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I. INTRODUCTION

A. Bayes recap

In previous lecture were introduced to Bayes Theorem and some examples of how it can be

applied. Now want to look at some more concrete examples in detail.

P (⇥|D, I) =
P (D|⇥, I)P (⇥|I)

P (D|I) (1)

Remember that Bayes Law comes in four parts. The posterior probability, which is the thing that

we want to describe what information we have about the model parameters ⇥. The likelihood,

which relates the observed data D to the model, a prior probability which encodes what we knew

about the parameters before we collected data. Finally, the evidence, which encodes the probability

of the data and which acts as a normalisation constant.

B. Gaussian distribution

Possibly the first key question in inference is to ask what form the likelihood takes. I want to

say a little about two common forms - Gaussian and Poisson - in this lecture.

You’ll have come across the Gaussian or normal distribution before. In normalised form it looks

like

P (x|µ,�, I) = 1p
2⇡�2

exp


�1

2

(x� µ)2

�2

�
(2)
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• Bayesian	inference	gives	us	the	posterior,	which	contains 
all	the	informa*on	we	have	gained	from	the	data



Posterior
• In	general,	posterior	will	be	a	mul*-dimensional,	possibly 
mul*-modal,	probability	distribu*on.	

• How	do	we	make	sense	of	it?772 M. P. Hobson and C. McLachlan

Figure 3. The two-dimensional conditional log-posterior distributions in the (X, Y)-subspace for the toy problem illustrated in Fig. 1, where the model contains
a single object parametrized by a = {X, Y, A, R}. The values of the amplitude A and size R are conditioned at A = 0.75, R = 5 (left panel) and A = 0.75, R =
10 (right panel). This figure is available in colour in the on-line version of the journal on Synergy.

two-dimensional subspace defined by object position (X, Y), while
conditioning on particular values of A and R.

In Fig. 3, we plot the two-dimensional conditional log-posterior
distribution in the (X, Y)-subspace for A = 0.75, R = 5 (left panel)
and for A = 0.75, R = 10 (right panel). The value A is chosen to be
the mean of the uniform distribution U(0.5, 1) from which the am-
plitudes of the objects were drawn, whereas the two values of R
correspond to the limits of the uniform distribution U (5, 10) from
which the sizes of the objects were drawn. Each conditional log-
posterior distribution is calculated on a 200 × 200 grid in the (X, Y)-
subspace, which requires around 10 min of CPU time on an Intel
Pentium III 1-GHz processor. We note that to calculate the full four-
dimensional log-posterior distribution at 200 points in each direction
would require 2002 × 10 min ≈ 280 d of equivalent CPU time.

We see from Fig. 3 that the conditional log-posterior distributions
contain multiple maxima and minima. As one might expect, maxima
do occur at the positions corresponding to each of the eight objects
shown in Fig. 1. We also note, however, that the distributions con-
tains numerous maxima that do not coincide with the position of a
real object, but instead occur because the background noise in some
areas has ‘conspired’ to give the impression that an object might
be present. Unsurprisingly, this is particularly pronounced in the
case R = 5 (left panel). The effect is also easily seen in the R = 10
case (right panel), but the distribution is correspondingly smoother,
as one might expect. In either case, we see that pronounced peaks
in the log-posterior occur only for objects 2, 4, 7 and 8 (as listed
in Table 1). The peaks associated with the remaining objects are
not distinguishable by eye from ‘false’ peaks in the log-posterior
that occur at positions where no object is present. Finally, we note
that for larger/smaller values of A in the range [0.5, 1], the
relative height of the peaks in the posterior distribution at positions
of true objects increases/decreases slightly, but the overall shape of
the distribution remains very similar.

6.1 Sampling of the posterior

It is clear from Fig. 3 that the full four-dimensional posterior dis-
tribution will be very complicated, possessing multiple extrema.
In particular, it is immediately obvious that any attempt to detect
objects by straightforward maximization (e.g. gradient search) of
the posterior distribution is doomed to failure. We therefore choose

instead to sample from the posterior using the MCMC approach
outlined in Section 3.

Several strategies present themselves for performing this sam-
pling of the posterior. The conceptually most straightforward
approach is to perform a ‘detailed’ sampling of the full four-
dimensional posterior. This may be achieved in the following way.
First, the use of several chains (∼ the number of objects expected)
allows the sampler to explore full parameter space more easily.
Moreover, using a very slow annealing schedule and a correspond-
ingly long burn-in period during the thermodynamic integration (see
Section 3.3) affords the chains greater opportunity to sample remote
regions of the posterior distribution. Finally, after burn-in, a large
number of samples are taken.

