Noise vs. Signal & Si

Why are our HEP-friends frequentists?
And what happens if we steal their methods and apply them in astronomy?

ICIC Data Analysis Workshop 2016

Ln(a) Sellentin
Imperial College London
&
Université de Genève

email: elena.sellentin@posteo.de

Some cases are clearly Bayesian

Some cases are clearly frequentist

- Medical tests:
 - Allergy tests
 - Pregnancy tests
 - Blood tracers for cancer types
 - Effictiveness of medication

True positives	false positives
True negatives	false negatives

Bayesian statistics in a nutshell

Parameter estimation:

$$P(\boldsymbol{\theta}_{M}|\boldsymbol{X}) = \frac{P(\boldsymbol{\theta}_{M})P(\boldsymbol{X}|\boldsymbol{\theta}_{M})}{P(\boldsymbol{X})}$$

Model comparison:

$$\frac{L(M_1|\mathbf{X})}{L(M_2|\mathbf{X})} = \frac{\mathcal{P}(M_1) \,\varepsilon_1}{\mathcal{P}(M_2) \,\varepsilon_2}$$

Frequentist statistics in a nutshell

- Frequentist comes from 'frequency'.
- Rely on an actual or hypothetical repetition of an experiment.
- Friends of limit theorems and asymptotics: $for N \to \infty$
- Mindset:

"I have measured the mass of the proton 1 million times.

I always get 1.672621898(21)×10-27 kg.

I think if I measure once more, I'll again get 1.672621898(21)×10-27 kg."

Frequentist questions to Bayesians

- How exactly do you get these priors?
- Do you really just fit a model, without checking previously that your 'signal' isn't just noise?
- You do know that each time you fit, it is guaranteed that you get an answer? Even if it was just noise?
- How do you get rid of a bad model? Without replacement?

Broadly speaking

Priors:

- \rightarrow null-hypothesis + sampling distribution of test statistics T $if \ x_i \sim \mathcal{D}(x|\vec{\theta}), \ then \ T(x) \sim ?, \ hence \ T(x_{obs})...$
- Model comparisons:
 - → hypothesis rejection & p-values
 - \rightarrow Likelihood-ratio tests, $\Delta\chi^2$
- Parameter estimation:
 - quite similar! ML-estimators, LS-estimator & sample estimators

$$\bar{x} = 1/N \sum_{i} x_{i}, \quad \hat{\theta} = argmax[L(\vec{x}|\theta)], \quad minim[\chi^{2}]$$

- Inversion of the workflow:
 - Order of parameter estimation & model/hypothesis selection

Workflows

- Astro:
 - 0.) Get data = true signal + noise
 - 1.) select parametric model (decides which 'signal' is in the data)
 - 2.) estimate the model parameters
 - 3.) doubt model, compare it to a competitor model (evidences)
- HEP:
 - 0.) Get data. H_0 : no prejudice about potentially hidden signals.
 - 1.) non-parametric model checks: is it maybe still noise? (p-values)
 - 2.) It's not noise!
 - 3.) Select model and estimate its parameters.

Particle creation is frequentist by

nature

p+p → a lot!

'→': Transition **probabilities**

+ many many more...

Particle decay is again frequentist

Detection is (mainly) Frequentist...

.... with some Bayesian nightmares.

Sampling distributions for test statistics

- if $x_i \sim \mathcal{D}(x|\vec{\theta})$, then $T(x) \sim ?$, hence $T(x_{obs})...$
- Can often be derived analytically:

if
$$x_i \sim \mathcal{N}(0,1)$$
, then $\chi^2 = \sum_{i=1}^{p} x_i^2 \sim \chi_p^2$
if $u \sim \chi_p^2$, and $v \sim \chi_q^2$, then $\frac{u/p}{v/q} \sim \mathcal{F}$
if $x_i \sim \mathcal{G}(\mu, \sigma)$, then $(\bar{x} - \mu)/(s/\sqrt{n}) \sim Student - \mathcal{T}$

- Else: derive it from Monte Carlo Simulations: $\hat{ heta}_{ML} \sim ?$
- Aim: How typical is my measurement, compared to hypothetical others?

Neyman-construction with H_o

- Monte-Carlo simulations
- Target: sampling distribution

P-values: tails of sampling distributions

$$\vec{x}_{obs} \sim f(\vec{x}|H_o)$$
 then $p = \mathcal{P}[T(\vec{x}) \ge T(\vec{x}_{obs})]$

- Large values of T typically indicate bad agreement.
- P-value for a large T is then **small**.
- For continuous sampling distributions: p-values are upper-tail integrals.
 - → the sampling distribution affects your p-value.
- Example: χ^2

P-values describe necessary noise

→ P-values describe how typical your noise is, for a certain hypothesis H₀: once out of x times, you will get such noise. And there is nothing you can do about it.

