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Bayesian	Inference
• Two	stages: 
1)	Parameter	es7ma7on	-	Posterior 
2)	Model	selec7on	-	Evidence

Likelihood
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Model	Selec7on
• Apply	Bayes	theorem	to	models	rather	than	
parameters  

• The	normalisa7on	here	can	be	wriDen  

• So	that	the	posterior	of	the	model	can	be	wriDen	
in	terms	of	the	evidences	and	priors	for	the	models
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II. PARAMETER ESTIMATION AND MODEL COMPARISON

In similar schematic form, Bayes theorem appears as

P =
L⇥ ⇡

Z . (6)

A common use of this in cosmology focuses on the posterior P for parameter estimation. For

example, the application of Bayesian inference to find dark energy parameters from SN 1a obser-

vations. This can be handled by common methods of Metropolis-Hasting, Gibbs sampling, etc.

These typically ignore the evidence Z and work with the unnormalised posterior P / L⇥ ⇡.

Alongside parameter estimation, one is also often interested in model comparison. Given two or

more di↵erent models {M1,M2, ...} each with their own parameters and assumptions, one wishes

to determine which is favoured by the data. Again we can apply Bayes theorem, this time obtaining

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
, (7)

which we can rewrite as

P (Mi|D) =
Zi⇡iP
j Zj⇡j

. (8)

For Bayesian model selection then, the evidence Z takes a leading role. In the case of uniform

priors on the models, i.e. ⇡i ⌘ P (Mi) = const, we will typically end up choosing the model with

the largest evidence. More generally, we can marginalise over all possible models weighting each

appropriately.

III. NESTED SAMPLING

The challenge then for fully exploiting Bayesian model selection is the ability to e�ciently and

accurately calculate the evidence Z . This typically involves evaluating an integral over a high-

dimensional parameter space of which only a small region contributes significantly to Z . In general,

the size and position of this key region will not be known a priori and locating it in high dimensions

may be, in itself, challenging.

Nested sampling is one example of an algorithm that attempts to solve this problem. It aims

to both produce samples from the posterior for parameter estimation and to calculate the evidence

for model comparison.
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Model	Selec7on
• For	uniform	priors	on	the	models,	we	prefer	a	
model	with	a	larger	Evidence 
 
 

• Evidence	is	key	for	Bayesian	model	selec7on!	
• How	can	we	calculate	the	evidence?
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The	evidence
• Evidence	is	integral	over	likelihood	and	prior 
 
 
 

• Typically	the	integral	is	in	a	high-dimensional	
space,	but	only	a	small	region	contributes	
significantly	to	integral.	Need	to	find	it!
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I. INTRODUCTION

The central element for Bayesian inference is as always Bayes Theorem

P (✓|D,M) =
P (D|✓,M)P (✓|M)

P (D|M)
. (1)

We can introduced some new notation to tighten further discussion. In general, we begin with a

model M, which depends upon a set of parameters ✓. Given the model M, we can can calculate

the probability of observing the data D for a specific parameter choice:

P (D|✓,M) ⌘ L, (2)

which we term the likelihood L.

Added to the model, we must specify our starting degree of belief about the the values of the

parameters ✓ in the form

P (✓|M) ⌘ ⇡, (3)

which we term the prior.

To properly normalise the likelihood, which is conditioned on a specific parameter value, we

introduce the evidence Z or fully marginalised likelihood by marginalising out the dependence of

the likelihood on the parameters, so that

P (D|M) ⌘ Z =

Z
P (D|✓,M)P (✓|M)d✓. (4)

This can be written in more schematic form as

Z =

Z
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Limita7ons	of	MCMC
• MCMC	with	Metropolis-Has7ngs	typically	focusses	
in	on	peak	of	posterior	and	explores	in	that	vicinity	

• Low	sampling	in	tails	of	distribu7on.	Not	a	problem	
for	parameter	es7ma7on,	but	can	be	when	
calcula7ng	evidence.	

• Difficult	to	handle	mul7modal	 
posterior	distribu7ons	  
-	may	get	trapped



Mul7modal	likelihood

• MH	may	get	trapped	in	local	maximum	without	
exploring	full	likelihood	shape



Nested	Sampling
• Goal	of	efficiently	evalua7ng	evidence	and	
returning	posterior	es7mate.



Nested	Sampling
• Imagine	ordering	set	of	likelihood	points		
• Introduces	prior	volume:	frac7on	of	prior	
contained	within	an	iso-likelihood	contour	

•  

3
Central to nested sampling is a change of variables from the multi-dimensional parameter space

✓ to a one-dimensional variable X. Choosing X to be the fraction of the prior contained within an

iso-likelihood contour L(✓) = L then X is known as the prior volume:

X(L) =
Z

L(✓)>L
⇡(✓)d✓ (9)

With this notation, the evidence calculation transforms from an integration over ✓ into

Z =

Z 1

0
L(X)dX. (10)

Figure ?? illustrates this.

FIG. 1: Change of variable to X.

MULTINEST: efficient and robust Bayesian inference 1603

Figure 1. Cartoon illustrating (a) the posterior of a two-dimensional prob-
lem and (b) the transformed L(X) function where the prior volumes Xi are
associated with each likelihood Li .

where L(X), the inverse of equation (4), is a monotonically de-
creasing function of X. Thus, if one can evaluate the likelihoods
Li = L(Xi), where Xi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (6)

as shown schematically in Fig. 1, the evidence can be approximated
numerically using standard quadrature methods as a weighted sum

Z =
M∑

i=1

Liwi . (7)

In the following we will use the simple trapezium rule, for which
the weights are given by wi = 1

2 (Xi−1 − Xi+1). An example of
a posterior in two dimensions and its associated function L(X) is
shown in Fig. 1.

The summation (equation 7) is performed as follows. The itera-
tion counter is first set to i = 0 and N ‘active’ (or ‘live’) samples
are drawn from the full prior π (Θ) (which is often simply the uni-
form distribution over the prior range), so the initial prior volume is
X0 = 1. The samples are then sorted in order of their likelihood,
and the smallest (with likelihood L0) is removed from the active set
(hence becoming ‘inactive’) and replaced by a point drawn from
the prior subject to the constraint that the point has a likelihood
L > L0. The corresponding prior volume contained within this iso-
likelihood contour will be a random variable given by X1 = t1X0,
where t1 follows the distribution Pr(t) = NtN−1 (i.e. the probabil-
ity distribution for the largest of N samples drawn uniformly from
the interval [0, 1]). At each subsequent iteration i, the removal of
the lowest-likelihood point Li in the active set, the drawing of a
replacement with L > Li and the reduction of the corresponding
prior volume Xi = tiXi−1 are repeated, until the entire prior vol-
ume has been traversed. The algorithm thus travels through nested
shells of likelihood as the prior volume is reduced. The mean and
standard deviations of log t, which dominates the geometrical ex-
ploration, are E[ log t] = −1/N and σ [ log t] = 1/N. Since each
value of log t is independent, after i iterations the prior volume will
shrink down such that log Xi ≈ −(i±

√
i)/N . Thus, one takes Xi =

exp(−i/N).
The algorithm is terminated on determining the evidence to some

specified precision (we use 0.5 in log-evidence): at iteration i, the
largest evidence contribution that can be made by the remaining por-
tion of the posterior is #Zi = LmaxXi , where Lmax is the maximum
likelihood in the current set of active points. The evidence estimate
(equation 7) may then be refined by adding a final increment from
the set of N active points, which is given by

#Z =
N∑

j=1

LjwM+j , (8)

where wM+j = XM/N for all j. The final uncertainty on the calculated
evidence may be straightforwardly estimated from a single run of
the nested sampling algorithm by calculating the relative entropy of
the full sequence of samples (see FH08).

Once the evidence Z is found, posterior inferences can be easily
generated using the full sequence of (inactive and active) points
generated in the nested sampling process. Each such point is simply
assigned the weight

pj = Ljwj

Z
, (9)

where the sample index j runs from 1 to N = M + N , the to-
tal number of sampled points. These samples can then be used to
calculate inferences of posterior parameters, such as means, stan-
dard deviations, covariances and so on, or to construct marginalized
posterior distributions.

4 ELLIPSOIDAL NESTED SAMPLING

The most challenging task in implementing the nested sampling
algorithm is drawing samples from the prior within the hard con-
straint L > Li at each iteration i. Employing a naive approach that
draws blindly from the prior would result in a steady decrease in
the acceptance rate of new samples with decreasing prior volume
(and increasing likelihood).

Ellipsoidal nested sampling (Mukherjee et al. 2006) tries to over-
come the above problem by approximating the iso-likelihood con-
tour L = Li by a D-dimensional ellipsoid determined from the
covariance matrix of the current set of active points. New points are
then selected from the prior within this ellipsoidal bound (usu-
ally enlarged slightly by some user-defined factor) until one is
obtained that has a likelihood exceeding that of the removed lowest-
likelihood point. In the limit that the ellipsoid coincides with the
true iso-likelihood contour, the acceptance rate tends to unity.

Ellipsoidal nested sampling as described above is efficient for
simple unimodal posterior distributions without pronounced de-
generacies, but is not well suited to multimodal distributions. As
advocated by Shaw et al. (2007) and shown in Fig. 2, the sampling
efficiency can be substantially improved by identifying distinct clus-
ters of active points that are well separated and by constructing
an individual (enlarged) ellipsoid bound for each cluster. In some
problems, however, some modes of the posterior may exhibit a pro-
nounced curving degeneracy so that it more closely resembles a
(multidimensional) ‘banana’. Such features are problematic for all
sampling methods, including that of Shaw et al. (2007).

In FH08, we made several improvements to the sampling method
of Shaw et al. (2007), which significantly improved its efficiency
and robustness. Among these, we proposed a solution to the above
problem by partitioning the set of active points into as many sub-
clusters as possible to allow maximum flexibility in following the
degeneracy. These clusters are then enclosed in ellipsoids and a new
point is then drawn from the set of these ‘overlapping’ ellipsoids,
correctly taking into account the overlaps. Although this subcluster-
ing approach provides maximum efficiency for highly degenerate
distributions, it can result in lower efficiencies for relatively simpler
problems owing to the overlap between the ellipsoids. Also, the
factor by which each ellipsoid was enlarged was chosen arbitrar-
ily. Another problem with our previous approach was in separating
modes with elongated curving degeneracies. We now propose solu-
tions to all these problems, along with some additional modifications
to improve efficiency and robustness still further, in the MULTINEST

algorithm presented in the following section.
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• Ordered	L(X)	then	gives	evidence	via	1D	integra7on  
e.g.	via	quadrature 
 

• Points	chosen	randomly	from	region	  
L(X)	are	representa7ve	of	posterior
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nounced curving degeneracy so that it more closely resembles a
(multidimensional) ‘banana’. Such features are problematic for all
sampling methods, including that of Shaw et al. (2007).

In FH08, we made several improvements to the sampling method
of Shaw et al. (2007), which significantly improved its efficiency
and robustness. Among these, we proposed a solution to the above
problem by partitioning the set of active points into as many sub-
clusters as possible to allow maximum flexibility in following the
degeneracy. These clusters are then enclosed in ellipsoids and a new
point is then drawn from the set of these ‘overlapping’ ellipsoids,
correctly taking into account the overlaps. Although this subcluster-
ing approach provides maximum efficiency for highly degenerate
distributions, it can result in lower efficiencies for relatively simpler
problems owing to the overlap between the ellipsoids. Also, the
factor by which each ellipsoid was enlarged was chosen arbitrar-
ily. Another problem with our previous approach was in separating
modes with elongated curving degeneracies. We now propose solu-
tions to all these problems, along with some additional modifications
to improve efficiency and robustness still further, in the MULTINEST

algorithm presented in the following section.
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• Use	to	transform	evidence	calcula7on	from	
mul7dimensional	integral	to	a	1D	integral

3
Central to nested sampling is a change of variables from the multi-dimensional parameter space

✓ to a one-dimensional variable X. Choosing X to be the fraction of the prior contained within an

iso-likelihood contour L(✓) = L then X is known as the prior volume:

X(L) =
Z

L(✓)>L
⇡(✓)d✓ (9)

With this notation, the evidence calculation transforms from an integration over ✓ into

Z =

Z 1

0
L(X)dX. (10)

Figure ?? illustrates this.

FIG. 1: Change of variable to X.
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I. INTRODUCTION

The central element for Bayesian inference is as always Bayes Theorem

P (✓|D,M) =
P (D|✓,M)P (✓|M)

P (D|M)
. (1)

We can introduced some new notation to tighten further discussion. In general, we begin with a

model M, which depends upon a set of parameters ✓. Given the model M, we can can calculate

the probability of observing the data D for a specific parameter choice:

P (D|✓,M) ⌘ L, (2)

which we term the likelihood L.

Added to the model, we must specify our starting degree of belief about the the values of the

parameters ✓ in the form

P (✓|M) ⌘ ⇡, (3)

which we term the prior.

To properly normalise the likelihood, which is conditioned on a specific parameter value, we

introduce the evidence Z or fully marginalised likelihood by marginalising out the dependence of

the likelihood on the parameters, so that

P (D|M) ⌘ Z =

Z
P (D|✓,M)P (✓|M)d✓. (4)

This can be written in more schematic form as

Z =

Z
L(✓)⇡(✓)d✓. (5)
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}
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Figure 1. Cartoon illustrating (a) the posterior of a two-dimensional prob-
lem and (b) the transformed L(X) function where the prior volumes Xi are
associated with each likelihood Li .

where L(X), the inverse of equation (4), is a monotonically de-
creasing function of X. Thus, if one can evaluate the likelihoods
Li = L(Xi), where Xi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (6)

as shown schematically in Fig. 1, the evidence can be approximated
numerically using standard quadrature methods as a weighted sum

Z =
M∑

i=1

Liwi . (7)

In the following we will use the simple trapezium rule, for which
the weights are given by wi = 1

2 (Xi−1 − Xi+1). An example of
a posterior in two dimensions and its associated function L(X) is
shown in Fig. 1.

The summation (equation 7) is performed as follows. The itera-
tion counter is first set to i = 0 and N ‘active’ (or ‘live’) samples
are drawn from the full prior π (Θ) (which is often simply the uni-
form distribution over the prior range), so the initial prior volume is
X0 = 1. The samples are then sorted in order of their likelihood,
and the smallest (with likelihood L0) is removed from the active set
(hence becoming ‘inactive’) and replaced by a point drawn from
the prior subject to the constraint that the point has a likelihood
L > L0. The corresponding prior volume contained within this iso-
likelihood contour will be a random variable given by X1 = t1X0,
where t1 follows the distribution Pr(t) = NtN−1 (i.e. the probabil-
ity distribution for the largest of N samples drawn uniformly from
the interval [0, 1]). At each subsequent iteration i, the removal of
the lowest-likelihood point Li in the active set, the drawing of a
replacement with L > Li and the reduction of the corresponding
prior volume Xi = tiXi−1 are repeated, until the entire prior vol-
ume has been traversed. The algorithm thus travels through nested
shells of likelihood as the prior volume is reduced. The mean and
standard deviations of log t, which dominates the geometrical ex-
ploration, are E[ log t] = −1/N and σ [ log t] = 1/N. Since each
value of log t is independent, after i iterations the prior volume will
shrink down such that log Xi ≈ −(i±

√
i)/N . Thus, one takes Xi =

exp(−i/N).
The algorithm is terminated on determining the evidence to some

specified precision (we use 0.5 in log-evidence): at iteration i, the
largest evidence contribution that can be made by the remaining por-
tion of the posterior is #Zi = LmaxXi , where Lmax is the maximum
likelihood in the current set of active points. The evidence estimate
(equation 7) may then be refined by adding a final increment from
the set of N active points, which is given by

#Z =
N∑

j=1

LjwM+j , (8)

where wM+j = XM/N for all j. The final uncertainty on the calculated
evidence may be straightforwardly estimated from a single run of
the nested sampling algorithm by calculating the relative entropy of
the full sequence of samples (see FH08).