In general, however, the use of multiple chains, a long-burn and a
large number of samples make this approach very time consuming,
as was the case for the simultaneous detection of objects discussed
in the previous section. This is particularly true, when the posterior
distribution is dominated by a pronounced peak (or set of peaks)
corresponding to one (or more) object. This can occur, for example,
if the true amplitudes A of some of the objects are much larger
than the others, or simply by chance in cases where the signal-to-
noise ratio is somewhat higher than that used in our toy problem.
In this case, a significant fraction of the samples obtained are in
the neighbourhood(s) of the pronounced peak(s), and so a large
total number of samples are needed in order to obtain a reasonable
representation of the full posterior distribution. We shall therefore
not pursue the ‘detailed’ sampling approach here.

6.1.1 The MCCLEAN algorithm

The drawbacks associated with the above method do themselves,
however, suggest an alternative iterative approach to the problem,
in which one attempts to detect and characterize one (or a few)
object at a time. In this case, one is not concerned with ‘detailed’
sampling of the full posterior distribution. Instead, one is content
with sampling the distribution adequately in the neighbourhood of
its most pronounced peak(s). This can be performed efficiently using
only a few chains, a relatively fast annealing schedule during the
thermodynamic integration, and requires many fewer post burn-
in samples. Hence, this approach is significantly computationally
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entering our sensitive band [85,86] and could not have
formed from an asymptotically spin antialigned binary.
We could exclude those systems if we believe the binary is
not precessing. However, we do not make this assumption
here and instead accept that the models can only extract
limited spin information about a more general, precessing
binary.
We also need to specify the prior ranges for the ampli-

tude and phase error functions δAkðf; ~ϑÞ and δϕkðf; ~ϑÞ, see
Eq. (5). The calibration during the time of observation of
GW150914 is characterized by a 1-σ statistical uncertainty
of no more than 10% in amplitude and 10° in phase [1,47].
We use zero-mean Gaussian priors on the values of the
spline at each node with widths corresponding to the
uncertainties quoted above [48]. Calibration uncertainties
therefore add 10 parameters per instrument to the model
used in the analysis. For validation purposes we also
considered an independent method that assumes frequency-
independent calibration errors [87], and obtained consistent
results.

III. RESULTS

The results of the analysis using binary coalescence
waveforms are posterior PDFs for the parameters describ-
ing the GW signal and the model evidence. A summary is
provided in Table I. For the model evidence, we quote
(the logarithm of) the Bayes factor Bs=n ¼ Z=Zn, which
is the evidence for a coherent signal hypothesis divided
by that for (Gaussian) noise [5]. At the leading order, the
Bayes factor and the optimal SNR ρ ¼ ½

P
khhMk jhMk i%1=2 are

related by lnBs=n ≈ ρ2=2 [88].
Before discussing parameter estimates in detail, we

consider how the inference is affected by the choice of
the compact-binary waveform model. From Table I, we see
that the posterior estimates for each parameter are broadly
consistent across the two models, despite the fact that
they are based on different analytical approaches and that
they include different aspects of BBH spin dynamics. The
models’ logarithms of the Bayes factors, 288.7& 0.2 and
290.3& 0.1, are also comparable for both models: the data
do not allow us to conclusively prefer one model over the
other [89]. Therefore, we use both for the Overall column
in Table I. We combine the posterior samples of both
distributions with equal weight, in effect marginalizing
over our choice of waveform model. These averaged results
give our best estimate for the parameters describing
GW150914.
In Table I, we also indicate how sensitive our results are

to our choice of waveform. For each parameter, we give
systematic errors on the boundaries of the 90% credible
intervals due to the uncertainty in the waveform models
considered in the analysis; the quoted values are the 90%
range of a normal distribution estimated from the variance
of results from the different models. (If X were an edge of a

credible interval, we quote systematic uncertainty
&1.64σsys using the estimate σ2sys¼ ½ðXEOBNR−XOverallÞ2þ
ðXIMRPhenom−XOverallÞ2%=2. For parameters with bounded
ranges, like the spins, the normal distributions should
be truncated. However, for transparency, we still quote
the 90% range of the uncut distributions. These numbers
provide estimates of the order of magnitude of the potential
systematic error). Assuming a normally distributed error is
the least constraining choice [90] and gives a conservative
estimate. The uncertainty from waveform modeling is less
significant than the statistical uncertainty; therefore, we are
confident that the results are robust against this potential
systematic error. We consider this point in detail later in the
Letter.
The analysis presented here yields an optimal coherent

SNR of ρ ¼ 25.1þ1.7
−1.7 . This value is higher than the one

reported by the search [1,3] because it is obtained using a
finer sampling of (a larger) parameter space.
GW150914’s source corresponds to a stellar-mass BBH

with individual source-frame masses msource
1 ¼ 36þ5

−4M⊙
and msource

2 ¼ 29þ4
−4M⊙, as shown in Table I and Fig. 1.

