Bayesian model comparison

ICIC Data Analysis Workshop 2016

Ln(a) Sellentin Imperial College London & Université de Genève

email: elena.sellentin@posteo.de

$$S_{EH} = \frac{1}{16\pi G} \int \sqrt{-g} (R - 2\Lambda) d^4x$$

$$S = \int d^4x \sqrt{-g} \mathcal{L}_H$$

$$\mathcal{L}_H = \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5$$

$$\mathcal{L}_2 = K(\phi, X),$$

$$\mathcal{L}_3 = -G_3(\phi, X)\Box\phi,$$

$$\mathcal{L}_4 = G_4(\phi, X)R + G_{4,X}[(\Box \phi)^2 - (\nabla_{\mu}\nabla_{\nu}\phi)(\nabla^{\mu}\nabla^{\nu}\phi)]$$

$$\mathcal{L}_{5} = G_{5}(\phi, X)G_{\mu\nu}(\nabla^{\mu}\nabla^{\nu}\phi) - \frac{1}{6}G_{5,X}[(\Box\phi)^{3} - 3(\Box\phi)(\nabla_{\mu}\nabla_{\nu}\phi)(\nabla^{\mu}\nabla^{\nu}\phi) + 2(\nabla^{\mu}\nabla_{\alpha}\phi)(\nabla^{\alpha}\nabla_{\beta}\phi)(\nabla^{\beta}\nabla_{\mu}\phi)]$$

Image credit: Horndeski, Gregory W.

The evidence

- Normalization constant in parameter inference
- The quantity for model comparison

$$P(\boldsymbol{\theta}_{M}|\boldsymbol{X}) = \frac{\mathcal{P}(\boldsymbol{\theta}_{M})L(\boldsymbol{X}|\boldsymbol{\theta}_{M})}{\varepsilon}$$

$$\varepsilon = L(\boldsymbol{X}|M_1)$$

$$\varepsilon = \int L(\boldsymbol{X}|\boldsymbol{\theta}_{M})\mathcal{P}(\boldsymbol{\theta}_{M})\mathrm{d}^{n}\theta$$

- → It balances the goodness of fit against the number of parameters. 'Occam's razor'.
 - → It avoids (extreme) overfitting.

Toy Model

$$\varepsilon = \int L(\mathbf{X}|\boldsymbol{\theta}_{M})\mathcal{P}(\boldsymbol{\theta}_{M})\mathrm{d}^{n}\boldsymbol{\theta} = L(\boldsymbol{\theta}')\mathcal{P}(\boldsymbol{\theta}')\Delta L$$

$$= L(\boldsymbol{\theta}')\frac{\Delta L}{\Delta \mathcal{P}}$$

$$L \propto \exp(-\frac{1}{2}\chi^{2})$$

$$\boldsymbol{\theta}'$$

Will always decrease with number of parameters.

Polynomial example

$$L(\theta') \frac{\Delta L}{\Delta \mathcal{P}}$$

$$L \propto \exp(-\frac{1}{2}\chi^2)$$

A word on priors in $\varepsilon = \int L(\boldsymbol{X}|\boldsymbol{\theta}_{M})\mathcal{P}(\boldsymbol{\theta}_{M})\mathrm{d}^{n}\theta$

- Theory or physics driven priors
 - $-\Omega_m \in [0,1]$, Mass > 0
- Data driven priors & combination of experiments
 - Prior = old data
 - Likelihood = new data
 - Posterior = old and new data
- Subjective & informative priors
 - Only an unstated prior is a bad prior.'

- Maximize KL-divergence $D_{\mathrm{KL}}(P\|Q) = \int_{-\infty}^{\infty} p(x) \, \log rac{p(x)}{q(x)} \, \mathrm{d}x$
- Exploit symmetry groups: Haar-measures and invariant 'volumes'
- Reparameterization independence (Jeffreys priors) $\pi_{IJ}(m{\mu}, m{\Sigma}) = |m{\Sigma}|^{-(p+1)/2}$
- Frequentist matching priors $\frac{d}{d\theta}(\pi(\theta)I^{-1/2}(\theta)) = 0$

Model comparison

Have: $\varepsilon = L(\boldsymbol{X}|M_1)$

Want: $L(M_1|m{X})$

Bayes' theorem:

$$L(M_1|\mathbf{X}) = L(\mathbf{X}|M_1) \frac{\mathcal{P}(M_1)}{\mathcal{P}(\mathbf{X})}$$