Once the evidence Z is found, posterior inferences can be easily
generated using the full sequence of (inactive and active) points
generated in the nested sampling process. Each such point is simply
assigned the weight

pj = Ljwj

Z
, (9)

where the sample index j runs from 1 to N = M + N , the to-
tal number of sampled points. These samples can then be used to
calculate inferences of posterior parameters, such as means, stan-
dard deviations, covariances and so on, or to construct marginalized
posterior distributions.

4 ELLIPSOIDAL NESTED SAMPLING

The most challenging task in implementing the nested sampling
algorithm is drawing samples from the prior within the hard con-
straint L > Li at each iteration i. Employing a naive approach that
draws blindly from the prior would result in a steady decrease in
the acceptance rate of new samples with decreasing prior volume
(and increasing likelihood).

Ellipsoidal nested sampling (Mukherjee et al. 2006) tries to over-
come the above problem by approximating the iso-likelihood con-
tour L = Li by a D-dimensional ellipsoid determined from the
covariance matrix of the current set of active points. New points are
then selected from the prior within this ellipsoidal bound (usu-
ally enlarged slightly by some user-defined factor) until one is
obtained that has a likelihood exceeding that of the removed lowest-
likelihood point. In the limit that the ellipsoid coincides with the
true iso-likelihood contour, the acceptance rate tends to unity.

Ellipsoidal nested sampling as described above is efficient for
simple unimodal posterior distributions without pronounced de-
generacies, but is not well suited to multimodal distributions. As
advocated by Shaw et al. (2007) and shown in Fig. 2, the sampling
efficiency can be substantially improved by identifying distinct clus-
ters of active points that are well separated and by constructing
an individual (enlarged) ellipsoid bound for each cluster. In some
problems, however, some modes of the posterior may exhibit a pro-
nounced curving degeneracy so that it more closely resembles a
(multidimensional) ‘banana’. Such features are problematic for all
sampling methods, including that of Shaw et al. (2007).

In FH08, we made several improvements to the sampling method
of Shaw et al. (2007), which significantly improved its efficiency
and robustness. Among these, we proposed a solution to the above
problem by partitioning the set of active points into as many sub-
clusters as possible to allow maximum flexibility in following the
degeneracy. These clusters are then enclosed in ellipsoids and a new
point is then drawn from the set of these ‘overlapping’ ellipsoids,
correctly taking into account the overlaps. Although this subcluster-
ing approach provides maximum efficiency for highly degenerate
distributions, it can result in lower efficiencies for relatively simpler
problems owing to the overlap between the ellipsoids. Also, the
factor by which each ellipsoid was enlarged was chosen arbitrar-
ily. Another problem with our previous approach was in separating
modes with elongated curving degeneracies. We now propose solu-
tions to all these problems, along with some additional modifications
to improve efficiency and robustness still further, in the MULTINEST

algorithm presented in the following section.
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Figure 1. Cartoon illustrating (a) the posterior of a two-dimensional prob-
lem and (b) the transformed L(X) function where the prior volumes Xi are
associated with each likelihood Li .

where L(X), the inverse of equation (4), is a monotonically de-
creasing function of X. Thus, if one can evaluate the likelihoods
Li = L(Xi), where Xi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (6)

as shown schematically in Fig. 1, the evidence can be approximated
numerically using standard quadrature methods as a weighted sum

Z =
M∑

i=1

Liwi . (7)

In the following we will use the simple trapezium rule, for which
the weights are given by wi = 1

2 (Xi−1 − Xi+1). An example of
a posterior in two dimensions and its associated function L(X) is
shown in Fig. 1.

The summation (equation 7) is performed as follows. The itera-
tion counter is first set to i = 0 and N ‘active’ (or ‘live’) samples
are drawn from the full prior π (Θ) (which is often simply the uni-
form distribution over the prior range), so the initial prior volume is
X0 = 1. The samples are then sorted in order of their likelihood,
and the smallest (with likelihood L0) is removed from the active set
(hence becoming ‘inactive’) and replaced by a point drawn from
the prior subject to the constraint that the point has a likelihood
L > L0. The corresponding prior volume contained within this iso-
likelihood contour will be a random variable given by X1 = t1X0,
where t1 follows the distribution Pr(t) = NtN−1 (i.e. the probabil-
ity distribution for the largest of N samples drawn uniformly from
the interval [0, 1]). At each subsequent iteration i, the removal of
the lowest-likelihood point Li in the active set, the drawing of a
replacement with L > Li and the reduction of the corresponding
prior volume Xi = tiXi−1 are repeated, until the entire prior vol-
ume has been traversed. The algorithm thus travels through nested
shells of likelihood as the prior volume is reduced. The mean and
standard deviations of log t, which dominates the geometrical ex-
ploration, are E[ log t] = −1/N and σ [ log t] = 1/N. Since each
value of log t is independent, after i iterations the prior volume will
shrink down such that log Xi ≈ −(i±

√
i)/N . Thus, one takes Xi =

exp(−i/N).
The algorithm is terminated on determining the evidence to some

specified precision (we use 0.5 in log-evidence): at iteration i, the
largest evidence contribution that can be made by the remaining por-
tion of the posterior is #Zi = LmaxXi , where Lmax is the maximum
likelihood in the current set of active points. The evidence estimate
(equation 7) may then be refined by adding a final increment from
the set of N active points, which is given by

#Z =
N∑

j=1

LjwM+j , (8)

where wM+j = XM/N for all j. The final uncertainty on the calculated
evidence may be straightforwardly estimated from a single run of
the nested sampling algorithm by calculating the relative entropy of
the full sequence of samples (see FH08).

Once the evidence Z is found, posterior inferences can be easily
generated using the full sequence of (inactive and active) points
generated in the nested sampling process. Each such point is simply
assigned the weight

pj = Ljwj

Z
, (9)

where the sample index j runs from 1 to N = M + N , the to-
tal number of sampled points. These samples can then be used to
calculate inferences of posterior parameters, such as means, stan-
dard deviations, covariances and so on, or to construct marginalized
posterior distributions.

4 ELLIPSOIDAL NESTED SAMPLING

The most challenging task in implementing the nested sampling
algorithm is drawing samples from the prior within the hard con-
straint L > Li at each iteration i. Employing a naive approach that
draws blindly from the prior would result in a steady decrease in
the acceptance rate of new samples with decreasing prior volume
(and increasing likelihood).

Ellipsoidal nested sampling (Mukherjee et al. 2006) tries to over-
come the above problem by approximating the iso-likelihood con-
tour L = Li by a D-dimensional ellipsoid determined from the
covariance matrix of the current set of active points. New points are
then selected from the prior within this ellipsoidal bound (usu-
ally enlarged slightly by some user-defined factor) until one is
obtained that has a likelihood exceeding that of the removed lowest-
likelihood point. In the limit that the ellipsoid coincides with the
true iso-likelihood contour, the acceptance rate tends to unity.

Ellipsoidal nested sampling as described above is efficient for
simple unimodal posterior distributions without pronounced de-
generacies, but is not well suited to multimodal distributions. As
advocated by Shaw et al. (2007) and shown in Fig. 2, the sampling
efficiency can be substantially improved by identifying distinct clus-
ters of active points that are well separated and by constructing
an individual (enlarged) ellipsoid bound for each cluster. In some
problems, however, some modes of the posterior may exhibit a pro-
nounced curving degeneracy so that it more closely resembles a
(multidimensional) ‘banana’. Such features are problematic for all
sampling methods, including that of Shaw et al. (2007).

In FH08, we made several improvements to the sampling method
of Shaw et al. (2007), which significantly improved its efficiency
and robustness. Among these, we proposed a solution to the above
problem by partitioning the set of active points into as many sub-
clusters as possible to allow maximum flexibility in following the
degeneracy. These clusters are then enclosed in ellipsoids and a new
point is then drawn from the set of these ‘overlapping’ ellipsoids,
correctly taking into account the overlaps. Although this subcluster-
ing approach provides maximum efficiency for highly degenerate
distributions, it can result in lower efficiencies for relatively simpler
problems owing to the overlap between the ellipsoids. Also, the
factor by which each ellipsoid was enlarged was chosen arbitrar-
ily. Another problem with our previous approach was in separating
modes with elongated curving degeneracies. We now propose solu-
tions to all these problems, along with some additional modifications
to improve efficiency and robustness still further, in the MULTINEST

algorithm presented in the following section.
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Points exponentially hone in on high L(X) as Xk ~ exp(-k/n) for n points
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Figure 1. Cartoon illustrating (a) the posterior of a two-dimensional problem; and (b) the
transformed L(X) function where the prior volumes Xi are associated with each likelihood Li .

replacement with L > Li and the reduction of the corresponding prior volume Xi = tiXi−1 are
repeated, until the entire prior volume has been traversed. The algorithm thus travels through
nested shells of likelihood as the prior volume is reduced. The mean and standard deviation
of log t , which dominates the geometrical exploration, are

E[log t] = −1/N, σ [log t] = 1/N. (8)

Since each value of log t is independent, after i iterations the prior volume will shrink down
such that log Xi ≈ −(i ±

√
i)/N . Thus, one takes Xi = exp(−i/N).

2.2.2. Stopping criterion. The nested sampling algorithm is terminated when the evidence
has been computed to a pre-specified precision. The evidence that could be contributed by the
remaining live points is estimated as "Zi = LmaxXi, where Lmax is the maximum-likelihood
value of the remaining live points, and Xi is the remaining prior volume. The algorithm
terminates when "Zi is less than a user-defined value (we use 0.5 in log-evidence).

2.2.3. Posterior inferences. Once the evidence Z is found, posterior inferences can be easily
generated using the final live points and the full sequence of discarded points from the nested
sampling process, i.e. the points with the lowest likelihood value at each iteration i of the
algorithm. Each such point is simply assigned the probability weight

pi = Liwi

Z
. (9)

These samples can then be used to calculate inferences of posterior parameters such as means,
standard deviations, covariances and so on, or to construct marginalized posterior distributions.

2.2.4. MULTINEST algorithm. The most challenging task in implementing nested sampling
is to draw samples from the prior within the hard constraint L > Li at each iteration i. The
MULTINEST algorithm [8, 9] tackles this problem through an ellipsoidal rejection sampling
scheme. The live point set is enclosed within a set of (possibly overlapping) ellipsoids and
a new point is then drawn uniformly from the region enclosed by these ellipsoids. The
ellipsoidal decomposition of the live point set is chosen to minimize the sum of volumes
of the ellipsoids. The ellipsoidal decomposition is well suited to dealing with posteriors
that have curving degeneracies, and allows mode identification in multi-modal posteriors. If
there are subsets of the ellipsoid set that do not overlap with the remaining ellipsoids, these
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Since the live points are always drawn uniformly from π (θ ), at
iteration i the volume containing the live points will contract on
average by a factor of nlive/(nlive + 1). Initially the prior volume is
1, so at iteration i

⟨Xi⟩ =
(

nlive

nlive + 1

)i

≈ e−i/nlive . (11)

The live points thus compress the prior exponentially. As the nested
sampling run progresses, one is left with a sequence of discarded
points (termed dead points). Each dead point will have a set of
parameter values θ i, a likelihood Li and an estimated prior volume
Xi.

3.2 Evidence estimation

We can use the dead and live points to estimate the evidence. By
differentiating the prior volume (10), we may rewrite the evidence
calculation (4) as an integral over a single variable:

Z =
∫ 1

0
L(X)dX. (12)

This is detailed graphically in Fig. 1. We may thus estimate the
evidence by quadrature

Z ≈
∑

i∈dead

wiLi , (13)

where for simplicity we take wi = Xi−1 − Xi. Of course, this is
only an estimate, since we are inferring the mean values ⟨Xi⟩ from
the sampling procedure. One may however estimate the error in our
inference, the full details of which can be found in Appendix B.

3.3 Parameter estimation

Nested sampling can also perform parameter estimation by using
the dead and live points as samples from the posterior, provided that
the ith point is given the importance weighting:

pi = wiLi

Z
, (14)

where wi is the prior volume of the shell in which point i was
sampled.

3.4 Algorithm termination

As nested sampling proceeds, the likelihoods Li monotonically
increase, but the weights wi monotonically decrease. This results
in a peak in importance weights (14) that can be seen in Fig. 2. We
terminate the algorithm once the remaining posterior mass (white
region) left in the live points is some small fraction of the currently
calculated evidence (dark region). The posterior mass left in the live
points at iteration i can be estimated by

Zlive ≈ ⟨L⟩liveXi, (15)

where the average is taken over the live points. Since this is typi-
cally an underestimate at early times, this will not cause premature
termination.

3.5 The unit hypercube

Each iteration of nested sampling requires one to sample from the
prior (subject to a hard likelihood constraint). Typically, priors are
defined in terms of simple analytic functions such as uniform or

Figure 2. Plot of a generic likelihood as a function of the prior volume
L(X). In high dimensions, the likelihood is only visible if plotted against
log X (dashed curve). However, the evidence is better visualized by plotting
Xlog (X) (solid curve). The area under the solid curve corresponds to the
evidence. The magnitude of the solid curve is proportional to the importance
weighting. Nested sampling proceeds from high to low volumes. After some
time, the live points no longer contribute significantly to the evidence, and
the algorithm terminates at this point.

Gaussian distributions, and may be sampled using inverse transform
sampling.

In the one-dimensional case, this amounts to converting a uniform
random variable (which are easy to generate) into a variable sam-
pled from a general distribution f(θ ). One first finds its cumulative
distribution function (CDF):

F (θ ) =
∫ θ

−∞
f (θ ′)dθ ′, (16)

computes the inverse of the CDF, and then applies this function
to a uniform random variable x ∼ U(0, 1) to generate a variable
θ = F−1(x), which is distributed according to f(θ ).

In the general D-dimensional case, one calculates D conditional
distributions {fi: i = 1, . . . , D} by marginalizing over parameters
with indices greater than i and conditioning on parameters with
indices less than i:

fi(θi |θi−1, . . . , θ1) =
∫

fi(θ )dθi+1, . . . , dθN∫
fi(θ )dθi , . . . , dθN

. (17)

Integrating these yields D conditional CDFs:

xi = Fi(θi |θi−1, . . . , θ1) =
∫ θi

0
fi(θ ′

i |θi−1, . . . , θ1)dθ ′
i . (18)

Inverting this gives θi = F−1
i (xi |θi−1, . . . , θ1), which constitutes a

set of relations sequentially transforming D uniform random vari-
ables {xi} into {θ i} distributed according to f(θ ).

In many cases, the prior π (θ ) is separable, and the above equa-
tions are easily calculated. For sections of the parameters which
are not separable, the calculation can become more involved. We
include a few demonstrations of this procedure in Appendix A.

Nested sampling can thus be performed in the unit D-dimensional
hypercube, x ∈ [0, 1]D , defining a new likelihood function via
L(θ ) = L(F−1(x)). This has numerous advantages, the first be-
ing that one only needs to be able to generate uniform random
variables in [0, 1]. The second is more subtle; it is more natural to
define a distance metric in the unit hypercube than in the physical
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Figure 1. Cartoon illustrating (a) the posterior of a two-dimensional problem; and (b) the
transformed L(X) function where the prior volumes Xi are associated with each likelihood Li .

replacement with L > Li and the reduction of the corresponding prior volume Xi = tiXi−1 are
repeated, until the entire prior volume has been traversed. The algorithm thus travels through
nested shells of likelihood as the prior volume is reduced. The mean and standard deviation
of log t , which dominates the geometrical exploration, are

E[log t] = −1/N, σ [log t] = 1/N. (8)

Since each value of log t is independent, after i iterations the prior volume will shrink down
such that log Xi ≈ −(i ±

√
i)/N . Thus, one takes Xi = exp(−i/N).

