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Bayesian Inference

* Two stages:
1) Parameter estimation - Posterior
2) Model selection - Evidence

Inputs Outputs

P(d|6, M) x P(0|M) = P(d|d, M) x P(d|M)

Likelihood Prior Posterior Evidence
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Model Selection

* Apply Bayes theorem to models rather than

parameters DIM;)P(M;)

* The normalisation here can be written
PD) =Y Zm; 2 = P(DIM,) = / P(D|0, M;)P(0|M;)db.

So that the E)osterior of the model can be written
in terms of the evidences and priors for the models

ZiTq
P(M,|D) = <=2
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Model Selection

* For uniform priors on the models, we prefer a
model with a larger Evidence

P(./\/l1 D) B Zl 1
P(MQ D) N ZQ A%,

* Evidence is key for Bayesian model selection!
* How can we calculate the evidence?
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The evidence

* Evidence is integral over likelihood and prior

P(DIM) = Z — /P(D\H, M)P(0]M)do.

Z — / L£(6)7(6)d8.

* Typically the integral is in a high-dimensional
space, but only a small region contributes
significantly to integral. Need to find it!
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Limitations of MCMC

* MCMC with Metropolis-Hastings typically focusses

in on peak of posterior and explores i

n that vicinity

* Low sampling in tails of distribution. Not a problem

for parameter estimation, but can be when
calculating evidence. o |

* Difficult to handle multimodal "] ;
posterior distributions BT EEEE
- may get trapped :
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Multimodal likelihood

N
| ©X¢
\/\/

* MH may get trapped in local maximum without
exploring full likelihood shape
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Nested Sampling

* Goal of efficiently evaluating evidence and
returning posterior estimate.
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Nested Sampling

* I[magine ordering set of likelihood points

* Introduces prior volume: fraction of prior
contained within an iso-likelihood contour
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X(L) = /£ L (o




* Use to transform evidence calculation from
multidimensional integral to a 1D integral

Z:/L(G)w(e)de. > Zz/()lﬁ(X)dX-

Ordered L(X) then gives evidence via 1D integration
e.g. via quﬂ?drature

Z = Zﬁiwi w; = %(Xi—l — Xiy1)
=1

* Points chosen randomly from region
L(X) are representative of posterior
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Nested Sampling

* Uniformly sample from prior maintaining a
population of live points that is updated so that
they contract around the peak(s) of posterior

r Lo—o—o—o > 4 points uniformly sampled
0 ]' from prior (equivalent to X)
f_._._. o . Store worst point X i.e.
0 X, ; lowest likelihood
I X B e oo Generate a new point from
2 0 1' uniform dist on [0, Xj]

* Assign X values on basis of statistics of uniform dist

ICIC log X; ~ —(i £ /i)/N

Points exponentially hone in on high L(X) as Xk ~ exp(-k/n) for n points




five live points chosen uniformly from prior
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Define likelihood contour from lowest point
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Delete that point (storing it’s value)
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Select a new point uniformly sampled subject to requirement L(Xnew)>L(Xold)

NG /
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Iterate - contour shrinks by X~exp(1/n)
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Stopping criteria
* Can decide to stop based on error estimate on
evidence

* Likelihood increases, but separation of points
decreases, so contribution to integral converges

AZ; = Lnax Xi

IcIC!

shaded region is running
contribution to evidence



Ultimately left with a set of points with known
{0i,Li}, inferred Xi and estimate of evidence Z
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Incomplete algorithm

* Uniform sampling from prior subject to L(X)>A is not
straightforward.

* e.g. Ellipsoidal rejection sampling (MultiNest)

@:es s

Figure 2. Cartoon of ellipsoidal nested sampling from a simple bimodal distribution. In (a) we see that the ellipsoid represents a good bound to the active
region. In (b)—(d), as we nest inwards we can see that the acceptance rate will rapidly decrease as the bound steadily worsens. (e) illustrates the increase in
efficiency obtained by sampling from each clustered region separately.
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Codes

* Two examples:
MultiNest - ellipsoidal rejection sampling
PolyChord - slice samplin
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Examples
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LISA Gravitational
Wave detectio
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LISA time series analysis

* Cosmic strings produce beamed burst of
gravitational waves via cusp formation
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MultiNest used to
search mock LISA
timestream for
cosmic string signal
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A channel amplitude

* Model selection to determine type of burst:
cosmic string versus Sine-Gaussian model
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Abell 2218
Color: Sunyaev—Zeldovich Effect at 28.5 GHz (Chicago/MSFC S—Z group, BIMA Interferometer
Contours: X-ray Emission (ROSAT PSPC imager)
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Bayesian Image
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Bayesian Image detection

* e.g. finding circular objects in noisy data

(x =X+ -Y)

o a= (XY, A R)
Hobson & McLachlan (2003)
* Sky model will be sum of such objects

ob]

=n + Zs(ak)

e (Gaussian n0|se determines likelihood

T(x;a) = Aexp [—

exp { —3[D —s@IN"'[D —s@)]}

Pr(D | 6) = S NI

ICIC Assume prior is separable by object
Pr(6) = Pr(Noyj)Pr(@) = Pr(Noyj)Pr(a,)Pr(as) - - - Pr (an,,