So you can use p-values.

→ To estimate how likely something is due to noise.

Di-photon excess

P-values and hypothesis rejection

The tempation

Start with the believe: H_0 is true. Conduct one measurement.

- P = 0.01: once out of 100 times, noise on top of H_0 is that weird.
- P = 0.001 once out of 1000 times, noise on top of H_0 is that weird.
- P = 1e-9: once in a billion, noise on top of H_0 is that weird.

Wait! I have measured only once! Why should my one measurement be that rare one in a billion case?

Low p-values make you doubt H_o

→ Wish: reject H₀ for low p.

It looks like a good idea:

But it is essentially impossible to control:

$$\vec{x}_{obs} \sim f(\vec{x}|H_o = true)$$
 then $p = \mathcal{P}[\chi^2 \ge \chi_{obs}^2]$

→ But if H₀ is wrong, the p-value calculation is completely hypothetical.

Now what if H_o actually is wrong?

$$\vec{x}_{obs} \sim f(\vec{x}|\underline{H_o = true})$$
 then $p = \mathcal{P}[\chi^2 \ge \chi_{obs}^2]$

- Famous paper on the dangers of p-values: T. Selke, M. J. Bayarri,
 J. O. Berger, American Statistician (2001).
- Details on many possibilities of misinterpretation.
- Outreach-'friendly' versions of it exist.
 - Easy setup: count how often a true hypothesis is rejected.
 - Use of a 'precise' hypothesis (a yes/no answer), to avoid issues due to complexity.
 - Result: p-value of 0.05 → should reject H_0 5% of all times, but was measured to reject H_0 at least 23% of the times! For p = 0.01 H_0 is rejected at least 7% of the times.
 - Exact numbers depend on setup.

• Let's assume our H_0 is indeed true, but we don't know that.

How reliable are p-values in that case?

- Sampling distribution is not always χ_p^2
- But usually, that is what people use. (1st problem.)
- Illustrative example:

$$H_0: \hat{C}_{\kappa}^{WL}(\ell) \sim C_{\kappa}^{WL}(\ell) \ of \ \Lambda CDM_{Planck \ BF}$$

- Point spread function & blurring
- Pixelization
- Noisy images
- Shape measurements with sophisticated algorithms
- Source misclassification

- Intrinsic alignments: nuisance parameters & multiple models.
- Photometric redshift estimations: Galaxy position in z influences WL signal due to geometry.
- Non-linear CDM power-spectrum: N-body simulations? Field theories? "5 % accurate" solutions. Halo Fit?

Approximations?

Merkel & Schäfer (2015)

B. Leistedt, DM, H. Peiris (2016)

From KiDS; Hildebrandt et al (2016)

- Estimated covariance matrix with N-body problems: grid resolution, boundary effects, super-survey modes.
- Analytically estimated covariance matrix with approximations.
- Cosmology of covariance is probably another than the best-fit cosmology.

End result

$$\frac{\chi^2_{\hat{C}-C_{true}}}{\text{compatible}} + \chi^2_{shape} + \chi^2_{IA} + \chi^2_{photo-z} + \chi^2_{cov} + \ldots = \underbrace{\chi^2_{meas}}_{\text{too large}}$$

H₀ was true, but we rejected it, because our data reduction was too bad/complex.

P-values accumulate systematics. They aren't made for quick solutions to complex problems. And that's why Bayesian Hierarchical Models (BHM) are currently on the rise in astronomy (→ ask AH).

Conclusion:

Before you doubt a hypothesis due to p-values, doubt your analysis.

However... p-values can't be complete nonesense either

- H₀: "Arsenic is good for your health."
- Conduct study¹. → extremely low p-value.
 - 1) Do NOT conduct this study!! Arsenic is extremely poisonous.
- "P-values just parameterize noise and are dominated by mistakes in complex analyses. H₀ is true."

Is it?

First check on noise

Usual noise

We have made at least one mistake.

Okay, it's impossible we made that many mistakes, that's a signal!
 (With a significance of 5sigma, based on a calculation that were correct if the signal did not exist.)

Then measure parameters

Summary

- P-values: estimate the 'weirdness' of noise (that's fine).
- Noise is part of the game; p-values teach you to accept it.
- P-values: Hypothesis rejection/Model selection (take care!)
 - Prepare for being confused and don't ignore your confusion.
 - Low p-value (0.05 -- 1e-4): doubt your analysis before you doubt your hypothesis! Do you have a sampling distribution?
 - Extremely low p-value (<1e-5): probably physics, if all other cross-checks on your data turn out fine
 - 1e-5 is a convention from HEP
- Bayesian Hierarchical Models are designed to treat complex situations and force you to think about assumptions and specifications which p-values would clandestinely 'sweep up'.