2.2.2. Stopping criterion. The nested sampling algorithm is terminated when the evidence
has been computed to a pre-specified precision. The evidence that could be contributed by the
remaining live points is estimated as "Zi = LmaxXi, where Lmax is the maximum-likelihood
value of the remaining live points, and Xi is the remaining prior volume. The algorithm
terminates when "Zi is less than a user-defined value (we use 0.5 in log-evidence).

2.2.3. Posterior inferences. Once the evidence Z is found, posterior inferences can be easily
generated using the final live points and the full sequence of discarded points from the nested
sampling process, i.e. the points with the lowest likelihood value at each iteration i of the
algorithm. Each such point is simply assigned the probability weight

pi = Liwi

Z
. (9)

These samples can then be used to calculate inferences of posterior parameters such as means,
standard deviations, covariances and so on, or to construct marginalized posterior distributions.

2.2.4. MULTINEST algorithm. The most challenging task in implementing nested sampling
is to draw samples from the prior within the hard constraint L > Li at each iteration i. The
MULTINEST algorithm [8, 9] tackles this problem through an ellipsoidal rejection sampling
scheme. The live point set is enclosed within a set of (possibly overlapping) ellipsoids and
a new point is then drawn uniformly from the region enclosed by these ellipsoids. The
ellipsoidal decomposition of the live point set is chosen to minimize the sum of volumes
of the ellipsoids. The ellipsoidal decomposition is well suited to dealing with posteriors
that have curving degeneracies, and allows mode identification in multi-modal posteriors. If
there are subsets of the ellipsoid set that do not overlap with the remaining ellipsoids, these
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Figure 2. Cartoon of ellipsoidal nested sampling from a simple bimodal distribution. In (a) we see that the ellipsoid represents a good bound to the active
region. In (b)–(d), as we nest inwards we can see that the acceptance rate will rapidly decrease as the bound steadily worsens. (e) illustrates the increase in
efficiency obtained by sampling from each clustered region separately.

5 TH E M ULTIN E S T A L G O R I T H M

The MULTINEST algorithm builds upon the ‘simultaneous ellipsoidal
nested sampling method’ presented in FH08, but incorporates a
number of improvements. In short, at each iteration i of the nested
sampling process, the full set of N active points is partitioned and
ellipsoidal bounds are constructed using a new algorithm presented
in Section 5.2. This new algorithm is far more efficient and robust
than the method used in FH08 and automatically accommodates
elongated curving degeneracies, while maintaining high efficiency
for simpler problems. This results in a set of (possibly overlapping)
ellipsoids. The lowest-likelihood point from the full set of N active
points is then removed (hence becoming ‘inactive’) and replaced by
a new point drawn from the set of ellipsoids, correctly taking into
account any overlaps. Once a point becomes inactive, it plays no
further part in the nested sampling process, but its details remain
stored. We now discuss the MULTINEST algorithm in detail.

5.1 Unit hypercube sampling space

The new algorithm for partitioning the active points into clusters
and for constructing ellipsoidal bounds requires the points to be
uniformly distributed in the parameter space. To satisfy this require-
ment, the MULTINEST ‘native’ space is taken as a D-dimensional unit
hypercube (each parameter value varies from 0 to 1) in which sam-
ples are drawn uniformly. All partitioning of points into clusters,
construction of ellipsoidal bounds and sampling are performed in
the unit hypercube.

In order to conserve probability mass, the point u = (u1, u2, . . . ,
uD) in the unit hypercube should be transformed to the point Θ =
(θ 1, θ2, . . . , θD) in the ‘physical’ parameter space, such that
∫

π (θ1, θ2, . . . , θD) dθ1 dθ2 . . . dθD =
∫

du1 du2 . . . duD. (10)

In the simple case that the prior π (Θ) is separable

π (θ1, θ2, . . . , θD) = π1(θ1)π2(θ2) . . . πD(θD), (11)

one can satisfy equation (10) by setting

πj (θj ) dθj = duj . (12)

Therefore, for a given value of uj , the corresponding value of θj

can be found by solving

uj =
∫ θj

−∞
πj (θ ′

j ) dθ ′
j . (13)

In the more general case in which the prior π (Θ) is not separable,
one instead writes

π (θ1, θ2, . . . , θD) = π1(θ1)π2(θ2|θ1) . . . πD(θD|θ1, θ2 . . . θD−1),
(14)

where we define

πj (θj |θ1, . . . , θj−1)

=
∫

π (θ1, . . . , θj−1, θj , θj+1, . . . , θD) dθj+1 . . . dθD. (15)

The physical parameters Θ corresponding to the parameters u in
the unit hypercube can then be found by replacing the distributions
πj in equation (13) with those defined in equation (15) and solving
for θj . The corresponding physical parameters Θ are then used to
calculate the likelihood value of the point u in the unit hypercube.

It is worth mentioning that in many problems the prior π (Θ) is
uniform, in which case the unit hypercube and the physical param-
eter space coincide. Even when this is not so, one is often able to
solve equation (13) analytically, resulting in virtually no compu-
tational overhead. For more complicated problems, two alternative
approaches are possible. First, one may solve equation (13) numer-
ically, most often using lookup tables to reduce the computational
cost. Alternatively, one can recast the inference problem, so that
the conversion between the unit hypercube and the physical param-
eter space becomes trivial. This is straightforwardly achieved by,
e.g., defining the new ‘likelihood’ L′(Θ) ≡ L(Θ)π (Θ) and ‘prior’
π ′(Θ) ≡ constant. The latter approach does, however, have the po-
tential to be inefficient since it does not make use of the true prior
π (Θ) to guide the sampling of the active points.

5.2 Partitioning and construction of ellipsoidal bounds

In FH08, the partitioning of the set of N active points at each itera-
tion was performed in two stages. First, X-means (Pelleg & Moore
2000) was used to partition the set into the number of clusters that
optimized the Bayesian Information Criterion. Secondly, to accom-
modate modes with elongated, curving degeneracies, each cluster
identified by X-means was divided into subclusters to follow the de-
generacy. To allow maximum flexibility, this was performed using a
modified, iterative k-means algorithm with k = 2 to produce as many
subclusters as possible consistent with there being at least D + 1
points in any subcluster, where D is the dimensionality of the param-
eter space. As mentioned above, however, this approach can lead to
inefficiencies for simpler problems in which the iso-likelihood con-
tour is well described by a few (well-separated) ellipsoidal bounds,
owing to large overlaps between the ellipsoids enclosing each sub-
cluster. Moreover, the factor f by which each ellipsoid was enlarged
was chosen arbitrarily.

We now address these problems by using a new method to parti-
tion the active points into clusters and simultaneously construct
the ellipsoidal bound for each cluster (this also makes the no-
tion of subclustering redundant). At the ith iteration of the nested
sampling process, an ‘expectation-maximization’ (EM) approach is
used to find the optimal ellipsoidal decomposition of N active points
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• Two	examples: 
Mul7Nest	-	ellipsoidal	rejec7on	sampling 
PolyChord	-	slice	sampling	

Codes

POLYCHORD 4391

Figure 6. Evidence estimates and errors produced by POLYCHORD for a Gaus-
sian likelihood as a function of dimensionality. The dashed line indicates
the correct analytic evidence value.

error constant, the number of live points must be scaled with D.
These three effects together mean that POLYCHORD has a theoretical
run-time scaling ∼O

(
D3

)
.

6 P O LY C H O R D I N AC T I O N

We aim to showcase POLYCHORD as both a high-dimensional evidence
calculator, and multimodal posterior sampler. We begin by compar-
ing its dimensionality scaling with MULTINEST. We then demonstrate
its clustering capabilities in high dimensions, and on difficult clus-
tering problems. POLYCHORD is shown to perform well on moderately
pronounced curving degeneracies, and its implementation in COS-
MOMC is discussed.

6.1 High-dimensional evidences

As an example of the strength of POLYCHORD as a high-dimensional
evidence estimator, we compare it to MULTINEST on a Gaussian likeli-
hood in D dimensions. In both cases, convergence is defined as when
the posterior mass contained in the live points is 10−2 of the total
calculated evidence. We set nlive = 25D, so that the evidence error
remains constant with D. MULTINEST was run in its default mode with
importance nested sampling and expansion factor e = 0.1. Whilst
constant efficiency mode has the potential to reduce the number
of MULTINEST evaluations, the low efficiencies required in order to
generate accurate evidences negate this effect.

With these settings, POLYCHORD produces consistent evidence and
error estimates with an error ∼0.4 log units (Fig. 6). Using impor-
tance nested sampling, MULTINEST produces estimates that are within
this accuracy.

Fig. 7 shows the number of likelihood evaluations NL required
to achieve convergence as a function of dimensionality D. Even
on a simple likelihood such as this, POLYCHORD shows a significant
improvement over MULTINEST in scaling with dimensionality. POLY-
CHORD at worst scales as NL ∼ O

(
D3

)
, whereas MULTINEST has an

exponential scaling which emerges in higher dimensions. However,
we must point out that a good rejection algorithm like MULTINEST

will always win in low dimensions. We therefore recommend using
MULTINEST for low dimensional problems, although it should be noted
that MULTINEST’s clustering is ineffective in modest dimensionalities.

Figure 7. Comparing POLYCHORD with MULTINEST using a Gaussian likeli-
hood for different dimensionalities. POLYCHORD has at worst NL ∼ O

(
D3

)
,

whereas MULTINEST has an exponential scaling that emerges at high dimen-
sions.

6.2 Clustering and local evidences

To demonstrate POLYCHORD’s clustering capability we report its per-
formance on a ‘Twin Peaks’ and Rastrigin likelihood.

6.2.1 Twin peaks

POLYCHORD is capable of clustering posteriors in very high dimen-
sions. We define a twin peaks likelihood as an equal mixture of two
spherical Gaussians, separated by a distance of 10σ .

POLYCHORD correctly identifies these clusters in arbitrary dimen-
sions (tested up to D = 100), providing that nlive and nrepeats

are scaled in proportion to D. It calculates a global evidence
that agrees with the analytic results. In addition, the local evi-
dences correctly divide the peaks in proportion to their evidence
contribution.

The results for a twin peaks likelihood are of an identical character
to Figs 6 and 7, and hence not included.

6.2.2 Rastrigin function

POLYCHORD’s clustering capacity is very effective on complicated
clustering problems as well. The n-dimensional Rastrigin test func-
tion is defined by

f (θ ) = An +
n∑

i=1

[
θ2
i − A cos(2πθi)

]
,

A = 10, θi ∈ [−5.12, 5.12]. (21)

This is the industry standard ‘bunch of grapes’, the two-dimensional
version of which is illustrated in Fig. 8. For our purposes, we will
treat equation (21) as the negative log-likelihood so that L(θ ) ∝
exp[−f (θ )]. This is a stereotypically hard problem to solve, as
many algorithms get stuck in local maxima.

We ran POLYCHORD on a two-dimensional Rastrigin log-likelihood
with nlive = 1000 and nrepeats = 6. With these settings, POLYCHORD

calculates accurate evidence and posterior samples (Fig. 8), and
in addition correctly isolates and computes local evidences for the
inner 21 modes. Additional outer modes are also found, but these
are combinations of lower modes due to their very low posterior
fraction. Increasing the resolution parameter nlive further increases

MNRAS 453, 4384–4398 (2015)
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MULTINEST: efficient and robust Bayesian inference 1609

Figure 5. Toy model 1: (a) two-dimensional plot of the likelihood function defined in equation (32); (b) dots denoting the points with the lowest likelihood at
successive iterations of the MULTINEST algorithm. Different colours denote points assigned to different isolated modes as the algorithm progresses.

Table 1. The local log-evidence values of each mode for the toy
model 1, described in Section 6.1, calculated through numeri-
cal integration on a fine grid (the ‘true log(Z)’) and using the
MULTINEST algorithm.

Mode True local log(Z) MULTINEST local log(Z)

1 233.33 233.20 ± 0.08
2 233.33 233.10 ± 0.06
3 233.33 233.48 ± 0.05
4 233.33 233.43 ± 0.05
5 233.33 233.65 ± 0.05
6 233.33 233.27 ± 0.05
7 233.33 233.14 ± 0.06
8 233.33 233.81 ± 0.04
9 232.64 232.65 ± 0.12

10 232.64 232.43 ± 0.16
11 232.64 232.11 ± 0.14
12 232.64 232.44 ± 0.11
13 232.64 232.68 ± 0.11
14 232.64 232.84 ± 0.09
15 232.64 233.02 ± 0.09
16 232.64 231.65 ± 0.29
17 231.94 231.49 ± 0.27
18 231.94 230.46 ± 0.36

log(Z)′] and using MULTINEST, are listed in Table 1. We see that
there is good agreement between the two estimates.

6.2 Toy model 2: Gaussian shells likelihood

We now illustrate the capabilities of our MULTINEST in sampling
from a posterior containing multiple modes with pronounced (curv-
ing) degeneracies, and extend our analysis to parameter spaces of
high dimension.

Our toy problem here is the same one used in FH08 and Allanach
& Lester (2008). The likelihood function in this model is defined as

L(θ ) = circ(θ ; c1, r1, w1) + circ(θ ; c2, r2, w2), (33)

where

circ(θ ; c, r, w) = 1√
2πw2

exp
[
− (|θ − c| − r)2

2w2

]
. (34)

In two dimensions, this toy distribution represents two well-
separated rings, centred on the points c1 and c2, respectively, each of
radius r and with a Gaussian radial profile of width w (see Fig. 6).
With a sufficiently small w value, this distribution is representa-
tive of the likelihood functions one might encounter in analysing
forthcoming particle physics experiments in the context of beyond-
the-Standard-Model paradigms; in such models, the bulk of the
probability lies within thin sheets or hypersurfaces through the full
parameter space.

We investigate the above distribution up to a 30-dimensional pa-
rameter space Θ with MULTINEST. In all cases, the centres of the two
rings are separated by 7 units in the parameter space, and we take
w1 = w2 = 0.1 and r1 = r2 = 2. We make r1 and r2 equal, since in
higher dimensions any slight difference between these two values
would result in a vast difference between the volumes occupied by
the rings and consequently the ring with the smaller r value would
occupy a vanishingly small fraction of the total probability volume,
making its detection almost impossible. It should also be noted that
setting w = 0.1 means that the rings have an extremely narrow
Gaussian profile, and hence they represent an ‘optimally difficult’
problem for our ellipsoidal nested sampling algorithm, since many
tiny ellipsoids are required to obtain a sufficiently accurate repre-
sentation of the iso-likelihood surfaces. For the two-dimensional
case, with the parameters described above, the likelihood is shown
in Fig. 6.

In analysing this problem using the methods presented in FH08,
we showed that the sampling efficiency dropped significantly
with increasing dimensionality, with the efficiency being less than
2 per cent in 10 dimensions, with almost 600 000 likelihood eval-
uations required to estimate the evidence to the required accuracy.
Using 1000 active points in MULTINEST, we list the evaluated and
analytical evidence values in Table 2. The total number of likeli-
hood evaluations and the sampling efficiencies are listed in Table 3.
For comparison, we also list the number of likelihood evaluations
and the sampling efficiencies with the ellipsoidal nested sampling
method proposed in FH08. One sees that MULTINEST requires an
order of magnitude fewer likelihood evaluations than the method of
FH08. In fact, the relative computational cost of MULTINEST is even
less than this comparison suggests, since it no longer performs an
eigen-analysis at each iteration, as discussed in Section 5.2. Indeed,
for this toy problem, the EM partitioning algorithm discussed in
Section 5.2 was on average called only once per 1000 iterations of
the MULTINEST algorithm.
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Figure 6. Toy model 2: (a) two-dimensional plot of the likelihood function defined in equations (33) and (34); (b) dots denoting the points with the lowest
likelihood at successive iterations of the MULTINEST algorithm. Different colours denote points assigned to different isolated modes as the algorithm progresses.

