorithm:

ui

(
t+

ε

2

)
= ui(t)−

ε

2

(
∂U

∂xi

)
x(t)

(6)

xi(t+ ε) = xi(t) + εui

(
t+

ε

2

)
ui(t+ ε) = ui

(
t+

ε

2

)
− ε

2

(
∂U

∂xi

)
x(t+ε)

.

Issues to consider are how many integration steps per point in the chain, and how big those steps
are. For some discussion, see Hajian (2006), astroph/0608679.

Alan Heavens
Sept 2018
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