The two BHs are nearly equal mass. We bound the mass
ratio to the range 0.66 ≤ q ≤ 1 with 90% probability. For
comparison, the highest observed neutron star mass is
2.01& 0.04M⊙ [91], and the conservative upper-limit for

FIG. 1. Posterior PDFs for the source-frame component masses
msource

1 and msource
2 . We use the convention that msource

2 ≤ msource
1 ,

which produces the sharp cut in the two-dimensional distribution.
In the one-dimensional marginalized distributions we show the
Overall (solid black), IMRPhenom (blue), and EOBNR (red)
PDFs; the dashed vertical lines mark the 90% credible interval
for the Overall PDF. The two-dimensional plot shows the
contours of the 50% and 90% credible regions plotted over a
color-coded PDF.
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Planck Collaboration: Cosmological parameters
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Fig. 6. Comparison of the base ⇤CDM model parameter constraints from Planck temperature and polarization data.

and HFI 353 GHz maps as polarized synchrotron and dust tem-
plates, respectively. These cleaned maps form the polarization
part (“lowP’ ) of the low multipole Planck pixel-based likeli-
hood, as described in Planck Collaboration XI (2015). The tem-
perature part of this likelihood is provided by the Commander
component separation algorithm. The Planck low multipole like-
lihood retains 46 % of the sky in polarization and is completely
independent of the WMAP polarization likelihood. In combina-
tion with the Planck high multipole TT likelihood, the Planck
low multipole likelihood gives ⌧ = 0.078 ± 0.019. This con-
straint is somewhat higher than the constraint ⌧ = 0.067 ± 0.022
derived from the Planck low multipole likelihood alone (see
Planck Collaboration XI 2015, and also Sect. 5.1.2).

Following the 2013 analysis, we have used the 2015 HFI
353 GHz polarization maps as a dust template, together with the
WMAP K-band data as a template for polarized synchrotron
emission, to clean the low-resolution WMAP Ka, Q, and V
maps (see Planck Collaboration XI 2015, for further details). For
the purpose of cosmological parameter estimation, this dataset
is masked using the WMAP P06 mask that retains 73 % of
the sky. The noise-weighted combination of the Planck 353-
cleaned WMAP polarization maps yields ⌧ = 0.071 ± 0.013
when combined with the Planck TT information in the range
2  ` <⇠ 2508, consistent with the value of ⌧ obtained from
the LFI 70 GHz polarization maps. In fact, null tests described
in Planck Collaboration XI (2015) demonstrate that the LFI and

17

6-parameter	space	
projected	to	2D	then	
1D	for	visualisa*on

Planck	collabora*on	
2015



Marginalisa*on
• Important	concept:	the	marginal	distribu.on	of		θ1	
is	
!

• Posterior	for	each	parameter	includes	the	
uncertainty	in	the	other	parameters	

• Profile	likelihood	is	something	different:	 
maximise	w.r.t.	some	of	the	parameters.		

• From	a	Bayesian	point-of-view,	the	profile	
likelihood	is	unsa*sfactory,	as	it	does	not	include	
the	uncertain*es	in	the	other	parameters	

6

p(✓1|x) =
Z

p(✓1, ✓2, . . . |x)d✓2d✓3 . . .



entering our sensitive band [85,86] and could not have
formed from an asymptotically spin antialigned binary.
We could exclude those systems if we believe the binary is
not precessing. However, we do not make this assumption
here and instead accept that the models can only extract
limited spin information about a more general, precessing
binary.
We also need to specify the prior ranges for the ampli-

tude and phase error functions δAkðf; ~ϑÞ and δϕkðf; ~ϑÞ, see
Eq. (5). The calibration during the time of observation of
GW150914 is characterized by a 1-σ statistical uncertainty
of no more than 10% in amplitude and 10° in phase [1,47].
We use zero-mean Gaussian priors on the values of the
spline at each node with widths corresponding to the
uncertainties quoted above [48]. Calibration uncertainties
therefore add 10 parameters per instrument to the model
used in the analysis. For validation purposes we also
considered an independent method that assumes frequency-
independent calibration errors [87], and obtained consistent
results.

III. RESULTS

The results of the analysis using binary coalescence
waveforms are posterior PDFs for the parameters describ-
ing the GW signal and the model evidence. A summary is
provided in Table I. For the model evidence, we quote
(the logarithm of) the Bayes factor Bs=n ¼ Z=Zn, which
is the evidence for a coherent signal hypothesis divided
by that for (Gaussian) noise [5]. At the leading order, the
Bayes factor and the optimal SNR ρ ¼ ½