Table 2. The true and estimated global and local log(Z) for toy model 2, as a function of the dimensions
D of the parameter space, using MULTINEST.

Analytical MULTINEST

D log(Z) Local log(Z) log(Z) Local log(Z1) Local log(Z2)

2 −1.75 −2.44 −1.72 ± 0.05 −2.28 ± 0.08 −2.56 ± 0.08
5 −5.67 −6.36 −5.75 ± 0.08 −6.34 ± 0.10 −6.57 ± 0.11

10 −14.59 −15.28 −14.69 ± 0.12 −15.41 ± 0.15 −15.36 ± 0.15
20 −36.09 −36.78 −35.93 ± 0.19 −37.13 ± 0.23 −36.28 ± 0.22
30 −60.13 −60.82 −59.94 ± 0.24 −60.70 ± 0.30 −60.57 ± 0.32

Table 3. The number of likelihood evaluations and sampling
efficiency for the ellipsoidal nested sampling algorithm of
FH08 and MULTINEST, when applied to toy model 2 as a
function of the dimension D of the parameter space.

From FH08 MULTINEST

D Nlike Efficiency Nlike Efficiency
(per cent) (per cent)

2 27 658 15.98 7370 70.77
5 69 094 9.57 17 967 51.02

10 579 208 1.82 52 901 34.28
20 43 093 230 0.05 255 092 15.49
30 753 789 8.39

7 C O S M O L O G I C A L PA R A M E T E R
E STIM ATION A ND M O DE L SELEC TION

Likelihood functions resembling those used in our toy models
do occur in real inference problems in astrophysics and particle
physics, such as object detection in astronomy (see e.g. Hobson &
McLachlan 2003; Feroz, Marshall & Hobson 2008a; Feroz et al.
2008b; FH08) and analysis of beyond-the-Standard-Model theo-
ries in particle physics phenomenology (see e.g. Feroz et al. 2008;
Trotta et al. 2008). None the less, not all likelihood functions are as
challenging, and it is important to demonstrate that MULTINEST is
more efficient (and certainly no less so) than standard Metropolis–
Hastings MCMC sampling even in more straightforward inference
problems.

An important area of inference in astrophysics is that of cos-
mological parameter estimation and model selection, for which the
likelihood functions are usually quite benign, often resembling a

Table 4. Cosmological parameters and uniform prior
ranges for the vanilla !CDM model, plus spatial cur-
vature "k and dark energy equation of state parameter
w.

0.018 ≤ "b h2 ≤ 0.032
0.04 ≤ "CDM h2 ≤ 0.16
0.98 ≤ # ≤ 1.1
0.01 ≤ τ ≤ 0.5
−0.1 ≤ "k ≤ 0.1
−1.5 ≤ w ≤ −0.5
0.8 ≤ ns ≤ 1.2
2.6 ≤ log [1010As ] ≤ 4.2

single, broad multivariate Gaussian in the allowed parameter space.
Therefore, in this section, we apply the MULTINEST algorithm to
analyse two related extensions of the standard cosmology model:
non-flat spatial curvature and a varying equation of state of dark
energy.

The complete set of cosmological parameters and the ranges of
the uniform priors assumed for them are given in Table 4, where
the parameters have their usual meanings. With "k = 0 and w =
−1, this model then represents the ‘vanilla’ !CDM cosmology. In
addition, mirroring the recent analysis of the Wilkinson Microwave
Anisotropy Probe (WMAP) 5-year (WMAP5) data (Dunkley et al.
2009), a Sunyaev–Zel’dovich amplitude is introduced, with a uni-
form prior in the range [0, 2]. We have chosen three basic sets of
data: cosmic microwave background (CMB) observations alone;
CMB plus the Hubble Space Telescope (HST) constraint on H0

(Freedman et al. 2001) and CMB plus large-scale structure (LSS)
constraints on the matter power spectrum derived from the luminous
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Figure 2. True signal and the nine modes of highest evidence identified by the algorithm in our
search for the first source in the training data.

3.1.1. Training data. The MLDC training data set for challenge 3.4 contained five
cosmic string bursts. Our search successfully identified the five sources, and recovered
posterior probability distributions for their parameters. The posteriors were highly degenerate,
containing many modes. These modes corresponded to degeneracies in the waveform
parameter space that arise because the burst signals are of short duration compared to the
orbital period of the detector. Such degeneracies were noted in [24]. We can use the local
Bayesian evidence of the modes, as computed by MULTINEST, to classify the various solutions.
In figure 2 we show the waveforms corresponding to the nine modes of highest local evidence
identified in the search for the first of the signals in the training data set. We also show the
true waveform signal for comparison. It is clear that all of the modes that were identified
have nearly identical waveforms, so we would not expect to determine uniquely the true source
parameters. However, it is also clear that MULTINEST is successfully finding and identifying
the signal.

In table 1 we summarize the parameters of the five signals in the training data set and the
solutions recovered by MULTINEST. For simplicity we present only the solution of highest local
evidence identified by the algorithm, although in all cases we found multiple other modes.
We quote both the maximum likelihood parameters found by MULTINEST for this mode, and
the mean and standard deviation computed from the posterior of that mode. We see that when
the maximum frequency, f max, is significantly below Nyquist, we can determine it well, but
not when it is close to or above that frequency. This is entirely expected, as this parameter
only modifies the signal for f > fmax and therefore does not leave a signature in the data set
when f max is too large. There is a degeneracy in the polarization angle corresponding to the
shift ψ → ψ + π , and accounting for this the polarization is moderately well determined, as
is the amplitude. The time of coalesence at the detector is extremely well determined, but tc
is the time of coalesence at the Solar System barycentre, and this is not so well determined
due to uncertainties in the sky position. The three parameters, βS,φS, tc, show correlated
degeneracies. These arise because the ability of LISA to resolve sky position relies on the
motion of the detector around the Sun, but over the duration of a typical burst LISA is essentially
static. At higher gravitational wave frequencies some of this degeneracy is weakly broken,
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are identified as a distinct mode and subsequently evolved independently. The MULTINEST

algorithm has proven very useful for tackling inference problems in cosmology and particle
physics [11–14], typically showing two orders of magnitude improvement in efficiency over
conventional techniques. More recently, it has been shown to perform well as a search tool
for gravitational wave data analysis [7].

2.3. Burst waveform models

2.3.1. Cosmic strings. Gravitational waves can be generated by cosmic strings through the
formation of cusps, where portions of the string are travelling at nearly the speed of light
[22, 23]. Such radiation is highly beamed and, when viewed along the emission axis, is
linearly polarized and takes a simple power-law form, h(t) ∝ |t − tc|1/3 [22]. When viewed
slightly off-axis, the waveform is still approximately linearly polarized but the cusp spectrum is
rounded off and decays rapidly for frequencies above fmax ∼ 2/(α3L), where α is the viewing
angle and L is the dimension of the feature generating the cusp [22, 24]. The particular model
for the frequency domain waveform adopted in the MLDC is given by [2]

|h(f )| =

⎧
⎨

⎩

Af −4/3 f < fmax

Af −4/3 exp
(

1 − f

fmax

)
f > fmax.

(10)

In addition, the MLDC waveforms include a fourth-order Butterworth filter to mitigate
dynamic-range issues associated with inverse Fourier transforms. We adopt the same ansatz
as the MLDC, namely that the Fourier domain waveform amplitude is given by

|h+| =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Af −4/3

(

1 +
(

flow

f

)2
)−4

f < fmax

Af −4/3

(

1 +
(

flow

f

)2
)−4

exp
(

1 − f

fmax

)
f > fmax

|h×| = 0 (11)

and the phase by exp(2π ıf tc), where tc is the burst time.

2.3.2. Sine-Gaussians. A sine-Gaussian waveform is centred on a particular frequency, and
has exponentially suppressed power at nearby frequencies. We choose to consider a linearly
polarized sine-Gaussian, for which the waveform magnitudes in the frequency domain are
given by

|h+| = A

2

√
Q2

2πf 2
c

× exp

(

−Q2

2

(
f − fc

fc

)2
)

, |h×| = 0 (12)

where A is the dimensionless amplitude, fc is the frequency of the sinusoidal oscillation and
Q is the width. The phase of the wave is again exp(2π ıf tc), where tc is the burst time. In the
time domain, the sine-Gaussian is a small burst ‘packet’ of particular frequency, fc, with the
number of cycles in the burst determined by Q.

2.4. Detector model

To include the LISA response we made use of the static LISA model as described in [25].
This approximation is valid for burst sources, as LISA does not move significantly over the
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are identified as a distinct mode and subsequently evolved independently. The MULTINEST
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physics [11–14], typically showing two orders of magnitude improvement in efficiency over
conventional techniques. More recently, it has been shown to perform well as a search tool
for gravitational wave data analysis [7].

2.3. Burst waveform models

2.3.1. Cosmic strings. Gravitational waves can be generated by cosmic strings through the
formation of cusps, where portions of the string are travelling at nearly the speed of light
[22, 23]. Such radiation is highly beamed and, when viewed along the emission axis, is
linearly polarized and takes a simple power-law form, h(t) ∝ |t − tc|1/3 [22]. When viewed
slightly off-axis, the waveform is still approximately linearly polarized but the cusp spectrum is
rounded off and decays rapidly for frequencies above fmax ∼ 2/(α3L), where α is the viewing
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and the phase by exp(2π ıf tc), where tc is the burst time.

2.3.2. Sine-Gaussians. A sine-Gaussian waveform is centred on a particular frequency, and
has exponentially suppressed power at nearby frequencies. We choose to consider a linearly
polarized sine-Gaussian, for which the waveform magnitudes in the frequency domain are
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where A is the dimensionless amplitude, fc is the frequency of the sinusoidal oscillation and
Q is the width. The phase of the wave is again exp(2π ıf tc), where tc is the burst time. In the
time domain, the sine-Gaussian is a small burst ‘packet’ of particular frequency, fc, with the
number of cycles in the burst determined by Q.

2.4. Detector model

To include the LISA response we made use of the static LISA model as described in [25].
This approximation is valid for burst sources, as LISA does not move significantly over the
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Figure 3. Two-dimensional marginalized posteriors as recovered by MULTINEST in the search
for the third of the cosmic string bursts in the MLDC training data set. The parameters, from
top-to-bottom and left-to-right, are colatitude, longitude, burst time, burst amplitude, burst break
frequency and waveform polarization. At the top of each column we also show the one-dimensional
posterior for the column parameter.

close to the true value of 0.0115 Hz. For this source, the posterior recovered by MULTINEST

was very broad, with a narrow peak in the vicinity of the true value. This suggests that f max

may be difficult to constrain even when it has a value significantly below Nyquist.
The degeneracies in the parameter space are also evident in the marginalized posterior

probability distributions, which we can construct from the MULTINEST live point set evolution.
In figure 3 we show 2D and 1D marginalized posterior distributions for the third of the sources
present in the training data set. We note that the break frequency, f max, is unconstrained as it
was only slightly below (0.464 Hz) the Nyquist frequency of the data set (0.5 Hz) in this case.
The degeneracies in the posteriors for sky position and time of coalesence are also evident.
We see two dominant peaks in the sky position posterior, which are points antipodal to one
another on the sky.

The existence of these degeneracies in the parameter space suggests that a comparison of
recovered and true parameters is not the best way to characterize the quality of a detection,
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Figure 10. The ratio of the Bayesian evidence for the cosmic string model to that of the sine-
Gaussian model when searching a data set containing a cosmic string burst source. We show the
Bayesian evidence ratio as a function of signal SNR for a variety of different cosmic string sources.

From the results of these searches it is possible to construct the evidence ratio of the two
models for each of the data sets. In figure 10 we show the ratio of the Bayesian evidence for
the cosmic string model to that of the sine-Gaussian model when searching the cosmic string
data sets. We see that the evidence ratio starts to significantly favour the true model, i.e. the
cosmic string, at an injected SNR of ∼7, which is the point at which we first start to be able to
detect the cosmic string burst at all. For the two low-frequency sources, training source 1 and
blind source 2, the evidence ratio only starts to favour the true model at SNR ∼ 11, but again
this is the point at which we are first able to detect the source. We conclude that when a cosmic
string burst is loud enough to be detected, then the evidence clearly favours the interpretation
of the event as a cosmic string burst.

In figure 11 we show the ratio of the evidence of the sine-Gaussian model to that of
the cosmic string model when searching the data sets containing sine-Gaussian signals. The
conclusions are broadly the same as for the cosmic string case. We require a slightly higher
SNR in order to correctly choose the sine-Gaussian model, but this just reflects the fact that
we need a somewhat higher SNR to detect the sine-Gaussians in the first place. The only
case for which the evidence ratio does not begin to favour the sine-Gaussian model at the
point where the source becomes detectable is the case with f = 0.002 Hz and Q = 2. This
is a sine-Gaussian signal with only two smooth oscillations, and so it does look rather like a
low-frequency cosmic string event. Even in that case, the evidence begins clearly to favour
the correct model for SNRs of ∼13 and higher.

4. Discussion

We have considered the use of the multi-modal nested sampling algorithm MULTINEST for
detection and characterization of cosmic string burst sources in LISA data. As a search tool,
the algorithm was able to find successfully the three cosmic string bursts that were present in
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Figure 8. Typical example of confusion when searching a cosmic string data set with the wrong
model. The plot shows a comparison of the injected cosmic string signal to the best-fit signals
found by MULTINEST using the cosmic string model as templates and using the sine-Gaussian model
as templates.

Figure 9. As figure 8, but we now show a typical confusion example for searches of the sine–
Gaussian data sets. We compare the injected sine-Gaussian signal to the best-fit signals recovered
by MULTINEST using both the cosmic string and the sine-Gaussian models.

the central two peaks of the sine-Gaussian waveform as well as possible. A typical case is
shown in figure 9.
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During the burn-in period, one can use the Markov chain samples
corresponding to a given value of λ to obtain an estimate of the
quantity

⟨ln L⟩λ ≡
∫

(ln L)LλPr(θ) dθ
∫

LλPr(θ) dθ
, (11)

where, for brevity, we have written L = Pr(D |θ) for the likelihood.
Comparing (10) and (11), we see that

⟨ln L⟩λ = 1
E

dE
dλ

= d ln E
dλ

.

Thus, the (logarithm of) the evidence is given by

ln E(1) = ln E(0) +
∫ 1

0

d ln E
dλ

dλ =
∫ 1

0

⟨ln L⟩λ dλ,

where we have used the fact that E(0) = 1. Hence one may use the
samples obtained during the annealing period to obtain an estimate
of the evidence.

3.4 The Bayesys sampler

In paper this, we use the implementation of the MCMC technique in
the BAYESYS software. This sampler uses the Metropolis–Hastings
algorithm, but coupled with a number of other techniques that in-
crease the efficiency with which the stationary distribution is sam-
pled, while maintaining detailed balance. The sampler does not,
however, make use of gradient information, so that discrete param-
eters can be easily accommodated. Evidence values are calculated
using the thermodynamic integration technique discussed above.
Multiple chains are also supported. A detailed discussion of the
BAYESYS sampler is given by Skilling (in preparation).