Model comparison

Get rid off the prior probability for the data by taking a ratio:

$$\begin{split} \frac{L(M_1|\boldsymbol{X})}{L(M_2|\boldsymbol{X})} &= \frac{\mathcal{P}(M_1)L(\boldsymbol{X}|M_1)}{\mathcal{P}(M_2)L(\boldsymbol{X}|M_2)} \\ &= \frac{\mathcal{P}(M_1)}{\mathcal{P}(M_2)}\underbrace{\frac{\varepsilon_1}{\varepsilon_2}}_{\boldsymbol{\varepsilon}_2} &\longrightarrow \text{Bayes factor: > 1 prefers M}_1 \\ &< \text{1 prefers M}_2 \end{split}$$

Where:
$$\varepsilon = \int L(\boldsymbol{X}|\boldsymbol{\theta}_M) \mathcal{P}(\boldsymbol{\theta}_M) \mathrm{d}^n \theta$$

Magnitude of B

- Bayes factor = evidence₁/evidence₂.
- Without loss of generality: $\epsilon_1 = b\epsilon_2$
- Then:

$$B_{12} = \frac{1}{b} \quad and \quad B_{21} = \frac{b}{1}$$

decisiveness asymptotes to zero vs. decisiveness grows linearly

Ergo: Introduce In for measure of decisiveness:

$$ln(B_{12}) = ln(1) - ln(b)$$

$$ln(B_{21}) = ln(b)$$
 \rightarrow now B_{12} and B_{21} are treated equally

Calibration on the Jeffreys scale

Table 6.1: Jeffreys scale

$ \log\left(\frac{\varepsilon(M_1)}{\varepsilon(M_2)}\right) $	odds	interpretation	prob. of favoured model
≤ 1.0	3:1	better data is needed	≤ 0.75
≤ 2.5	12:1	weak evidence	0.923
≤ 5.0	$\leq 150:1$	moderate evidence	0.993
≥ 5.0	> 150:1	strong evidence	> 0.993

Example:

- Dark Energy Survey (DES) SV data
- WL analysis: flat LCDM vs. LCDM + curvature
- $\pi(\Omega_k) = uniform[-0.2, 0.2]$
- $ln(B) = 0.17 \pm 0.09$ Sellentin & Heavens (2016)

Model selection in the CMB

But are these neutrinos? Or just any relativistic fluid?

Model comparison:

Neutrinos vs. ideal fluid: $ln(B) \approx 10$

Neutrinos vs. viscous fluid: $ln(B) \approx 10.5$

+ parameter constraints as a side effect

Sellentin & Durrer (2015)

Expected support for models

• Single data realization: $B_{01} = \frac{\epsilon_0}{\epsilon_1} = \frac{\int L_0(\vec{x}|\vec{\theta}_{M_0})\mathcal{P}_0(\vec{\theta}_{M_0})d^{n_0}\theta}{\int L_1(\vec{x}|\vec{\theta}_{M_1})\mathcal{P}_1(\vec{\theta}_{M_1})d^{n_1}\theta}$

 Know statistical properties of data → calculate expected likelihood (even without having real data at all)

$$B_{01}^{expc} = \frac{\int \langle L_o(\vec{x}|\vec{\theta}_{M_0}) \rangle \mathcal{P}_0(\vec{\theta}_{M_0}) d^{n_0}\theta}{\int \langle L_1(\vec{x}|\vec{\theta}_{M_1}) \rangle \mathcal{P}_1(\vec{\theta}_{M_1}) d^{n_1}\theta}$$

Expected support for models

$$\mathbf{M_0:} \ g(a) = \exp\left\{ \int_0^a \frac{da'}{a'} \left[\Omega_m(a')^{\gamma} - 1 \right] \right\} \qquad \mathbf{M_1:} \ \Omega_m^{\gamma + \delta \gamma}$$

Nested Models

- Imagine M_1 uses all parameters $\vec{\theta}$ of M_0 but introduces some extra parameters $\vec{\psi}$
- Nested model: for $\vec{\psi} = \vec{\psi_0}$ have $M_1 \rightarrow M_0$
- Examples:
 - wCDM → LambdaCDM for w = -1
 - Curved LambdaCDM → flat LambdaCDM for k = 0
 - Rainy day → sunny day for rain = 0