P
khhMk jhMk i%1=2 are

related by lnBs=n ≈ ρ2=2 [88].
Before discussing parameter estimates in detail, we

consider how the inference is affected by the choice of
the compact-binary waveform model. From Table I, we see
that the posterior estimates for each parameter are broadly
consistent across the two models, despite the fact that
they are based on different analytical approaches and that
they include different aspects of BBH spin dynamics. The
models’ logarithms of the Bayes factors, 288.7& 0.2 and
290.3& 0.1, are also comparable for both models: the data
do not allow us to conclusively prefer one model over the
other [89]. Therefore, we use both for the Overall column
in Table I. We combine the posterior samples of both
distributions with equal weight, in effect marginalizing
over our choice of waveform model. These averaged results
give our best estimate for the parameters describing
GW150914.
In Table I, we also indicate how sensitive our results are

to our choice of waveform. For each parameter, we give
systematic errors on the boundaries of the 90% credible
intervals due to the uncertainty in the waveform models
considered in the analysis; the quoted values are the 90%
range of a normal distribution estimated from the variance
of results from the different models. (If X were an edge of a

credible interval, we quote systematic uncertainty
&1.64σsys using the estimate σ2sys¼ ½ðXEOBNR−XOverallÞ2þ
ðXIMRPhenom−XOverallÞ2%=2. For parameters with bounded
ranges, like the spins, the normal distributions should
be truncated. However, for transparency, we still quote
the 90% range of the uncut distributions. These numbers
provide estimates of the order of magnitude of the potential
systematic error). Assuming a normally distributed error is
the least constraining choice [90] and gives a conservative
estimate. The uncertainty from waveform modeling is less
significant than the statistical uncertainty; therefore, we are
confident that the results are robust against this potential
systematic error. We consider this point in detail later in the
Letter.
The analysis presented here yields an optimal coherent

SNR of ρ ¼ 25.1þ1.7
−1.7 . This value is higher than the one

reported by the search [1,3] because it is obtained using a
finer sampling of (a larger) parameter space.
GW150914’s source corresponds to a stellar-mass BBH

with individual source-frame masses msource
1 ¼ 36þ5

−4M⊙
and msource

2 ¼ 29þ4
−4M⊙, as shown in Table I and Fig. 1.

The two BHs are nearly equal mass. We bound the mass
ratio to the range 0.66 ≤ q ≤ 1 with 90% probability. For
comparison, the highest observed neutron star mass is
2.01& 0.04M⊙ [91], and the conservative upper-limit for

FIG. 1. Posterior PDFs for the source-frame component masses
msource

1 and msource
2 . We use the convention that msource

2 ≤ msource
1 ,

which produces the sharp cut in the two-dimensional distribution.
In the one-dimensional marginalized distributions we show the
Overall (solid black), IMRPhenom (blue), and EOBNR (red)
PDFs; the dashed vertical lines mark the 90% credible interval
for the Overall PDF. The two-dimensional plot shows the
contours of the 50% and 90% credible regions plotted over a
color-coded PDF.
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Inferring	the	parameter(s)
• What	to	report,	when	you	have	the	posterior?	
• Commonly	the	mode	is	used	(the	peak	of	the	
posterior)	

• Mode	=	Maximum	Likelihood	Es.mator,	if	the	priors	
are	uniform	

• The	posterior	mean	may	also	be	quoted,	but	beware	
• Ranges	containing	x%	of	the	posterior	probability	of	
the	parameter	are	called	credibility	intervals	(or	
Bayesian	confidence	intervals)



Symmetric

Single-tailed

Credibility	intervals	can	be	placed	according	to	problem



Credibility	interval	
- useful	to	integrate	above 
an	isocontour	in	posterior
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68-%	on	both	
variables	jointly

68-%	on	X X

Y

Close	to	peak,	o`en	posterior	
is	close	to	mul*variate	Gaussian

68-%	on	Y

Correla*ons	show	in	orienta*on	of	contours



marginalised	error	on	X X

Y

Marginalisa*on	properly	accounts	for	correla*ons	  
between	variables,	almost	always	what	you	actually	want

error	on	X	at	fixed	Y



How	do	I	get	error	bars	in	several	
dimensions?

• Read	Numerical	Recipes,	Chapter	15.6

Beware!	Assumes	gaussian	
distribu*on	
!
Say	what	your	errors	are!			
e.g.	1σ,	2	parameter

L / e�
1
2 �2



Mul*modal	posteriors	etc
• Peak	may	not	be	gaussian	
• Mul*modal?	Characterising	it	
by	a	mode	and	an	error	is	
probably	inadequate.		May	
have	to	present	the	full	
posterior.	

• Mean	posterior	may	not	be	
useful	in	this	case	–	it	could	
be	very	unlikely,	if	it	is	a	valley	
between	2	peaks.

From	BPZ

Bruzual & Charlot



Func*ons	of	parameters
• Because	posterior	contains	informa*on	on	
parameters,	can	apply	it	to	calculate	proper*es	of	
derived	quan**es	e.g.  
 
 
 

• e.g.	bounds	on	expansion	history	H(a)	from	
constraints	on	redshi`	dependent	dark	energy	
equa*on	of	state	w(a)	=	w0	+	w1(1-a).
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Common	Distribu*ons
• Uniform	
• Exponen*al	
• Gaussian	
• Binomial	
• Poisson	 
 
Can	o`en	interpret	these	in	terms	of	proper*es	of	
system	or	in	terms	of	knowledge	of	the	system.