4 BAY E S I A N O B J E C T D E T E C T I O N

We now consider how the MCMC approach to Bayesian inference
may be used to address the difficult problem of detecting and char-
acterizing discrete objects hidden in some background. In order to
keep our discussion as general as possible, let us denote the totality
of our available data by the vector D. This may represent the pixel
values in a single ‘image’ (of arbitrary dimensionality) or collec-
tion of images, such as a multifrequency data set. Equally, D could
represent the Fourier coefficients of the image(s), or coefficients in
some other basis. In short, the exact specification of D is unimpor-
tant. We first consider the contribution to these data of the discrete
objects of interest.

4.1 Discrete objects in a background

Let us suppose we are interested in detecting and characterizing
some set of (two-dimensional) discrete objects, each of which is
described by a template τ (x; a), which is parametrized in terms of
a set of parameters a that might typically denote (collectively) the
position (X, Y) of the object, its amplitude A and some measure R
of its spatial extent. For example, circularly symmetric Gaussian-
shaped objects would by defined by

τ (x; a) = A exp

[

− (x − X )2 + (y − Y )2

2R2

]

, (12)

so that a = {X, Y, A, R}. If there exist N obj such objects in the data
set, we may write generically

D = n + s
(

a1, a2, . . . , aNobj

)

, (13)

where the ‘signal’ vector s denotes the contribution to the data from
the N obj discrete objects, and n denotes the generalized ‘noise’ con-
tribution to the data from other astrophysical emission and instru-
mental noise. Although not a necessary requirement, in most ap-
plications the contribution of the objects to the data is additive, in
which (13) simplifies to

D = n +
Nobj
∑

k=1

s(ak),

where s(ak) denotes the contribution to the data from the kth discrete
object. For simplicity we shall denote the unknown parameters N obj

and ak(k = 1, . . . , Nobj) by the single parameter vector θ. Clearly,
we wish to use the data D to place constraints on the values of the
parameters θ.

4.2 Defining the posterior distribution

For any given parametrization of the object template τ , and model
of the background ‘noise’ n, one can write down the likelihood
function Pr(D |θ). Additionally, one may impose a prior Pr(θ) on
the parameters. As discussed in Section 2, the Bayesian inference
of the parameter values is then given by the entire (unnormalized)
posterior distribution

Pr(θ | D) ≡ Pr(D |θ)Pr(θ). (14)

The problem of object identification and characterization may then
be addressed by sampling from this posterior using the MCMC
techniques described above.

As an example, suppose the data vector D contains the pixel
values in a single two-dimensional astronomical image, in which
the generalized background ‘noise’ n corresponds to a statistically
homogeneous Gaussian random field with covariance matrix N =
⟨nnt⟩. In this case, the likelihood function takes the form

Pr(D |θ) =
exp
{

− 1
2 [D − s(a)]tN−1[D − s(a)]

}

(2π)Npix/2 |N|1/2
, (15)

where a denotes collectively the parameter set {a1, a2, . . . , aNobj }.
The prior Pr(θ) on the parameters is also straightforward to de-

termine. Indeed, for most applications, it is natural to assume that
the number of objects N obj and the parameters ak for each object
are mutually independent, so that

Pr(θ) = Pr(Nobj)Pr(a) = Pr(Nobj)Pr(a1)Pr(a2) · · · Pr
(

aNobj

)

. (16)

As mentioned above, the parameters ak , which characterize the kth
object, will typically consist of its position Xk and Y k, amplitude Ak

and spatial extent Rk, and the priors imposed on these parameters
will generally depend on the application. For example, one might
impose uniform priors on Xk and Y k within the borders of the image,
whereas the priors on Ak and Rk may be provided by some physical
model of the objects one wishes to detect. Similarly, one may impose
a prior on the number of unknown objects N obj, which is clearly a
discrete parameter. For example, if the objects of interest are not
clustered on the sky and have a mean number density µ per image
area, then one would set

Pr(Nobj) = µNobj

eµ Nobj!
. (17)

It is clear from the above that a crucial complication inher-
ent to the problem of Bayesian object detection is that the length
of the parameter vector θ is variable. In other words, the length
of θ = {Nobj, a1, a2, . . . , aNobj } depends upon the value of N obj.

C⃝ 2003 RAS, MNRAS 338, 765–784

Bayesian detection of discrete objects 769

During the burn-in period, one can use the Markov chain samples
corresponding to a given value of λ to obtain an estimate of the
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where we have used the fact that E(0) = 1. Hence one may use the
samples obtained during the annealing period to obtain an estimate
of the evidence.

3.4 The Bayesys sampler

In paper this, we use the implementation of the MCMC technique in
the BAYESYS software. This sampler uses the Metropolis–Hastings
algorithm, but coupled with a number of other techniques that in-
crease the efficiency with which the stationary distribution is sam-
pled, while maintaining detailed balance. The sampler does not,
however, make use of gradient information, so that discrete param-
eters can be easily accommodated. Evidence values are calculated
using the thermodynamic integration technique discussed above.
Multiple chains are also supported. A detailed discussion of the
BAYESYS sampler is given by Skilling (in preparation).
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We now consider how the MCMC approach to Bayesian inference
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acterizing discrete objects hidden in some background. In order to
keep our discussion as general as possible, let us denote the totality
of our available data by the vector D. This may represent the pixel
values in a single ‘image’ (of arbitrary dimensionality) or collec-
tion of images, such as a multifrequency data set. Equally, D could
represent the Fourier coefficients of the image(s), or coefficients in
some other basis. In short, the exact specification of D is unimpor-
tant. We first consider the contribution to these data of the discrete
objects of interest.

4.1 Discrete objects in a background

Let us suppose we are interested in detecting and characterizing
some set of (two-dimensional) discrete objects, each of which is
described by a template τ (x; a), which is parametrized in terms of
a set of parameters a that might typically denote (collectively) the
position (X, Y) of the object, its amplitude A and some measure R
of its spatial extent. For example, circularly symmetric Gaussian-
shaped objects would by defined by

τ (x; a) = A exp

[

− (x − X )2 + (y − Y )2

2R2
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, (12)

so that a = {X, Y, A, R}. If there exist N obj such objects in the data
set, we may write generically

D = n + s
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)

, (13)

where the ‘signal’ vector s denotes the contribution to the data from
the N obj discrete objects, and n denotes the generalized ‘noise’ con-
tribution to the data from other astrophysical emission and instru-
mental noise. Although not a necessary requirement, in most ap-
plications the contribution of the objects to the data is additive, in
which (13) simplifies to

D = n +
Nobj
∑
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s(ak),

where s(ak) denotes the contribution to the data from the kth discrete
object. For simplicity we shall denote the unknown parameters N obj

and ak(k = 1, . . . , Nobj) by the single parameter vector θ. Clearly,
we wish to use the data D to place constraints on the values of the
parameters θ.

4.2 Defining the posterior distribution

For any given parametrization of the object template τ , and model
of the background ‘noise’ n, one can write down the likelihood
function Pr(D |θ). Additionally, one may impose a prior Pr(θ) on
the parameters. As discussed in Section 2, the Bayesian inference
of the parameter values is then given by the entire (unnormalized)
posterior distribution

Pr(θ | D) ≡ Pr(D |θ)Pr(θ). (14)

The problem of object identification and characterization may then
be addressed by sampling from this posterior using the MCMC
techniques described above.

As an example, suppose the data vector D contains the pixel
values in a single two-dimensional astronomical image, in which
the generalized background ‘noise’ n corresponds to a statistically
homogeneous Gaussian random field with covariance matrix N =
⟨nnt⟩. In this case, the likelihood function takes the form

Pr(D |θ) =
exp
{

− 1
2 [D − s(a)]tN−1[D − s(a)]

}

(2π)Npix/2 |N|1/2
, (15)

where a denotes collectively the parameter set {a1, a2, . . . , aNobj }.
The prior Pr(θ) on the parameters is also straightforward to de-

termine. Indeed, for most applications, it is natural to assume that
the number of objects N obj and the parameters ak for each object
are mutually independent, so that

Pr(θ) = Pr(Nobj)Pr(a) = Pr(Nobj)Pr(a1)Pr(a2) · · · Pr
(

aNobj

)

. (16)

As mentioned above, the parameters ak , which characterize the kth
object, will typically consist of its position Xk and Y k, amplitude Ak

and spatial extent Rk, and the priors imposed on these parameters
will generally depend on the application. For example, one might
impose uniform priors on Xk and Y k within the borders of the image,
whereas the priors on Ak and Rk may be provided by some physical
model of the objects one wishes to detect. Similarly, one may impose
a prior on the number of unknown objects N obj, which is clearly a
discrete parameter. For example, if the objects of interest are not
clustered on the sky and have a mean number density µ per image
area, then one would set

Pr(Nobj) = µNobj

eµ Nobj!
. (17)

It is clear from the above that a crucial complication inher-
ent to the problem of Bayesian object detection is that the length
of the parameter vector θ is variable. In other words, the length
of θ = {Nobj, a1, a2, . . . , aNobj } depends upon the value of N obj.
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During the burn-in period, one can use the Markov chain samples
corresponding to a given value of λ to obtain an estimate of the
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where, for brevity, we have written L = Pr(D |θ) for the likelihood.
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where we have used the fact that E(0) = 1. Hence one may use the
samples obtained during the annealing period to obtain an estimate
of the evidence.

3.4 The Bayesys sampler

In paper this, we use the implementation of the MCMC technique in
the BAYESYS software. This sampler uses the Metropolis–Hastings
algorithm, but coupled with a number of other techniques that in-
crease the efficiency with which the stationary distribution is sam-
pled, while maintaining detailed balance. The sampler does not,
however, make use of gradient information, so that discrete param-
eters can be easily accommodated. Evidence values are calculated
using the thermodynamic integration technique discussed above.
Multiple chains are also supported. A detailed discussion of the
BAYESYS sampler is given by Skilling (in preparation).
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We now consider how the MCMC approach to Bayesian inference
may be used to address the difficult problem of detecting and char-
acterizing discrete objects hidden in some background. In order to
keep our discussion as general as possible, let us denote the totality
of our available data by the vector D. This may represent the pixel
values in a single ‘image’ (of arbitrary dimensionality) or collec-
tion of images, such as a multifrequency data set. Equally, D could
represent the Fourier coefficients of the image(s), or coefficients in
some other basis. In short, the exact specification of D is unimpor-
tant. We first consider the contribution to these data of the discrete
objects of interest.

4.1 Discrete objects in a background

Let us suppose we are interested in detecting and characterizing
some set of (two-dimensional) discrete objects, each of which is
described by a template τ (x; a), which is parametrized in terms of
a set of parameters a that might typically denote (collectively) the
position (X, Y) of the object, its amplitude A and some measure R
of its spatial extent. For example, circularly symmetric Gaussian-
shaped objects would by defined by

τ (x; a) = A exp

[

− (x − X )2 + (y − Y )2

2R2

]

, (12)

so that a = {X, Y, A, R}. If there exist N obj such objects in the data
set, we may write generically

D = n + s
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a1, a2, . . . , aNobj

)

, (13)

where the ‘signal’ vector s denotes the contribution to the data from
the N obj discrete objects, and n denotes the generalized ‘noise’ con-
tribution to the data from other astrophysical emission and instru-
mental noise. Although not a necessary requirement, in most ap-
plications the contribution of the objects to the data is additive, in
which (13) simplifies to

D = n +
Nobj
∑

k=1

s(ak),

where s(ak) denotes the contribution to the data from the kth discrete
object. For simplicity we shall denote the unknown parameters N obj

and ak(k = 1, . . . , Nobj) by the single parameter vector θ. Clearly,
we wish to use the data D to place constraints on the values of the
parameters θ.

4.2 Defining the posterior distribution

For any given parametrization of the object template τ , and model
of the background ‘noise’ n, one can write down the likelihood
function Pr(D |θ). Additionally, one may impose a prior Pr(θ) on
the parameters. As discussed in Section 2, the Bayesian inference
of the parameter values is then given by the entire (unnormalized)
posterior distribution

Pr(θ | D) ≡ Pr(D |θ)Pr(θ). (14)

The problem of object identification and characterization may then
be addressed by sampling from this posterior using the MCMC
techniques described above.

As an example, suppose the data vector D contains the pixel
values in a single two-dimensional astronomical image, in which
the generalized background ‘noise’ n corresponds to a statistically
homogeneous Gaussian random field with covariance matrix N =
⟨nnt⟩. In this case, the likelihood function takes the form

Pr(D |θ) =
exp
{

− 1
2 [D − s(a)]tN−1[D − s(a)]

}

(2π)Npix/2 |N|1/2
, (15)

where a denotes collectively the parameter set {a1, a2, . . . , aNobj }.
The prior Pr(θ) on the parameters is also straightforward to de-

termine. Indeed, for most applications, it is natural to assume that
the number of objects N obj and the parameters ak for each object
are mutually independent, so that

Pr(θ) = Pr(Nobj)Pr(a) = Pr(Nobj)Pr(a1)Pr(a2) · · · Pr
(

aNobj

)

. (16)

As mentioned above, the parameters ak , which characterize the kth
object, will typically consist of its position Xk and Y k, amplitude Ak

and spatial extent Rk, and the priors imposed on these parameters
will generally depend on the application. For example, one might
impose uniform priors on Xk and Y k within the borders of the image,
whereas the priors on Ak and Rk may be provided by some physical
model of the objects one wishes to detect. Similarly, one may impose
a prior on the number of unknown objects N obj, which is clearly a
discrete parameter. For example, if the objects of interest are not
clustered on the sky and have a mean number density µ per image
area, then one would set

Pr(Nobj) = µNobj

eµ Nobj!
. (17)

It is clear from the above that a crucial complication inher-
ent to the problem of Bayesian object detection is that the length
of the parameter vector θ is variable. In other words, the length
of θ = {Nobj, a1, a2, . . . , aNobj } depends upon the value of N obj.
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algorithm, but coupled with a number of other techniques that in-
crease the efficiency with which the stationary distribution is sam-
pled, while maintaining detailed balance. The sampler does not,
however, make use of gradient information, so that discrete param-
eters can be easily accommodated. Evidence values are calculated
using the thermodynamic integration technique discussed above.
Multiple chains are also supported. A detailed discussion of the
BAYESYS sampler is given by Skilling (in preparation).
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discrete parameter. For example, if the objects of interest are not
clustered on the sky and have a mean number density µ per image
area, then one would set
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It is clear from the above that a crucial complication inher-
ent to the problem of Bayesian object detection is that the length
of the parameter vector θ is variable. In other words, the length
of θ = {Nobj, a1, a2, . . . , aNobj } depends upon the value of N obj.
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algorithm, but coupled with a number of other techniques that in-
crease the efficiency with which the stationary distribution is sam-
pled, while maintaining detailed balance. The sampler does not,
however, make use of gradient information, so that discrete param-
eters can be easily accommodated. Evidence values are calculated
using the thermodynamic integration technique discussed above.
Multiple chains are also supported. A detailed discussion of the
BAYESYS sampler is given by Skilling (in preparation).

4 BAY E S I A N O B J E C T D E T E C T I O N

We now consider how the MCMC approach to Bayesian inference
may be used to address the difficult problem of detecting and char-
acterizing discrete objects hidden in some background. In order to
keep our discussion as general as possible, let us denote the totality
of our available data by the vector D. This may represent the pixel
values in a single ‘image’ (of arbitrary dimensionality) or collec-
tion of images, such as a multifrequency data set. Equally, D could
represent the Fourier coefficients of the image(s), or coefficients in
some other basis. In short, the exact specification of D is unimpor-
tant. We first consider the contribution to these data of the discrete
objects of interest.