Toy model|
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Figure 1. The toy problem discussed in Section 4.3. The 200 x 200 pixel test image (left panel) contains eight discrete Gaussian-shaped objects of varying
widths and amplitudes; the parameters X, Yy, Ax and r; for each object are listed in Table 1. The corresponding data map (right panel) has independent

Gaussian pixel noise added with an rms of 2 units. This figure is available in colour in the on-line version of the journal on Synergy.
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N=1 fitting
* Simplified analysis with just one object:

leads to multimodal posterior with peaks at object
locations
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Figure 3. The two-dimensional conditional log-posterior distributions in the (X, Y)-subspace for the toy problem illustrated in Fig. 1, where the model contains
a single object parametrized by a = {X, Y, A, R}. The values of the amplitude A and size R are conditioned at A = 0.75, R = 5 (left panel) and A = 0.75, R =
10 (right panel). This figure is available in colour in the on-line version of the journal on Synergy.



ldentifying real sources

* Not all peaks in posterior will be sources - apply
model selection to distinguish

Ho = ‘acluster with Mg min < Mg < Mg 1im 1s centred in S’ no-cluster
Hy = ‘acluster with My 1im < Mg < Mg max 18 centred in S, cluster
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Global particle physics analysis

* Combine particle physics and astrophysics
constraints to learn about beyond the Standard

Model physics
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Observable Mean value Uncertainties Ref.
i o (exper.) 7 (theor.)
My [GeV] 80.399 0.023 0.015 [34]
sin? 0, s 0.23153 0.00016 0.00015 [34]
da5 ">y % 1010 28.7 8.0 2.0 [35]
BR(B — X,v) x 10* | 3.55 0.26 0.30 36]
Ramy, 1.04 0.11 - [37]
ngf;:;gM 1.63 0.54 ; [36]
Ag_ x 102 3.1 2.3 - [38]
B x 107 41.6 12.8 3.5 [39]
Rio3 0.999 0.007 - [40]
BR(Ds — 1v) x 10? | 5.38 0.32 0.2 [36]
BR(Ds — pv) x 10% | 5.81 0.43 0.2 36]
BR(D — uv) x 10* | 3.82 0.33 0.2 36]
Q, h* 0.1109 0.0056 0.012 [41]
my, [GeV] 125.8 0.6 2.0 [19]
BR(Bs — up™) 3.2 x 107 1.5 x 107 10% [20]
Limit (95% CL) 7 (theor.) | Ref.
Sparticle masses As in table 4 of Ref. [42].
mo, My /2 ATLAS, /s =8 TeV, 5.8 fb~! 2012 limits [17]
m.4,tan 3 CMS, /s =7 TeV, 4.7 tb~! 2012 limits 18]
my, — oo XENON100 2012 limits (224.6 x 34 kg days) | [21]
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Constrained MSSM
* WMAP7+ATLAS+CMS Higgs mass + XENON100+...

Strege et al. (2013)
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Other useful packages
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Affine invariance

* Common problem for MCMC is need to sample
likelihood with narrow degeneracies

* Requires carefully chosen proposal distribution

* Would like to exploit an affine transformation to a
more symmetric space

Y2
X?2 A A

- @

» X > Y

L1 — Lo

p(z) f(— (71 — 29)° _ (z1 + x2)2> Y1 = Je Yo = X1 + To.




Emcee - “The MC Hammer”

Emcee - affine invariant ensemble sampler
(available as python module) Foreman-Mackey+ (2012)

* Evolve ensemble of walkers (c.f. Metropolis-Hastings)
* Stretch-move:

For walker at Xk, chose another walker Xj and propose move
Xi(t) > Y = X; + Z[ X, (1) — X,

)
Z random variable drawn from distribution \/L_ 1f z€ {% : a}
chosen to ensure detailed balance Q(Z) X ¢ VZ

L0

otherwise
Accept proposal according to

— min vo1_PY)
ICIC! = (1’2 p(Xk@)))’

Repeat for all walkers in series.




* Versitile module for general MCMC problems
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COSMOSIS

* Modular Cosmology analysis code
Zuntz et al: http://arxiv.org/abs/1409.3409
- includes MultiNest, CosmoMC
- integrates likelihoods from Planck, WMAP, DES,...
- easy to switch in and out different samplers/
datasets
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http://arxiv.org/abs/1409.3409

Conclusions

* Nested sampling offers alternative to MCMC to
sampling posterior and provides evidence

* Nested sampling is well suited to problems with
multi-modal posteriors

* Codes like MultiNest and PolyChord are freely
available and should be in your toolkit

* Many other useful packages: COSMOSIS,
EMCEE,SuperBayes, ...
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Some notation

e Likelihood

P(D|0, M) = L,

PO|M) =,
P@M@EZ:/HM&MMWMWM

Z = / L(0)7(6)d6.
ICIC - Lxm
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