Uniform	Distribu*on
• Appropriate	where	you	know	nothing	except	limits	of	
data	and	need	for	normalisa*on	
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Uniform	Priors
• Can think about priors from perspective of properties of pdf 

• Location priors: do I know the origin?  
=> want pdf invariance under translation  
 
 
 
 
=> uniform prior 

• Scale priors: Am I sure on the units?  
=> want pdf invariance under rescaling  
 
 
 
 
=> uniform in log prior

6
We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises

from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.

As an example of an alternative, some times we are ignorant even about the order of magnitude

of the parameter. This can be cast mathematically as wanting the pdf to be invariant under

rescaling � ! ��.

p(�|I)dX ⇡ p(��|I)d(��)

p(�|I) ⇡ p(��|I)�

This is true is p(�|I) / 1/�. This is often known as the Je↵rey’s prior.

We’ll adopt a uniform prior

p(s|I) = 1

⌃2 � ⌃1
if ⌃1  s  ⌃2 (19)

Only at the end can we take the limit (�⌃1,⌃2) ! (�1,1). You can see that this is important

because if we do this at anytime earlier then this prior will become zero. This shouldn’t worry you

as will become clear later.

2. Likelihood

Next up is the likelihood, since we’re assuming the data is Gaussian distributed this is straight-

forward to write down. For an individual data point we have

p(d
i

|s, I) = 1p
2⇡�2

exp


�1

2

(d
i

� s)2

�2

�
(20)
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In[276]:= Gauss[x_, mu_, sig_] :=
1

2 π sig2
Exp%

(x % mu)2

2 sig2


In[286]:= mu = 0.0
sig = 1

Plot[{Gauss[x, mu, sig], Gauss[x, mu + 3, sig]},
{x, %10, 10}, PlotRange + {{%10, 10}, {0, 0.4}}]
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Plot[{Gauss[x, mu, sig], Gauss[x, mu, 2 sig]},
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Exponen*al	Distribu*on
• Appropriate	where	you	know	mean,	mu,	of	the	data	
and	data	x>=0,	but	nothing	else.

Clever title
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abstract here

I. INTRODUCTION
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Gaussian	Distribu*on
• If	know	mean,	mu,	and	variance,	sigma	then	Gaussian  
 

• Mul*variate	Gaussian
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Why Gaussians?

• Central Limit Theorem: sum of many random 
numbers has a Gaussian sampling distribution  
 
The sum of a n random numbers drawn from a 
probability distribution of finite variance σ2 tends to 
be Gaussian distributed about the expectation 
value of the sum with variance nσ2 

• MaxEnt: If we know mean & variance, the least 
informative distribution is Gaussian



Binomial	Distribu*on
• If	we	know	the	expected	number	of	successes	in	M	
trials,	<N>=mu,	how	is	N	distributed?  
 
 
 
 

• e.g.	number	of	heads	in	fixed	number	of	coin	tosses
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Poisson	Distribu*on
• Given	the	expected	number	of	events	<N>=mu	in	a	
specific	*me	or	spa*al	interval	how	is	N	distributed?
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• (M→∞	limit	of	Binomial	distribu*on,	for	N	successes	in	M	trials)
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Poisson processes
• Poisson processes occur when counting discrete events. 

• Can occur in two different ways:  
- Course measurements where “bin” events and can only report 
number of events in one or more finite intervals (counting 
process).  
- Fine measurements where count individual events (point 
process) 

• Poisson statistics obey two key properties:  
 
(1) Given an event rate r, the probability for finding an event in 
an interval dt is proportional to the size of the interval  
 
 
(2) Probabilities for different intervals are independent 

11
for ⌫ = Ndata �Nparameters “degrees of freedom”. This distribution peaks at �2 = ⌫ ±

p
2⌫, which

gives a means for judging the goodness of fit of the model. If �2 is too big or too small (”overfitting”

- too many parameters or underestimated errors). Both are frequentist arguments, but provide a

good rule of thumb.

II. POISSON

Poisson statistics arise when counting discrete events. Can occur in two slightly di↵erent ways:

with course measurements we “bin” events and can only report the number of events in one or

more finite intervals. Then the model is the Poisson counting process.

Alternatively, when we can count individual events then we have a Poisson point process.

Poisson processes obey two properties: (1) Given an event rate r, the probability for finding

an event in the interval dt is proportional to the size of the interval i.e. p(E|r, I) = r dt. (2)

Information about what happened in other intervals is irrelevant if we know r; i.e. the probabilities

for separate intervals are independent.

Poisson distribution

p(n|�, I) = �n

n!
e�� (41)

which has moments

hni ⌘
1X

n=0

np(n|r, I) = rT = � (42)

and

h(n� hni)2i = hni = � (43)

So Poisson distribution arises from a single parameter �.