4.1 Discrete objects in a background

Let us suppose we are interested in detecting and characterizing
some set of (two-dimensional) discrete objects, each of which is
described by a template τ (x; a), which is parametrized in terms of
a set of parameters a that might typically denote (collectively) the
position (X, Y) of the object, its amplitude A and some measure R
of its spatial extent. For example, circularly symmetric Gaussian-
shaped objects would by defined by

τ (x; a) = A exp

[

− (x − X )2 + (y − Y )2

2R2

]

, (12)

so that a = {X, Y, A, R}. If there exist N obj such objects in the data
set, we may write generically

D = n + s
(

a1, a2, . . . , aNobj

)

, (13)

where the ‘signal’ vector s denotes the contribution to the data from
the N obj discrete objects, and n denotes the generalized ‘noise’ con-
tribution to the data from other astrophysical emission and instru-
mental noise. Although not a necessary requirement, in most ap-
plications the contribution of the objects to the data is additive, in
which (13) simplifies to

D = n +
Nobj
∑

k=1

s(ak),

where s(ak) denotes the contribution to the data from the kth discrete
object. For simplicity we shall denote the unknown parameters N obj

and ak(k = 1, . . . , Nobj) by the single parameter vector θ. Clearly,
we wish to use the data D to place constraints on the values of the
parameters θ.

4.2 Defining the posterior distribution

For any given parametrization of the object template τ , and model
of the background ‘noise’ n, one can write down the likelihood
function Pr(D |θ). Additionally, one may impose a prior Pr(θ) on
the parameters. As discussed in Section 2, the Bayesian inference
of the parameter values is then given by the entire (unnormalized)
posterior distribution

Pr(θ | D) ≡ Pr(D |θ)Pr(θ). (14)

The problem of object identification and characterization may then
be addressed by sampling from this posterior using the MCMC
techniques described above.

As an example, suppose the data vector D contains the pixel
values in a single two-dimensional astronomical image, in which
the generalized background ‘noise’ n corresponds to a statistically
homogeneous Gaussian random field with covariance matrix N =
⟨nnt⟩. In this case, the likelihood function takes the form

Pr(D |θ) =
exp
{

− 1
2 [D − s(a)]tN−1[D − s(a)]

}

(2π)Npix/2 |N|1/2
, (15)

where a denotes collectively the parameter set {a1, a2, . . . , aNobj }.
The prior Pr(θ) on the parameters is also straightforward to de-

termine. Indeed, for most applications, it is natural to assume that
the number of objects N obj and the parameters ak for each object
are mutually independent, so that

Pr(θ) = Pr(Nobj)Pr(a) = Pr(Nobj)Pr(a1)Pr(a2) · · · Pr
(

aNobj

)

. (16)

As mentioned above, the parameters ak , which characterize the kth
object, will typically consist of its position Xk and Y k, amplitude Ak

and spatial extent Rk, and the priors imposed on these parameters
will generally depend on the application. For example, one might
impose uniform priors on Xk and Y k within the borders of the image,
whereas the priors on Ak and Rk may be provided by some physical
model of the objects one wishes to detect. Similarly, one may impose
a prior on the number of unknown objects N obj, which is clearly a
discrete parameter. For example, if the objects of interest are not
clustered on the sky and have a mean number density µ per image
area, then one would set

Pr(Nobj) = µNobj

eµ Nobj!
. (17)

It is clear from the above that a crucial complication inher-
ent to the problem of Bayesian object detection is that the length
of the parameter vector θ is variable. In other words, the length
of θ = {Nobj, a1, a2, . . . , aNobj } depends upon the value of N obj.
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Figure 1. The toy problem discussed in Section 4.3. The 200 × 200 pixel test image (left panel) contains eight discrete Gaussian-shaped objects of varying
widths and amplitudes; the parameters Xk , Yk , Ak and rk for each object are listed in Table 1. The corresponding data map (right panel) has independent
Gaussian pixel noise added with an rms of 2 units. This figure is available in colour in the on-line version of the journal on Synergy.

Thus, in the MH algorithm, the proposal distribution must be able
to propose moves between spaces of differing dimension. In this
case, the detailed balance conditions must be carefully considered
(Green 1994; Philips & Smith 1995). The ability to sample from
spaces of different dimensionality is incorporated in the BAYESYS

software.

4.3 A toy problem

In order to illustrate the various approaches to Bayesian object de-
tection that we present below, we shall apply them to the simple
toy problem illustrated in Fig. 1. The left panel shows our 200 ×
200-pixel test image, which contains 8 Gaussian objects defined by
(12); the parameters Xk, Y k, Ak and Rk (k = 1, . . . , 8) are listed
in Table 1 in order of increasing X-value. The X and Y position
coordinates are drawn independently from the uniform distribution
U(0, 200) Similarly, the amplitude A and size R of each object are
drawn independently from the uniform distributions U (0.5, 1) and
U(5, 10) respectively. In the right panel of Fig. 1, we plot the corre-
sponding data map, which has independent (‘white’) Gaussian pixel
noise added, with an rms of 2 units. This corresponds to a signal-
to-noise ratio of 0.25–0.5 as compared to the peak emission in each
object. We see from the figure that, with this level of noise, no ob-
jects are visible to the naked eye, and so this toy problem represents
a considerable challenge for any object detection algorithm.

Table 1. The parameters Xk , Yk , Ak and Rk (k = 1, . . . , 8)
defining the Gaussian-shaped objects in Fig. 1. The objects
are labelled in order of increasing X-value.

Object X Y A R

1 0.7 110.5 0.71 5.34
2 68.2 166.4 0.91 5.40
3 75.3 117.0 0.62 5.66
4 78.6 12.6 0.60 7.06
5 86.8 41.6 0.63 8.02
6 113.7 43.1 0.56 6.11
7 124.5 54.2 0.60 9.61
8 192.3 150.2 0.90 9.67

5 S I M U LTA N E O U S D E T E C T I O N
O F A L L O B J E C T S

The theoretically most desirable approach is to attempt to detect and
characterize all the objects in the image simultaneously by sampling
from the (unnormalized) posterior distribution (14), with the like-
lihood Pr(D |θ) given by (15) and the prior Pr(θ) given by (16).
Thus, this approach allows one to include prior information regard-
ing the number of objects expected in the image. As mentioned
above, however, in this case the length of the parameter vector θ
is variable, which can lead algorithmic complications. Moreover, if
the expected number of objects in the image is large, then so too will
be the size of the corresponding parameter space that must be sam-
pled. As a result, the algorithm can be slow to burn-in and requires
a large amount of CPU time.

In the analysis of the toy problem discussed above, we assume the
Poisson prior (17) on the number of objects N obj, with a mean of µ=
4, which is purposely chosen to be somewhat smaller than the actual
number of objects N obj = 8. Since the Poisson prior imposes no
upper limit on the possible number of objects, the overall parameter
space under consideration is formally the countably infinite union
of subspaces

! =
∞
⋃

Nobj=0

!Nobj ,

where!Nobj = {a1, . . . , aNobj } denotes the 4N obj-dimensional space
corresponding to the model with N obj objects. The parameters of
the kth object are ak = {Xk, Yk, Ak, Rk}, where we assume (cor-
rectly) that Xk and Y k (k = 1, . . . , N obj) are drawn independently
from the uniform distribution U (0, 200). For Ak and Rk, we again
(correctly) assume that they are drawn independently from uniform
distributions, but we overestimate the width of these distribution.
In particular, we assume Ak and Rk to be drawn from the uniform
distributions U (0, 2) and U (3, 12) respectively.

In sampling from the parameter space, we used 10 Markov chains
and took 5000 post burn-in samples. The results of this approach
are illustrated in Fig. 2. In the left panel, we plot a histogram
of the number of samples obtained in each subspace of different
dimension, from which we note that the most favoured number
of objects is N obj = 7. One is free to use the 5000 post burn-in
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Figure 3. The two-dimensional conditional log-posterior distributions in the (X, Y)-subspace for the toy problem illustrated in Fig. 1, where the model contains
a single object parametrized by a = {X, Y, A, R}. The values of the amplitude A and size R are conditioned at A = 0.75, R = 5 (left panel) and A = 0.75, R =
10 (right panel). This figure is available in colour in the on-line version of the journal on Synergy.

two-dimensional subspace defined by object position (X, Y), while
conditioning on particular values of A and R.

In Fig. 3, we plot the two-dimensional conditional log-posterior
distribution in the (X, Y)-subspace for A = 0.75, R = 5 (left panel)
and for A = 0.75, R = 10 (right panel). The value A is chosen to be
the mean of the uniform distribution U(0.5, 1) from which the am-
plitudes of the objects were drawn, whereas the two values of R
correspond to the limits of the uniform distribution U (5, 10) from
which the sizes of the objects were drawn. Each conditional log-
posterior distribution is calculated on a 200 × 200 grid in the (X, Y)-
subspace, which requires around 10 min of CPU time on an Intel
Pentium III 1-GHz processor. We note that to calculate the full four-
dimensional log-posterior distribution at 200 points in each direction
would require 2002 × 10 min ≈ 280 d of equivalent CPU time.

We see from Fig. 3 that the conditional log-posterior distributions
contain multiple maxima and minima. As one might expect, maxima
do occur at the positions corresponding to each of the eight objects
shown in Fig. 1. We also note, however, that the distributions con-
tains numerous maxima that do not coincide with the position of a
real object, but instead occur because the background noise in some
areas has ‘conspired’ to give the impression that an object might
be present. Unsurprisingly, this is particularly pronounced in the
case R = 5 (left panel). The effect is also easily seen in the R = 10
case (right panel), but the distribution is correspondingly smoother,
as one might expect. In either case, we see that pronounced peaks
in the log-posterior occur only for objects 2, 4, 7 and 8 (as listed
in Table 1). The peaks associated with the remaining objects are
not distinguishable by eye from ‘false’ peaks in the log-posterior
that occur at positions where no object is present. Finally, we note
that for larger/smaller values of A in the range [0.5, 1], the
relative height of the peaks in the posterior distribution at positions
of true objects increases/decreases slightly, but the overall shape of
the distribution remains very similar.

6.1 Sampling of the posterior

It is clear from Fig. 3 that the full four-dimensional posterior dis-
tribution will be very complicated, possessing multiple extrema.
In particular, it is immediately obvious that any attempt to detect
objects by straightforward maximization (e.g. gradient search) of
the posterior distribution is doomed to failure. We therefore choose

instead to sample from the posterior using the MCMC approach
outlined in Section 3.

Several strategies present themselves for performing this sam-
pling of the posterior. The conceptually most straightforward
approach is to perform a ‘detailed’ sampling of the full four-
dimensional posterior. This may be achieved in the following way.
First, the use of several chains (∼ the number of objects expected)
allows the sampler to explore full parameter space more easily.
Moreover, using a very slow annealing schedule and a correspond-
ingly long burn-in period during the thermodynamic integration (see
Section 3.3) affords the chains greater opportunity to sample remote
regions of the posterior distribution. Finally, after burn-in, a large
number of samples are taken.

In general, however, the use of multiple chains, a long-burn and a
large number of samples make this approach very time consuming,
as was the case for the simultaneous detection of objects discussed
in the previous section. This is particularly true, when the posterior
distribution is dominated by a pronounced peak (or set of peaks)
corresponding to one (or more) object. This can occur, for example,
if the true amplitudes A of some of the objects are much larger
than the others, or simply by chance in cases where the signal-to-
noise ratio is somewhat higher than that used in our toy problem.
In this case, a significant fraction of the samples obtained are in
the neighbourhood(s) of the pronounced peak(s), and so a large
total number of samples are needed in order to obtain a reasonable
representation of the full posterior distribution. We shall therefore
not pursue the ‘detailed’ sampling approach here.

6.1.1 The MCCLEAN algorithm

The drawbacks associated with the above method do themselves,
however, suggest an alternative iterative approach to the problem,
in which one attempts to detect and characterize one (or a few)
object at a time. In this case, one is not concerned with ‘detailed’
sampling of the full posterior distribution. Instead, one is content
with sampling the distribution adequately in the neighbourhood of
its most pronounced peak(s). This can be performed efficiently using
only a few chains, a relatively fast annealing schedule during the
thermodynamic integration, and requires many fewer post burn-
in samples. Hence, this approach is significantly computationally

C⃝ 2003 RAS, MNRAS 338, 765–784

N=1	fi`ng
• Simplified	analysis	with	just	one	object: 
leads	to	mul7modal	posterior	with	peaks	at	object 
loca7ons		



• Not	all	peaks	in	posterior	will	be	sources	-	apply	
model	selec7on	to	dis7nguish	

F. Feroz et al. 7

be randomly distributed on the sky leads to a flat angular power
spectrum for confusion noise, given by (in intensity units)

Cconf
ℓ (ν) =

Z Slim

0

S2nν(S)dS. (32)

where Slim is the completeness limit (at, say, 5σ) of the source
subtraction survey, and nν(S) ≡ dNν(> S)/dS is the differential
source count at frequency ν as a function of flux S. In principle,
one should take into account that the unresolved radio point sources
are not randomly distributed on the sky, and may be concentrated
within clusters. This would lead to a power spectrum that was a
function of ℓ, but we do not pursue this further here. In any case,
the power spectrum Cconf

ℓ (ν) can be used to construct the corre-
sponding confusion noise covariance matrices in the same way as
for the CMB contribution (see Hobson & Maisinger 2002 for de-
tails).

In our analysis of simulated AMI data in Section 6, we as-
sume that the differential number count nν(S) does not vary with
frequency over the AMI band 13.9–18.2 GHz. The deepest source
counts at frequencies above ≈ 5 GHz are those at 15 GHz from the
9C survey (Waldram et al. 2003), for which

n (S) = 51S−2.15 Jy−1 sr−1, (33)

based on 465 sources above a 5-σ completeness of 25 mJy. We use
this count in our analysis.

5.4 Estimation of model parameters

The posterior P (Θ) ∝ L(Θ)π(Θ) of the model parameters
Θ = (Θc,Ψ) can be efficiently and robustly explored using the
posterior weighted samples produced by the MULTINEST algo-
rithm (Feroz & Hobson 2008; Feroz et al. 2008). From these sam-
ples, one can, for example, construct one-dimensional marginalised
posterior distributions for each parameter, from which best-fit
values and uncertainties are trivially obtained. In terms of clus-
ter modelling, one is interested only in the cluster parameters
Θc = (xc, yc, β, rc, T, Mg, z), whereas the parameters Ψ asso-
ciated with the resolved radio point sources are considered as nui-
sance parameters and are marginalised over. It may, however, also
be of interest instead to marginalised over the cluster parameters
and produce one-dimensional marginals for the flux S0 of each re-
solved radio source, as well as its spectral index α.

5.5 Quantification of cluster detection

Owing primarily to the presence of primary CMB anisotropies, it
is extremely important to quantify SZ cluster detection. We now
discuss how one may calculate the probability that the observed
field does indeed contain a real cluster above some particular mass
limit of interest.

This quantification is most naturally performed via a Bayesian
model selection by evaluating the evidence associated with
the posterior for competing models for the data (see e.g.
Hobson & McLachlan 2003). It is convenient to consider the fol-
lowing models (or hypotheses):
H0 = ‘a cluster withMg,min < Mg ! Mg,lim is centred in S’,
H1 = ‘a cluster withMg,lim < Mg < Mg,max is centred in S’,
where S is the total prior region in the spatial subspace xc =
(xc, yc). HereMg,min is the lower limit of our assumed prior range
on the cluster gas mass; hence clusters below this minimum mass
are supposed not to exist. Similarly, Mg,max is the upper limit of

our assumed prior range. Finally, Mg,lim is the limiting gas mass
of interest that we discuss in more detail below.

