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Some cases are clearly Bayesian



  

Some cases are clearly frequentist

● Medical tests:
– Allergy tests

– Pregnancy tests

– Blood tracers for cancer types

– Effictiveness of medication

True positives       false positives

True negatives       false negatives



  

Bayesian statistics in a nutshell

● Parameter estimation:

● Model comparison:



  

Frequentist statistics in a nutshell

● Frequentist comes from 'frequency'.

● Rely on an actual or hypothetical repetition of an 
experiment.

● Friends of limit theorems and asymptotics: 

● Mindset: 

“I have measured the mass of the proton 1 million times.

I always get 1.672621898(21)×10-27 kg.

 I think if I measure once more, I'll again get 
1.672621898(21)×10-27 kg.”



  

Frequentist questions to Bayesians

● How exactly do you get these priors?

● Do you really just fit a model, without checking 
previously that your 'signal' isn't just noise?

● You do know that each time you fit, it is guaranteed 
that you get an answer? Even if it was just noise?

● How do you get rid of a bad model? Without 
replacement?



  

Broadly speaking
● Priors:

 → null-hypothesis + sampling distribution of test statistics T

● Model comparisons:

 → hypothesis rejection & p-values

 → Likelihood-ratio tests,

● Parameter estimation:
–  quite similar! ML-estimators, LS-estimator & sample estimators

● Inversion of the workflow:
– Order of parameter estimation & model/hypothesis selection



  

● Astro: 

0.) Get data = true signal + noise

1.) select parametric model (decides which 'signal' is in the data)     

2.) estimate the model  parameters

3.) doubt model, compare it to a competitor model (evidences)

● HEP: 

0.) Get data. H0: no prejudice about potentially hidden signals.

1.) non-parametric model checks: is it maybe still noise? (p-values)

2.) It's not noise!

3.) Select model and estimate its parameters.

Workflows



  

Particle creation is frequentist by 
nature

p+p → a lot!

'→': Transition probabilities

+ many many more...



  

Particle decay is again frequentist



  

Detection is (mainly) Frequentist...

…. with some Bayesian nightmares.



  

Sampling distributions for test statistics

●

● Can often be derived analytically:

● Else: derive it from Monte Carlo Simulations:

● Aim: How typical is my measurement, compared to 
hypothetical others?



  

Neyman-construction with H
0

● Monte-Carlo simulations

● Target: sampling distribution

events



  

P-values: tails of sampling distributions

● Large values of T typically indicate bad agreement. 
● P-value for a large T is then small.
● For continuous sampling distributions: p-values are 

upper-tail integrals.
 → the sampling distribution affects your p-value.

● Example: 



  

P-values describe necessary noise

→ P-values describe how typical your noise is, for a certain    
    hypothesis H

0
: once out of x times, you will get such noise.

    And there is nothing you can do about it.

Sampling distribution
of your statistic



  

So you can use p-values. 

→ To estimate how likely something is due to noise.



  

Di-photon excess



  

P-values and hypothesis rejection



  

The tempation

Start with the believe: H0 is true.

Conduct one measurement.

● P = 0.01: once out of 100 times, noise on top of H0 is that weird.

● P = 0.001 once out of 1000 times, noise on top of H0 is that weird.

● P = 1e-9: once in a billion, noise on top of H0  is that weird.

Wait! I have measured only once! Why should my one 
measurement be that rare one in a billion case?



  

→ Wish: reject H
0 
for low p.

Low p-values make you doubt H
0

It looks like a good idea:

But it is essentially impossible to control:

→ But if H
0 
is wrong, the p-value calculation is completely

     hypothetical.



  

● Famous paper on the dangers of p-values: T. Selke, M. J. Bayarri, 
J. O. Berger, American Statistician (2001).

● Details on many possibilities of misinterpretation.
● Outreach-'friendly' versions of it exist.

– Easy setup: count how often a true hypothesis is rejected.
– Use of a 'precise' hypothesis (a yes/no answer), to avoid issues 

due to complexity.
– Result: p-value of 0.05 → should reject H0  5% of all times, but 

was measured to reject H0  at least 23% of the times! For p = 
0.01 H0 is rejected at least 7% of the times.

– Exact numbers depend on setup. 

Now what if H
0 
actually is wrong?



  

P-values in complex analyses

● Let's assume our H0 is indeed true, but we don't 
know that.

How reliable are p-values in that case?

● Sampling distribution is not always
● But usually, that is what people use.  (1st problem.)
● Illustrative example:  



  

P-values in complex analyses

● Point spread function & blurring
● Pixelization
● Noisy images
● Shape measurements with sophisticated algorithms
● Source misclassification



  

P-values in complex analyses

● Intrinsic alignments: nuisance parameters & multiple models.
● Photometric redshift estimations: Galaxy position in z influences WL signal 

due to geometry.
● Non-linear CDM power-spectrum: N-body simulations? Field theories? “5 % 

accurate” solutions. Halo Fit?
● Approximations?

Merkel & Schäfer (2015) B. Leistedt, DM, H. Peiris (2016)



  

P-values in complex analyses

● Estimated covariance matrix 
with N-body problems: grid 
resolution, boundary effects, 
super-survey modes.

● Analytically estimated 
covariance matrix with 
approximations.

● Cosmology of covariance is 
probably another than the 
best-fit cosmology.From KiDS; Hildebrandt et al (2016)



  

H0 was true, but we rejected it, because our data 
reduction was too bad/complex.

P-values accumulate systematics. They aren't made for quick solutions to 
complex problems. And that's why Bayesian Hierarchical Models (BHM) are 

currently on the rise in astronomy (→ ask AH).

 Conclusion: 

Before you doubt a hypothesis due to p-values, doubt your analysis.

End result

compatible too large



  

However... p-values can't be complete 
nonesense either

1) Do NOT conduct this study!! Arsenic is extremely poisonous.

● H0: “Arsenic is good for your health.”

● Conduct study1. → extremely low p-value.

● “P-values just parameterize noise and are dominated 
by mistakes in complex analyses. H0  is true.”

Is it?



  

First check on noise

Usual noise

We have made at least 
                 one mistake.

Okay, it's impossible we 
made that many mistakes, 
that's a signal!
(With a significance of 
5sigma, based on a 
calculation that were correct 
if the signal did not exist.)



  

Then measure parameters



  

Summary

● P-values: estimate the 'weirdness' of noise (that's fine).
● Noise is part of the game; p-values teach you to accept it.
● P-values: Hypothesis rejection/Model selection (take care!)

– Prepare for being confused and don't ignore your confusion.

– Low p-value (0.05 -- 1e-4): doubt your analysis before you doubt your 
hypothesis! Do you have a sampling distribution?

– Extremely low p-value (<1e-5): probably physics, if all other cross-checks on 
your data turn out fine

– 1e-5 is a convention from HEP

● Bayesian Hierarchical Models are designed to treat complex 
situations and force you to think about assumptions and specifications 
which p-values would clandestinely 'sweep up'.
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