A. Poisson inference
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Poisson inference
• Let’s say we measure n events in an interval of time T 

and we want to infer the event rate r 

• Likelihood 

• For prior two common options:  
- r known to be non-zero. Its a scale parameter  
 
- r can be zero. Uniform prior 

• Taking scale parameter prior, we get posterior
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Two choices of prior common: r known to be non-zero; it is a scale parameter so that we

take p(r|I) / 1/r = 1/[r log(r
u

/r
l

)] OR r can vanish and require p(n|I) ⇠ const, which leads to

p(r|I) = 1/r
u

.

Slightly di↵erent reasoning to get a uniform prior in this case. Arguing that the evidence p(n|I)

should be flat not that ignorance of r leads to constant prior.

If we take the prior p(r|I) / 1/r the Posterior distribution is then simply found as

p(r|n, I) = e�rT (rT )n�1

(n� 1)!
(45)
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Best estimate of rate is then
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Best estimate is rT = n±
p
n

(uniform prior would  
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Likelihood	p(d|theta,M)
• All	these	distribu*ons	turn	up	as	likelihoods.		
• e.g.	Inference	for	a	signal	s	given	Gaussian	noise	n	
uncorrelated	between	measurements	and	observed	
data	d	
!

!

!

• Most	generally	may	need	complicated	likelihood	that	
incorporates	complex	experimental	effects	e.g.	Planck	
likelihood	code.
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Prior P(theta)
• How do we choose prior? Possibly using prior observations. Often to 

encode ignorance about s 

• Common options?  
 
Gaussian with zero mean and variance Σ.  
(possibly Let Σ→∞ at end of calculation) 
 
Uniform in range [Σ1,Σ2]. (Again might let Σ1→-∞, Σ2→∞ at end) 
 
“Jeffrey’s prior”, p(s|I)∝1/s. Appropriate if ignorant about scale of s. 
Equivalent to flat prior on logs 

• Conjugate priors: for many likelihoods can choose prior so that  
posterior has same form as prior (but hopefully narrower!)  
e.g. Gaussian prior + Gaussian likelihood leads to Gaussian posterior



Summary
• Moments	of	posterior	help	convey	complex	info  

• Marginalisa*on  

• Confidence	intervals	 

• Distribu*ons	-	uniform,	exponen*al,	Gaussian,	
Binomial,	Poisson.	Occur	as	likelihoods	and	priors.

p(✓1|x) =
Z

p(✓1, ✓2, . . . |x)d✓2d✓3 . . .





Gaussian inference

• Problem: want to estimate signal s, given n noisy 
observations {di} 

• Need model for observations:  

• Noise: assume ni=(di-s) is Gaussian zero mean & 
known variance σ2 

• Work through Bayes theorem:

5
what we should choose if we wish to be maximally ignorant about the sampling distribution while

retaining a known mean and variance. Its the “least informative” distribution in this sense.

C. Gaussian inference

To give a concrete example of an inference problem, let’s imagine the common problem of

wanting to infer a signal s, some number, from a series of noisy measurements d
i

.

To make progress, we need a model for how signal and measurements are connected.

d
i

= s+ n
i

(14)

where n
i

is noise.

We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises

from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.
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where n
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We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

p(s|d, I) = p(d|s, I)p(s|I)
p(d|I) (15)

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises

from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.

data = signal + noise



Prior
• How do we choose prior? Often to encode ignorance about s 

• Common options?  
 
Gaussian with zero mean and variance Σ.  
Let Σ→∞ at end of calculation 
 
Uniform in range [Σ1,Σ2]. Again let Σ1→-∞, Σ2→∞ at end 
 
“Jeffrey’s prior”, p(s|I)∝1/s. Appropriate if ignorant about scale 
of s. Equivalent to flat prior on logs 

• Here adopt uniform prior:
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where n
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We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
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p(d|I) (15)
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1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This
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from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.

As an example of an alternative, some times we are ignorant even about the order of magnitude

of the parameter. This can be cast mathematically as wanting the pdf to be invariant under

rescaling � ! ��.

p(�|I)dX ⇡ p(��|I)d(��)

p(�|I) ⇡ p(��|I)�

This is true is p(�|I) / 1/�. This is often known as the Je↵rey’s prior.

We’ll adopt a uniform prior

p(s|I) = 1

⌃2 � ⌃1
if ⌃1  s  ⌃2 (17)

Only at the end can we take the limit (�⌃1,⌃2) ! (�1,1). You can see that this is important

because if we do this at anytime earlier then this prior will become zero. This shouldn’t worry you

as will become clear later.