We must calculate the model selection ratio R given in (3)
between the hypotheses H0 and H1. For each hypothesis Hi (i =
0, 1), the evidence is given by

Zi =

Z
L(Θ)πi(Θ) dΘ, (34)

where

πi(Θ) = πi(xc)πi(β)πi(rc)πi(T )πi(Mg, z)πi(Ψ), (35)

for i = 0, 1, are priors that define the hypotheses. In particu-
lar, the priors on all the cluster parameters and source parameters,
apart from Mg and z, may be taken to be the same as those dis-
cussed above for both hypotheses. Differences between the priors
for the two hypotheses do occur in πi(Mg, z), but in a straight-
forward manner. For hypothesis H0, we use π(Mg, z) given in
(22), but now appropriately normalised over the range Mg,min <
Mg ! Mg,lim, and the prior is zero outside this range. Similarly,
for hypothesis H1, we use (22) appropriately normalised over the
range Mg,lim < Mg < Mg,max, and the prior is zero outside this
range. The evidences (34) for i = 0, 1 are easily obtained using the
MULTINEST algorithm.

So far we have not addressed the prior ratio Pr(H1)/Pr(H0)
in (3). This is easily obtained from the prior distribution π(Mg, z)
in (22), and is given by

Pr(H1)
Pr(H0)

=

R zmax

zmin

R Mg,max

Mg,lim
π(Mg, z) dM dz

R zmax

zmin

R Mg,lim

Mg,min
π(Mg, z) dM dz

. (36)

It is worth noting that, in the case where the cluster gas fraction fg

is assumed known, the above prior ratio is simply

Pr(H1)

Pr(H0)
=

R zmax

zmin

R Mg,max/fg

Mg,lim/fg

d2n
dMdz dM dz

R zmax

zmin

R Mg,lim/fg

Mg,min/fg

d2n
dMdz dM dz

, (37)

where d2n/dMdz is the assumed cluster mass function, i.e. the
distribution of the projected number density of clusters in a given
mass and redshift bin per unit area. Moreover, if it is also assumed
that the cluster redshift is known to be z = zc, then (37) reduces to

Pr(H1)
Pr(H0)

=

R Mg,max/fg

Mg,lim/fg

dn
dM

˛̨
z=zc

dM
R Mg,lim/fg

Mg,min/fg

dn
dM

˛̨
z=zc

dM
. (38)

We are thus able to calculate the model selection ratio R in
(3), which gives us the relative probability that the field contains a
‘true’ cluster, with gas mass above the limitMg,lim, as opposed to
‘false’ cluster, with gas mass below this limit. This, in turn, allows
us to calculate the probability that the field contains a ‘true’ cluster,
which is given by

p =
R

1 + R
. (39)

6 APPLICATION TO SIMULATED SZ OBSERVATION

In this section we describe the results of our SZ cluster modelling
algorithm on simulated SZ cluster data-sets from the Arcminute
Microkelvin Imager (AMI).
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Figure 3.Maps made from channel 4 (14.992 GHz) of the simulations considered in this work with Simulation ‘A’ in the left panel and Simulation ‘B’ in the
right panel. The unCLEANed maps are 512 × 512 pixels at 15′′ resolution. Both simulations have the same realisation of primary CMB and instrumental
noise. The three radio sources are also the same between the two simulations. Simulation ‘A’ has a spherically-symmetric, isothermal β-model cluster at the
centre of the map. Simulation ‘B’ has no cluster.

6.1 Simulated AMI data-sets

In simulating mock skies and observing them with a model AMI
SA, we have used the methods outlined in Hobson & Maisinger
(2002) and Grainge et al. (2002). We consider two simulations.
Simulation ‘A’ has a cluster at z = 0.3 modelled as a spherically-
symmetric isothermal β-profile with rc = 60′′ , β = 0.65, ne =
10−2 cm−3 and T = 8 keV. The gas profile is linearly tapered to
zero between 20rc and 20.01rc . The Comptonisation y-parameter
for this model is evaluated on a cube whose face has 512 × 512
pixels at 30′′ resolution before being integrated along the line of
sight. Radio point sources are added to these maps using the fluxes,
positions and spectral indices given in Table 2.

The uv-positions of visibility points are simulated by
calculating the baselines (assuming SA antenna positions in
AMI Consortium: Zwart et al. 2008) for a target at right ascension
α = 4 hours and declination δ = +40o observed over hour angle
±4 hours with one-second sampling.

For each simulation, a realisation of the primary CMB is cal-
culated using a power spectrum of primary anisotropies was gener-
ated for ℓ < 8000 using CAMB (Lewis et al. 2000), with a ΛCDM
cosmology (Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.8 and h = 0.7) as-
sumed. Primary CMB modes on ℓ scales outside the range mea-
surable (ℓ ≈ 500–8000, considering the most extreme frequency
channels) by the SA are set to zero. The CMB realisation is co-
added to the cluster and radio source map in brightness tempera-
ture. To each model sky we also add a population of faint, confus-

∆x/arcsec ∆y/arcsec S15/mJy α

1 8 10 5 0
2 0 –5 15 +1 (falling)
3 –3 8 8 –0.3 (rising)

Table 2. Contaminating radio sources for the simulations considered in this
work. Source positions are given in arcminute offsets from the pointing
centre. The flux and spectral index are at 15.0 GHz.

ing radio point sources, uniformly distributed on the sky but drawn
from a Poisson distribution in flux, with the 9C source count (see
section 5.3) between 10µJy and Slim = 200 µJy. Themap is scaled
by the primary beam appropriate to the measured value in that fre-
quency channel and transformed into the Fourier plane (equivalent
to Fourier transforming and convolving with the aperture illumi-
nation function). The resulting function is sampled at the required
visibility points and thermal receiver noise, appropriate to the mea-
sured sensitivity of the SA, is added at this stage.

The whole process above is repeated for each of the six fre-
quency channels. Simulation ‘B’ is identical to Simulation ‘A’, but
has no cluster. Maps made from the simulated visibilities for chan-
nel 4 (14.992 GHz), for both models, are shown in Figure 3.

6.2 Analysis and results

We analysed the cluster simulations discussed above assuming a
cluster model with spherical geometry, a beta profile for the gas
and isothermal temperature. The priors used are listed for conve-
nience in Table 3. Positions of the radio point sources were fixed
to their true values. The primordial CMB and confusion noise were
included through the covariance matrix as discussed in Section 5.3.
For the confusion noise we used the 9C source count with limiting
flux Slim = 200µJy (correctly) and the count cut off below 10 µJy.

Parameters Priors

xc, yc (0 ± 60)′′

Mg 12 < log10 Mg/h−2M⊙ < 14.5
T 0 < T/keV < 20
rc 0 < rc/h−1 kpc < 1000
β 0.3 < β < 1.5
S0 0 < S/mJy < 20

Table 3. Priors for the cluster and source parameters. Inequalities denote
uniform prior probability between the given limits, whilst (a ± b) denotes
a Gaussian prior with mean a and variance b2.
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Figure 4. 2-D marginalized posterior probability distributions for the parameters of the cluster Simulation ‘A’ discussed in Section 6. The true parameter
values used in the simulation are shown by crosses and vertical lines in 2-D and 1-D marginalisations respectively.

For the primordial CMB anisotropies, we (correctly) assumed a
ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.8 and
h = 0.7. We also assumed that the redshift of the cluster z = 0.3
and the gas fraction fg = 0.1 were known. We analysed all six
AMI frequencies channels jointly. In quantifying our cluster detec-
tion, we adopted a gas mass limit of Mg,lim = 1013h−1M⊙ and
assumed a Press–Schechter mass function.

For the Simulation ‘B’ (with radio point sources and no clus-
ter) MULTINEST did identify a dominant peak in the posterior dis-
tribution of cluster parameters but the probability odds ratio R, as
discussed in Section 5.5, was evaluated to be 0.32± 0.03, showing
that it is more than twice as likely that the field did not contain a
‘true’ cluster with a gas mass above the mass limit of interest. Since
there is no cluster in the field, the highest likelihood point comes
from a large negative primordial feature, but since the statistics of
the primordial CMB have been incorporated in the likelihood eval-
uation through the covariance matrix, the Bayesian model selection
takes this into account and consequently the odds ratio is in favour

of the detected feature being ‘false’. To verify this assertion, we
analysed Simulation ‘B’ without including the CMB component in
the covariance matrix, in which case the probability odds ratio for
cluster detectionR was evaluated to be≈ 150 which clearly shows
that including the CMB is extremely important for properly mod-
elling galaxy clusters through the SZ effect.

For the Simulation ‘A’ (with cluster and radio point sources),
the probability odds ratio for cluster detection R was evaluated
to be e12.2±0.2, showing an overwhelming evidence in favour of
a ‘true’ cluster detection. We plot the 2-D and 1-D marginalized
posterior distributions of the cluster parameters along with the true
parameter values used in the simulation in Figures 4 and 5 respec-
tively. In Figure 5, we also plot the prior distributions imposed on
the parameters. The inferred cluster parameter means and 1-σ un-
certainties are listed in Table 4. It is clear from this table and the
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Figure 4. 2-D marginalized posterior probability distributions for the parameters of the cluster Simulation ‘A’ discussed in Section 6. The true parameter
values used in the simulation are shown by crosses and vertical lines in 2-D and 1-D marginalisations respectively.

For the primordial CMB anisotropies, we (correctly) assumed a
ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.8 and
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to be e12.2±0.2, showing an overwhelming evidence in favour of
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posterior distributions of the cluster parameters along with the true
parameter values used in the simulation in Figures 4 and 5 respec-
tively. In Figure 5, we also plot the prior distributions imposed on
the parameters. The inferred cluster parameter means and 1-σ un-
certainties are listed in Table 4. It is clear from this table and the
posterior plots that all the model parameters have been estimated
to reasonable accuracy. It can also be seen that the posterior for
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Observable Mean value Uncertainties Ref.
µ σ (exper.) τ (theor.)

MW [GeV] 80.399 0.023 0.015 [34]
sin2 θeff 0.23153 0.00016 0.00015 [34]
δaSUSY

µ × 1010 28.7 8.0 2.0 [35]
BR(B̄ → Xsγ)× 104 3.55 0.26 0.30 [36]
R∆MBs

1.04 0.11 - [37]
BR(Bu→τν)

BR(Bu→τν)SM
1.63 0.54 - [36]

∆0− × 102 3.1 2.3 - [38]
BR(B→Dτν)
BR(B→Deν) × 102 41.6 12.8 3.5 [39]

Rl23 0.999 0.007 - [40]
BR(Ds → τν)× 102 5.38 0.32 0.2 [36]
BR(Ds → µν)× 103 5.81 0.43 0.2 [36]
BR(D → µν)× 104 3.82 0.33 0.2 [36]
Ωχh2 0.1109 0.0056 0.012 [41]
mh [GeV] 125.8 0.6 2.0 [19]
BR(Bs → µ+µ−) 3.2 × 10−9 1.5× 10−9 10% [20]

Limit (95% CL) τ (theor.) Ref.
Sparticle masses As in table 4 of Ref. [42].
m0,m1/2 ATLAS,

√
s = 8 TeV, 5.8 fb−1 2012 limits [17]

mA, tan β CMS,
√
s = 7 TeV, 4.7 fb−1 2012 limits [18]

mχ − σSI
χ̃0
1−p

XENON100 2012 limits (224.6 × 34 kg days) [21]

Table 3. Summary of experimental constraints that enter in the computation of the likelihood function.
The upper part lists the observables for which a positive measurement exists. For these quantities mean
values, experimental (σ) and theoretical (τ ) uncertainties are given, which are added in quadrature in the
Gaussian likelihood. δaSUSY

µ = aexp
µ −aSM

µ corresponds to the discrepancy between the experimental value and
the SM prediction of the anomalous magnetic moment of the muon (g − 2)µ; mh stands for the mass of the
lightest Higgs boson, for which we use the latest CMS constraint [19]. The lower part shows observables for
which only experimental limits currently exist, including recent limits from LHC SUSY searches [17, 18], and
constraints on the dark matter mass and spin-independent cross-section from the XENON100 direct detection
experiment [21].

that would normally not have been saved in the posterior chains (as they belong to rejected
steps in the sampling). This results in a combined total of 348M (205M) samples for the
cMSSM (NUHM) scans including the δaSUSY

µ constraint, and 323M (147M) samples for scans

excluding the δaSUSY
µ constraint, out of which the profile likelihood results are obtained. For

the cMSSM, this is a factor of ∼ 100 more than our previous works [4, 5], and a factor of
> 3 more than the frequentist global fits analysis presented in Ref. [11] (for the NUHM our
resolution is comparable).

As another check of the robustness of our scanning procedure, we run 10 scans in parallel
(for both flat and log priors) for each case we consider and we compare the resulting profile
likelihood (and best-fit points) across the different scans, and between each scan and the
merged samples obtained from all the scans together. We have found that while each scan
is more noisy than the combined samples (as expected), our results are consistent across all
the scans.

The total computational effort for the various cases considered is approximately 22 (13)
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Global	par7cle	physics	analysis
• Combine	par7cle	physics	and	astrophysics 
constraints	to	learn	about	beyond	the	Standard  
Model	physics	
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Figure 1. Constraints on the cMSSM including all available present-day data (WMAP 7-year, ATLAS 5.8
fb−1 SUSY null search and CMS Higgs mass value, XENON100 2012 direct detection limits, and others – see
Table 3). Black, filled contours depict the marginalised posterior pdf (top row: flat priors; middle row: log
priors) and the profile likelihood (bottom row), showing 68%, 95% and 99% credible/confidence regions. The
encircled black cross is the overall best-fit point, obtained from about 350M likelihood evaluations. Blue/empty
contours show constraints as of Dec 2011, before the latest LHC and XENON100 results, for comparison (from
[4]). In the left-hand plots, the dashed/green line shows the current LHC 95% exclusion limit, while in the
plots on the right the red/solid line represents the 90% XENON100 exclusion limit (from Ref. [21]) rescaled
to our fiducial astrophysical dark matter distribution. We also show the expected reach of XENON1T as a
red/dashed line.

likelihood the constraint on mh can be fulfilled due to the maximal mixing scenario (see
below). Additionally, small masses are strongly favoured by the constraint on the anomalous
magnetic moment of the muon, which can only be satisfied in the SC region, since in the AF
region the value of g − 2 tends to 0, producing a ∼ 3σ discrepancy with the data. Largely
due to these two constraints, the profile likelihood function favours a small region at low m0,
m1/2 that achieves high likelihood values. The importance of the g−2 constraint in confining
the profile likelihood function to small masses will be discussed in detail in section 3.5.
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• Common	problem	for	MCMC	is	need	to	sample	
likelihood	with	narrow	degeneracies	

• Requires	carefully	chosen	proposal	distribu7on	
• Would	like	to	exploit	an	affine	transforma7on	to	a	
more	symmetric	space	
!

Affine	invariance

sampling is very valuable, but it is even more valuable if the
MCMC algorithm is efficient, in the sense that it does not re-
quire many function evaluations to generate a statistically inde-
pendent sample from the posterior PDF. The methods presented
here are designed for efficiency.

Most uses of MCMC in the astrophysics literature are based
on slight modifications to the Metropolis–Hastings (M–H)
method (introduced below in § 2). Each step in a M–H chain
is proposed using a compact proposal distribution centered
on the current position of the chain (normally a multivariate
Gaussian or something similar). Since each term in the covari-
ance matrix of this proposal distribution is an unspecified pa-
rameter, this method has N ½N þ 1#=2 tuning parameters
(where N is the dimension of the parameter space). To make
matters worse, the performance of this sampler is very sensitive
to these tuning parameters and there is no foolproof method for
choosing the values correctly. As a result, many heuristic meth-
ods have been developed to attempt to determine the optimal
parameters in a data-driven way (for example, Gregory 2005;
Dunkley et al. 2005; Widrow et al. 2008). Unfortunately, these
methods all require a lengthy “burn-in” phase where shorter
Markov chains are sampled and the results are used to tune
the hyperparameters. This extra cost is unacceptable when
the likelihood calls are computationally expensive.