Savage-Dickey Density Ratio

SDDR is an approximate Bayes factor for nested models

• The full Bayes factor is
$$B_{01}=rac{\epsilon_0}{\epsilon_1}=rac{\int L_0(ec{x}|ec{ heta}_{M_0})\mathcal{P}_0(ec{ heta}_{M_0})d^{n_0} heta}{\int L_1(ec{x}|ec{ heta}_{M_1})\mathcal{P}_1(ec{ heta}_{M_1})d^{n_1} heta}$$

- For nested models: $L_0(\vec{x}|\vec{\theta}_{M_0}) = L_1(\vec{x}|\vec{\theta}_{M_0}, \vec{\psi} = \vec{\psi}_0)$
- Insert into Bayes factor:

$$B_{01} = \frac{\int L_1(\vec{x}|\vec{\theta}_{M_0}, \vec{\psi} = \vec{\psi}_0) \mathcal{P}_0(\vec{\theta}_{M_0}) d^{n_0} \theta}{\int L_1(\vec{x}|\vec{\theta}_{M_0}, \vec{\psi}) \mathcal{P}_1(\vec{\theta}_{M_0}, \vec{\psi}) d^{n_0} \theta d^n \psi}$$

Now need to care about the priors.

Savage-Dickey Density Ratio

Bayes factor:

$$B_{01} = \frac{\int L_1(\vec{x}|\vec{\theta}_{M_0}, \vec{\psi} = \vec{\psi}_0) \mathcal{P}_0(\vec{\theta}_{M_0}) d^{n_0} \theta}{\int L_1(\vec{x}|\vec{\theta}_{M_0}, \vec{\psi}) \mathcal{P}_1(\vec{\theta}_{M_0}, \vec{\psi}) d^{n_0} \theta d^n \psi}$$

- Make extra assumption for priors: $\mathcal{P}_1(\vec{\theta}_{M_0}|\vec{\psi}=\vec{\psi}_0)=a\mathcal{P}_0(\vec{\theta}_{M_0})$
- Insert into Bayes factor:

$$B_{01} \approx a \frac{\int L_1(\vec{x}|\vec{\theta}_{M_0}, \vec{\psi} = \vec{\psi}_0) \mathcal{P}_1(\vec{\theta}_{M_0}|\psi = \psi_0) d^{n_0} \theta}{\int L_1(\vec{x}|\vec{\theta}_{M_0}, \vec{\psi}) \mathcal{P}_1(\vec{\theta}_{M_0}, \vec{\psi}) d^{n_0} \theta d^n \psi}$$

• Leading to the Savage-Dickey Density Ratio: $B_{01} \approx a \frac{P_1(\vec{\psi} = \vec{\psi_0} | \vec{x})}{P_1(\vec{\psi} = \vec{\psi_0})}$

Example from Dirian et al.(2016): $B_{\Lambda(\Lambda+i)} \equiv \frac{P(d|\mathcal{M}_{\Lambda})}{P(d|\mathcal{M}_{\Lambda+i})} = \frac{P(\Omega_{X_i} = 0|d, \mathcal{M}_{\Lambda+i})}{P(\Omega_{X_i} = 0|\mathcal{M}_{\Lambda+i})}$

- → Plan ahead, use Nested Sampling not MCMC to get B + param. constraints
- → If too late: MCMC+SDDR+importance sampling approximate B (excercise)

Model averaging

- Imagine two models explain the same effect. None is 'better' than the other, as given by B.
- Weak lensing: Intrinsic alignment model?
- Structure formation: Press-Schechter mass function or Sheth-Torman or Jenkins et al. or...?

$$P(\vec{\theta}|\vec{x}) \propto \sum_{i} P(\vec{\theta}|\vec{x}, M_i) P(M_i|\vec{x})$$

 Includes model uncertainty into parameter uncertainty.

Summary

- Bayesians compare models by evidence ratios
- Balance goodness of fit against number of parameters
- Samplers exist that give parameter constraints and evidences (→ JP's lecture)
- Savage-Dickey Density Ratio may or may not be of relevance to you in case of nested models...
- ... depending on your attitude towards priors (subjective/objective).
- Model comparison is prior dependent.