2. Likelihood

Next up is the likelihood, since we’re assuming the data is Gaussian distributed this is straight-

forward to write down. For an individual data point we have

p(d
i

|s, I) = 1p
2⇡�2

exp


�1

2

(d
i

� s)2

�2

�
(18)

and the total probability of getting our observed dataset will be their product (assuming each

datum is independent)

p(d|s, I) = (2⇡�2)n/2 exp

"
� 1

2�2

nX

i

(d
i

� s)2
#
. (19)

This is a perfectly good likelihood and we could implement it numerically. With a little analytic

manipulation though we can massage it into a more useful form.



Likelihood
• We’ve decided our noise is Gaussian, so for 

individual datum have 

• For full data set:  

• Fine, but helpful to manipulate analytically  
 

• Result separates into two parts
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This is a perfectly good likelihood and we could implement it numerically. With a little analytic

manipulation though we can massage it into a more useful form.
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Here we’ve separated out a term that depends upon the signal (model parameters) plus the
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3. Evidence

Now that we have a prior and the likelihood, we can evaluate the Evidence as a normalisation

factor. This is important in placing the prior in the proper context as we’ll see.

From Bayes theorem,
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You might recall that the integral of a Gaussian within finite limits is given by an error function

erfx =
2p
⇡

Z
x

0
e�t

2

dt (28)
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Now that we have a prior and the likelihood, we can evaluate the Evidence as a normalisation
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� d̄)2i
�
. (22)

3. Evidence

Now that we have a prior and the likelihood, we can evaluate the Evidence as a normalisation

factor. This is important in placing the prior in the proper context as we’ll see.

From Bayes theorem,

1 =

Z
ds p(s|d, I) =

Z
ds

p(d|s, I)p(s|I)
p(d|I) (23)

so that

p(d|I) =
Z

ds p(d|s, I)p(s|I) (24)

Substituting in our likelihood and prior we have

p(d|I) =

Z ⌃
2

⌃
1

ds (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
�
exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(25)

= (2⇡�2)n/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(26)

⇥
Z ⌃

2

⌃
1

ds exp


� 1

2�2
b

(s� d̄)2
�

(27)

You might recall that the integral of a Gaussian within finite limits is given by an error function

erfx =
2p
⇡

Z
x

0
e�t

2

dt (28)
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p

2/N

!
� erf

 
⌃1 � d̄

�
p

2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p

2/N

!
� erf

 
⌃1 � d̄

�
p

2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

So taking results for prior and likelihood

Recall definition of error function

Gives final result for evidence
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what we should choose if we wish to be maximally ignorant about the sampling distribution while

retaining a known mean and variance. Its the “least informative” distribution in this sense.

C. Gaussian inference

To give a concrete example of an inference problem, let’s imagine the common problem of

wanting to infer a signal s, some number, from a series of noisy measurements d
i

.

To make progress, we need a model for how signal and measurements are connected.

d
i

= s+ n
i

(14)

where n
i

is noise.

We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

p(s|d, I) = p(d|s, I)p(s|I)
p(d|I) (15)

p(s|d, I) p(d|s, I) p(s|I) p(d|I) (16)

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises



Posterior
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)
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from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.

As an example of an alternative, some times we are ignorant even about the order of magnitude

of the parameter. This can be cast mathematically as wanting the pdf to be invariant under

rescaling � ! ��.

p(�|I)dX ⇡ p(��|I)d(��)

p(�|I) ⇡ p(��|I)�

This is true is p(�|I) / 1/�. This is often known as the Je↵rey’s prior.

We’ll adopt a uniform prior

p(s|I) = 1

⌃2 � ⌃1
if ⌃1  s  ⌃2 (17)

Only at the end can we take the limit (�⌃1,⌃2) ! (�1,1). You can see that this is important

because if we do this at anytime earlier then this prior will become zero. This shouldn’t worry you

as will become clear later.

2. Likelihood

Next up is the likelihood, since we’re assuming the data is Gaussian distributed this is straight-

forward to write down. For an individual data point we have

p(d
i

|s, I) = 1p
2⇡�2

exp


�1

2

(d
i

� s)2

�2

�
(18)

and the total probability of getting our observed dataset will be their product (assuming each

datum is independent)

p(d|s, I) = (2⇡�2)n/2 exp

"
� 1

2�2

nX

i

(d
i

� s)2
#
. (19)

This is a perfectly good likelihood and we could implement it numerically. With a little analytic

manipulation though we can massage it into a more useful form.
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Noting that the mean of our data is d̄ = 1

N

P
i

d
i

. Then by completing the square on the

exponent
nX

i

(d
i

� s)2 =
nX

i

(d2
i

� 2d
i

s+ s2) = N(s� d̄)2 +N
X

i

(d
i

� d̄)2

N
(20)

Here we’ve separated out a term that depends upon the signal (model parameters) plus the

data and a term that depends only on the data. The second term here is the variance of our data

h(d
i

� d̄)2i =
P

i

(d
i

�d̄)2

N

.