The problem with traditional sampling methods can be
visualized by looking at the simple but highly anisotropic
density

pðxÞ ∝ f

!
&ðx1 & x2Þ2

2ϵ
& ðx1 þ x2Þ2

2

"
; (2)

which would be considered difficult (in the small-ϵ regime) for
standard MCMC algorithms. In principle, it is possible to tune
the hyperparameters of a M–H sampler to make this sampling
converge quickly, but if the dimension is large and calculating
the density is computationally expensive the tuning procedure
becomes intractable. Also, since the number of parameters
scales as ∼N2, this problem gets much worse in higher dimen-
sions. Equation (2) can, however, be transformed into the much
easier problem of sampling an isotropic density by an affine
transformation of the form

y1 ¼
x1 & x2ffiffi

ϵ
p ; y2 ¼ x1 þ x2: (3)

This motivates affine invariance: an algorithm that is affine in-
variant performs equally well under all linear transformations; it
will therefore be insensitive to covariances among parameters.

Extending earlier work by Christen (2007), Goodman &
Weare (2010, hereafter GW10) proposed an affine invariant
sampling algorithm (§ 2) with only two hyperparameters to
be tuned for performance. Hou et al. (2012) were the first group

to implement this algorithm in astrophysics. The implementa-
tion presented here is an independent effort that has already
proved effective in several projects (Sanders & Fabian 2013;
Reis et al. 2013; Weisz et al. 2013; Cieza et al. 2013; Akeret
et al. 2012; Huppenkothen et al. 2012; Monnier et al. 2012;
Morton 2012; Crossfield et al. 2012; Roškar et al. 2012; Bovy
et al. 2012a, 2012b, 2012c; Brown et al. 2012; Brammer et al.
2012; Bussmann et al. 2012; Lang & Hogg 2012; Olofsson et al.
2012; Dorman et al. 2012). In what follows, we summarize the
algorithm from GW10 and the implementation decisions made
in emcee. We also describe the small changes that must be
made to the algorithm to parallelize it. Finally, in the Appendi-
ces, we outline the installation, usage and troubleshooting of the
package.

2. THE ALGORITHM

A complete discussion of MCMC methods is beyond the
scope of this document. Instead, the interested reader is directed
to a classic reference like MacKay (2003) and we will summa-
rize some key concepts below.

The general goal of MCMC algorithms is to drawM samples
fΘig from the posterior probability density

pðΘ;αjDÞ ¼ 1

Z
pðΘ;αÞpðDjΘ;αÞ; (4)

where the prior distribution pðΘ;αÞ and the likelihood function
pðDjΘ;αÞ can be relatively easily (but not necessarily quickly)
computed for any particular value of ðΘi;αiÞ. The normaliza-
tion Z ¼ pðDÞ is independent of Θ and α once we have chosen
the form of the generative model. This means that it is possible
to sample from pðΘ;αjDÞ without computing Z—unless one
would like to compare the validity of two different generative
models. This is important because Z is generally very expensive
to compute.

Once the samples produced by MCMC are available, the
marginalized constraints on Θ can be approximated by the his-
togram of the samples projected into the parameter subspace
spanned by Θ. In particular, this implies that the expectation
value of a function of the model parameters fðΘÞ is

〈fðΘÞ〉 ¼
Z

pðΘjDÞfðΘÞdΘ≈ 1

M

XM

i¼1

fðΘiÞ: (5)

Generating the samples Θi is a non-trivial process unless
pðΘ;α; DÞ is a very specific analytic distribution (for example,
a Gaussian). MCMC is a procedure for generating a random
walk in the parameter space that, over time, draws a represen-
tative set of samples from the distribution. Each point in a
Markov chain XðtiÞ ¼ ½Θi;αi# depends only on the position
of the previous step Xðti&1Þ.
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Emcee	-	“The	MC	Hammer”

Foreman-Mackey+ (2012)

• Emcee	-	affine	invariant	ensemble	sampler 
(available	as	python	module)	

• Evolve	ensemble	of	walkers	(c.f.	Metropolis-Has7ngs)	
• Stretch-move:	

The Metropolis–Hastings (M–H) Algorithm.—The sim-
plest and most commonly used MCMC algorithm is the M–H
method (Algorithm 1; MacKay 2003; Gregory 2005; Press et al.
2007; Hogg et al. 2010). The iterative procedure is as follows:
(1) Given a position XðtÞ sample a proposal position
Y from the transition distribution QðY ;XðtÞÞ, (2) accept this
proposal with probability

min
!
1;

pðY jDÞ
pðXðtÞjDÞ

QðXðtÞ;Y Þ
QðY ;XðtÞÞ

"
: (6)

The transition distribution QðY ;XðtÞÞ is an easy-to-sample
probability distribution for the proposal Y given a position
XðtÞ. A common parameterization of QðY ;XðtÞÞ is a multivar-
iate Gaussian distribution centered on XðtÞ with a general co-
variance tensor that has been tuned for performance. It is worth
emphasizing that if this step is accepted Xðtþ 1Þ ¼ Y ; other-
wise, the new position is set to the previous one Xðtþ 1Þ ¼
XðtÞ (in other words, the position XðtÞ is repeated in the
chain).

The M–H algorithm converges (as t → ∞) to a stationary set
of samples from the distribution but there are many algorithms
with faster convergence and varying levels of implementation
difficulty. Faster convergence is preferred because of the reduc-
tion of computational cost due to the smaller number of likeli-
hood computations necessary to obtain the equivalent level of
accuracy. The inverse convergence rate can be measured by the
autocorrelation function and more specifically, the integrated
autocorrelation time (see § 3). This quantity is an estimate of
the number of steps needed in the chain in order to draw inde-
pendent samples from the target density. A more efficient chain
has a shorter autocorrelation time.

—————————————————————————
Algorithm 1.—The procedure for a single Metropolis–

Hastings MCMC step.
—————————————————————————

1: Draw a proposal Y ∼QðY ;XðtÞÞ
2: q←½pðY ÞQðXðtÞ; Y Þ&=½pðXðtÞÞQðY ;XðtÞÞ& //This line is
generally expensive

3: r←R ∼ ½0; 1&
4: if r ≤ q then
5: Xðtþ 1Þ←Y
6: else
7: Xðtþ 1Þ←XðtÞ
8: end if

—————————————————————————
The stretch move.—GW10 proposed an affine-invariant en-

semble sampling algorithm informally called the “stretch
move.” This algorithm significantly outperforms standard M–H
methods producing independent samples with a much shorter
autocorrelation time (see § 3 for a discussion of the autocorre-

lation time). For completeness and for clarity of notation, we
summarize the algorithm here and refer the interested reader
to the original paper for more details. This method involves si-
multaneously evolving an ensemble of K walkers S ¼ fXkg
where the proposal distribution for one walker k is based on
the current positions of theK ' 1walkers in the complementary
ensemble S½k& ¼ fXj;∀j ≠ kg. Here, “position” refers to a vec-
tor in the N-dimensional, real-valued parameter space.

To update the position of a walker at position Xk, a walker
Xj is drawn randomly from the remaining walkers S½k& and a
new position is proposed:

XkðtÞ → Y ¼ Xj þ Z½XkðtÞ 'Xj&; (7)

where Z is a random variable drawn from a distribution
gðZ ¼ zÞ. It is clear that if g satisfies

gðz'1Þ ¼ zgðzÞ; (8)

the proposal of Equation (7) is symmetric. In this case, the chain
will satisfy detailed balance if the proposal is accepted with
probability

q ¼ min
!
1; ZN'1 pðY Þ

pðXkðtÞÞ

"
; (9)

where N is the dimension of the parameter space. This proce-
dure is then repeated for each walker in the ensemble in series
following the procedure shown in Algorithm 2.

GW10 advocate a particular form of gðzÞ, namely

gðzÞ ∝
(

1ffiffiffi
Z

p if z∈
$
1
a ; a

%

0 otherwise
; (10)

where a is an adjustable scale parameter that GW10 set to 2.

—————————————————————————
Algorithm 2.—A single stretch move update step from GW10.
—————————————————————————

1: for k ¼ 1;…;K do
2: Draw a walker Xj at random from the complementary

ensemble S½k&ðtÞ
3: z←Z ∼ gðzÞ, Equation (10)
4: Y←Xj þ z½XkðtÞ 'Xj&
5: q←zN'1pðY Þ=pðXkðtÞÞ //This line is generally expensive
6: r←R ∼ ½0; 1&
7: if r ≤ q, Equation (9) then
8: Xkðtþ 1Þ←Y
9: else
10: Xkðtþ 1Þ←XkðtÞ
11: end if
12: end for

—————————————————————————
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"
: (6)
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probability distribution for the proposal Y given a position
XðtÞ. A common parameterization of QðY ;XðtÞÞ is a multivar-
iate Gaussian distribution centered on XðtÞ with a general co-
variance tensor that has been tuned for performance. It is worth
emphasizing that if this step is accepted Xðtþ 1Þ ¼ Y ; other-
wise, the new position is set to the previous one Xðtþ 1Þ ¼
XðtÞ (in other words, the position XðtÞ is repeated in the
chain).

The M–H algorithm converges (as t → ∞) to a stationary set
of samples from the distribution but there are many algorithms
with faster convergence and varying levels of implementation
difficulty. Faster convergence is preferred because of the reduc-
tion of computational cost due to the smaller number of likeli-
hood computations necessary to obtain the equivalent level of
accuracy. The inverse convergence rate can be measured by the
autocorrelation function and more specifically, the integrated
autocorrelation time (see § 3). This quantity is an estimate of
the number of steps needed in the chain in order to draw inde-
pendent samples from the target density. A more efficient chain
has a shorter autocorrelation time.

—————————————————————————
Algorithm 1.—The procedure for a single Metropolis–

Hastings MCMC step.
—————————————————————————

1: Draw a proposal Y ∼QðY ;XðtÞÞ
2: q←½pðY ÞQðXðtÞ; Y Þ&=½pðXðtÞÞQðY ;XðtÞÞ& //This line is
generally expensive

3: r←R ∼ ½0; 1&
4: if r ≤ q then
5: Xðtþ 1Þ←Y
6: else
7: Xðtþ 1Þ←XðtÞ
8: end if

—————————————————————————
The stretch move.—GW10 proposed an affine-invariant en-

semble sampling algorithm informally called the “stretch
move.” This algorithm significantly outperforms standard M–H
methods producing independent samples with a much shorter
autocorrelation time (see § 3 for a discussion of the autocorre-

lation time). For completeness and for clarity of notation, we
summarize the algorithm here and refer the interested reader
to the original paper for more details. This method involves si-
multaneously evolving an ensemble of K walkers S ¼ fXkg
where the proposal distribution for one walker k is based on
the current positions of theK ' 1walkers in the complementary
ensemble S½k& ¼ fXj;∀j ≠ kg. Here, “position” refers to a vec-
tor in the N-dimensional, real-valued parameter space.

To update the position of a walker at position Xk, a walker
Xj is drawn randomly from the remaining walkers S½k& and a
new position is proposed:

XkðtÞ → Y ¼ Xj þ Z½XkðtÞ 'Xj&; (7)

where Z is a random variable drawn from a distribution
gðZ ¼ zÞ. It is clear that if g satisfies

gðz'1Þ ¼ zgðzÞ; (8)

the proposal of Equation (7) is symmetric. In this case, the chain
will satisfy detailed balance if the proposal is accepted with
probability

q ¼ min
!
1; ZN'1 pðY Þ

pðXkðtÞÞ

"
; (9)

where N is the dimension of the parameter space. This proce-
dure is then repeated for each walker in the ensemble in series
following the procedure shown in Algorithm 2.

GW10 advocate a particular form of gðzÞ, namely

gðzÞ ∝
(

1ffiffiffi
Z

p if z∈
$
1
a ; a

%

0 otherwise
; (10)

where a is an adjustable scale parameter that GW10 set to 2.

—————————————————————————
Algorithm 2.—A single stretch move update step from GW10.
—————————————————————————
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8: Xkðtþ 1Þ←Y
9: else
10: Xkðtþ 1Þ←XkðtÞ
11: end if
12: end for

—————————————————————————
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• Versi7le	module	for	general	MCMC	problems	



• Modular	Cosmology	analysis	code 
Zuntz	et	al:	hDp://arxiv.org/abs/1409.3409  
-	includes	Mul7Nest,	CosmoMC 
-	integrates	likelihoods	from	Planck,	WMAP,	DES,…  
-	easy	to	switch	in	and	out	different	samplers/
datasets	

COSMOSIS

http://arxiv.org/abs/1409.3409


• Nested	sampling	offers	alterna7ve	to	MCMC	to	
sampling	posterior	and	provides	evidence	

• Nested	sampling	is	well	suited	to	problems	with	
mul7-modal	posteriors	

• Codes	like	Mul7Nest	and	PolyChord	are	freely	
available	and	should	be	in	your	toolkit	

• Many	other	useful	packages:	COSMOSIS,	
EMCEE,SuperBayes,	…	

Conclusions



Some	nota7on
• Likelihood

Nested Sampling

Jonathan R. Pritchard⇤

Imperial College London

Nested sampling as a tool for Bayesian Inference and calculation of the Evidence.

I. INTRODUCTION

The central element for Bayesian inference is as always Bayes Theorem

P (✓|D,M) =
P (D|✓,M)P (✓|M)

P (D|M)
. (1)

We can introduced some new notation to tighten further discussion. In general, we begin with a

model M, which depends upon a set of parameters ✓. Given the model M, we can can calculate

the probability of observing the data D for a specific parameter choice:

P (D|✓,M) ⌘ L, (2)

which we term the likelihood L.

Added to the model, we must specify our starting degree of belief about the the values of the

parameters ✓ in the form

P (✓|M) ⌘ ⇡, (3)

which we term the prior.

To properly normalise the likelihood, which is conditioned on a specific parameter value, we

introduce the evidence Z or fully marginalised likelihood by marginalising out the dependence of

the likelihood on the parameters, so that

P (D|M) ⌘ Z =

Z
P (D|✓,M)P (✓|M)d✓. (4)

This can be written in more schematic form as

Z =

Z
L(✓)⇡(✓)d✓. (5)

⇤
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II. PARAMETER ESTIMATION AND MODEL COMPARISON

In similar schematic form, Bayes theorem appears as

P =
L⇥ ⇡

Z . (6)

A common use of this in cosmology focuses on the posterior P for parameter estimation. For

example, the application of Bayesian inference to find dark energy parameters from SN 1a obser-

vations. This can be handled by common methods of Metropolis-Hasting, Gibbs sampling, etc.

These typically ignore the evidence Z and work with the unnormalised posterior P / L⇥ ⇡.

Alongside parameter estimation, one is also often interested in model comparison. Given two or

more di↵erent models {M1,M2, ...} each with their own parameters and assumptions, one wishes

to determine which is favoured by the data. Again we can apply Bayes theorem, this time obtaining

P (Mi) =
P (D|Mi)P (Mi)

P (D)
, (7)

which we can rewrite as

P (Mi) =
Zi⇡iP
j Zj⇡j

. (8)

For Bayesian model selection then, the evidence Z takes a leading role. In the case of uniform

priors on the models, i.e. ⇡i ⌘ P (Mi) = const, we will typically end up choosing the model with

the largest evidence. More generally, we can marginalise over all possible models weighting each

appropriately.

III. NESTED SAMPLING

The challenge then for fully exploiting Bayesian model selection is the ability to e�ciently and

accurately calculate the evidence Z . This typically involves evaluating an integral over a high-

dimensional parameter space of which only a small region contributes significantly to Z . In general,

the size and position of this key region will not be known a priori and locating it in high dimensions

may be, in itself, challenging.

Nested sampling is one example of an algorithm that attempts to solve this problem. It aims

to both produce samples from the posterior for parameter estimation and to calculate the evidence

for model comparison.