So the final likelihood looks like

p(d|s, I) = (2⇡�2)n/2 exp


� N

2�2
(s� d̄)2

�
exp


� N

2�2
h(d

i

� d̄)2i
�
. (21)

or if we define �
b

⌘ �/
p
N

p(d|s, I) = (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
�
exp


� 1

2�2
b

h(d
i

� d̄)2i
�
. (22)

3. Evidence

Now that we have a prior and the likelihood, we can evaluate the Evidence as a normalisation

factor. This is important in placing the prior in the proper context as we’ll see.

From Bayes theorem,

1 =

Z
ds p(s|d, I) =

Z
ds

p(d|s, I)p(s|I)
p(d|I) (23)

so that

p(d|I) =
Z

ds p(d|s, I)p(s|I) (24)

Substituting in our likelihood and prior we have

p(d|I) =

Z ⌃
2

⌃
1

ds (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
�
exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(25)

= (2⇡�2)n/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(26)

⇥
Z ⌃

2

⌃
1

ds exp


� 1

2�2
b

(s� d̄)2
�

(27)

You might recall that the integral of a Gaussian within finite limits is given by an error function

erfx =
2p
⇡

Z
x

0
e�t

2

dt (28)
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

Combine results in Bayes theorem

Gives the posterior

Taking limit Σ1→-∞, Σ2→∞
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp
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1
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N

1

2
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erf
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p
2/N
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!#
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4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

X=



Inference?
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p(d|I) = (2⇡�2)N/2 exp


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2�2
b

h(d
i

� d̄)2i
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1
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erf
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2/N
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4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄
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p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp
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� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

Posterior contains everything that we infer about signal

Best estimate of signal is peak of posterior

Alternative priors? Infinite Gaussian gives same result.

If didn’t know σ2: assume Jeffrey’s prior p(σ|I)∝1/σ,  
then marginalise over σ, leads to broader posterior
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
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Np
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Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

(connected to Student-t distribution, same maximum, more conservative bound) 

Bayesian 68% confidence interval
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Substituting in our likelihood and prior we have

p(d|I) =

Z ⌃
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⌃
1

ds (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
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exp


� 1

2�2
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h(d
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� d̄)2i
�

1

⌃2 � ⌃1
(27)

= (2⇡�2)n/2 exp


� 1

2�2
b

h(d
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� d̄)2i
�

1

⌃2 � ⌃1
(28)

⇥
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2

⌃
1

ds exp
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2�2
b

(s� d̄)2
�

(29)

You might recall that the integral of a Gaussian within finite limits is given by an error function

erfx =
2p
⇡

Z
x

0
e�t

2

dt (30)

So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p

2/N

!
� erf

 
⌃1 � d̄

�
p

2/N

!#

(31)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p

2/N

!
� erf

 
⌃1 � d̄

�
p

2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(32)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (33)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is then given by

s = d̄± �
b

= d̄± �/
p
N .

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

strue=10, σ =2

In[358]:= Nuse = 1

dbarUse = dbar[Nuse]

sigmab = sigma  Nuse

lim1 = 0

lim2 = 15

g[s_, N_] := posts, sigma  N , dbar[N], lim1, lim2

Plot[{g[s, 1], g[s, 10], , g[s, 100]}, {s, 0, 20}, PlotRange + {{0, 20}, {0, 2}}]

Out[358]= 1

Out[359]= 6.07335

Out[360]= 2.

Out[361]= 0

Out[362]= 15

Out[364]=

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

Plot[{postInf[s, sigmab, dbarUse],
post[s, sigmab, dbarUse, lim1, lim2]}, {s, 0, 20}]

PoissonPlots.nb     5

N=1

N=10

N=100

s

Simple example
Make a random data set

In[379]:= Print[small]

{6.07335, 11.213, 7.86354, 11.2595, 10.5425, 6.5558, 9.20705, 8.04459, 10.2605, 10.9534}

Nuse = 1

dbarUse = dbar[Nuse]

sigmab = sigma  Nuse

lim1 = 0

lim2 = 15

g[s_, N_] := posts, sigma  N , dbar[N], lim1, lim2

Plot[{g[s, 1], g[s, 10], , g[s, 100]}, {s, 0, 20}, PlotRange + {{0, 20}, {0, 2}}]

Out[365]= 1

Out[366]=

6.07335, 11.213, 7.86354, 11.2595, 10.5425,
6.5558, 9.20705, 8.04459, $ 9984$ , 12.3426, 12.816,
9.81441, 11.7337, 13.4145, 8.07282, 10.84, 10.1137

large output show less show more show all set size limit...

Out[367]= 6.07335

Out[368]= 2.

Out[369]= 0

Out[370]= 15

Out[372]=

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

Plot[{postInf[s, sigmab, dbarUse],
post[s, sigmab, dbarUse, lim1, lim2]}, {s, 0, 20}]

PoissonPlots.nb     5

…


