More Bayesian probability

Imperial Centre for Inference & Cosmology

Jonathan Pritchard Imperial College

- Marginalisation
- Interpretation of the posterior
- Confidence intervals
- Common distributions

Recap

 Bayesian inference gives us the posterior, which contains all the information we have gained from the data

Posterior

- In general, posterior will be a multi-dimensional, possibly multi-modal, probability distribution.
- How do we make sense of it?

Planck collaboration 2015

ICIC

Fig. 6. Comparison of the base ACDM model parameter constraints from *Planck* temperature and polarization data.

Marginalisation

- Important concept: the marginal distribution of θ_1 is $p(\theta_1|x) = \int p(\theta_1, \theta_2, \dots |x) d\theta_2 d\theta_3 \dots$
- Posterior for each parameter includes the uncertainty in the other parameters
- *Profile likelihood* is something different: maximise w.r.t. some of the parameters.
- From a Bayesian point-of-view, the profile
 likelihood is unsatisfactory, as it does not include the uncertainties in the other parameters

(d): profile likelihood of (c)

Inferring the parameter(s)

- What to report, when you have the posterior?
- Commonly the *mode* is used (the peak of the posterior)
- Mode = Maximum Likelihood Estimator, if the priors are uniform
- The *posterior mean* may also be quoted, but beware
- Ranges containing x% of the posterior probability of the parameter are called *credibility intervals* (or *Bayesian confidence intervals*)

$$\overline{\theta} = \int \theta \, p(\theta | x) d\theta$$

Credibility intervals can be placed according to problem

Credibility interval

 useful to integrate above an isocontour in posterior

 $\bar{\theta} = \int_{p(\theta|x) > A} p(\theta|x) d^2\theta$

Close to peak, often posterior is close to multivariate Gaussian

$$\bar{\theta} = \int_{p(\theta|x) > A} p(\theta|x) d^2\theta$$

Correlations show in orientation of contours

Marginalisation properly accounts for correlations between variables, almost always what you actually want

How do I get error bars in several dimensions?

• Read Numerical Recipes, Chapter 15.6

Multimodal posteriors etc

- Peak may not be gaussian
- Multimodal? Characterising it by a mode and an error is probably inadequate. May have to present the full posterior.
- Mean posterior may not be useful in this case – it could be very unlikely, if it is a valley between 2 peaks.

p(C|z,T) $p(z,T|m_{e})$ $p(z,T|C,m_{w})$ From BPZ p(z|C.m。) **Bruzual & Charlot** 0.00043 0.000 0.00035 0.0003 0.00025 0.0002 0.00015 0.0001 10000 15888 20000 25668 lambda [Angstron]

E/S0

Functions of parameters

 Because posterior contains information on parameters, can apply it to calculate properties of derived quantities e.g.

$$\langle f(\theta) \rangle = \int f(\theta) p(\theta|x) d\theta$$

 e.g. bounds on expansion history H(a) from constraints on redshift dependent dark energy equation of state w(a) = w0 + w1(1-a).

Common Distributions

- Uniform
- Exponential
- Gaussian
- Binomial
- Poisson

Can often interpret these in terms of properties of system or in terms of knowledge of the system.

Uniform Distribution

 Appropriate where you know nothing except limits of data and need for normalisation

$$P(x|[a,b]) = \frac{1}{b-a}, a \ge x \ge b$$

$$\langle x \rangle = \frac{a+b}{2}$$

$$\langle (x - \langle x \rangle)^2 \rangle = \frac{(b-a)^2}{3}$$

Uniform Priors

- Can think about priors from perspective of properties of pdf
- Location priors: do I know the origin?
 => want pdf invariance under translation

 $p(X|I)dX \approx p(X+x_0|I)d(X+x_0)$

 $\approx p(X + x_0|I) \mathrm{d}X$

= uniform prior p(X|I) = const

• Scale priors: Am I sure on the units? => want pdf invariance under rescaling σ $p(\sigma|I)dX \approx p(\beta\sigma|I)d(\beta\sigma)$ $p(\sigma|I) \approx p(\beta\sigma|I)\beta$

 $\mathbf{ICIC} > \text{uniform in log prior} \quad p(\sigma|I) \propto 1/\sigma$

Exponential Distribution

 Appropriate where you know mean, mu, of the data and data x>=0, but nothing else.

$$P(x|\mu) = \frac{1}{\mu} \exp\left[-\frac{x}{\mu}\right] \qquad \qquad \langle x \rangle = \mu \\ \langle (x - \langle x \rangle)^2 \rangle = \mu^2$$

١

Gaussian Distribution

• If know mean, mu, and variance, sigma then Gaussian

$$P(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \qquad \qquad \langle x\rangle = \mu$$
$$\langle (x-\langle x\rangle)^2\rangle = \sigma^2$$

Multivariate Gaussian

$$P(x|\mu, \mathbf{C}) = \frac{1}{\sqrt{2\pi|\mathbf{C}|}} \exp\left[-\frac{(\mathbf{x}-\mu)^T C^{-1}(\mathbf{x}-\mu)}{2}\right]$$

ICIC Why Gaussians?

• **Central Limit Theorem**: sum of many random numbers has a Gaussian sampling distribution

The sum of a *n* random numbers drawn from a probability distribution of finite variance σ^2 tends to be Gaussian distributed about the expectation value of the sum with variance $n\sigma^2$

• **MaxEnt**: If we know mean & variance, the least informative distribution is Gaussian

Binomial Distribution

 If we know the expected number of successes in M trials, <N>=mu, how is N distributed?

$$P(N|M,\mu) = \frac{M!}{N!(M-N)!} \left(\frac{\mu}{M}\right)^N \left(1 - \frac{\mu}{N}\right)^{M-N} \qquad \langle (N - \langle N \rangle)^2 \rangle = \langle N \rangle = \mu \left(1 - \frac{\mu}{N}\right)^M$$

• e.g. number of heads in fixed number of coin tosses

Poisson Distribution

 Given the expected number of events <N>=mu in a specific time or spatial interval how is N distributed?

$$P(N|\mu) = \frac{\mu^N e^{-\mu}}{N!} \qquad \langle N \rangle = \mu$$
$$\langle (N - \langle N \rangle)^2 \rangle = \langle N \rangle = \mu$$

• $(M \rightarrow \infty$ limit of Binomial distribution, for N successes in M trials)

ICIC Poisson processes

- Poisson processes occur when counting discrete events.
- Can occur in two different ways:

- Course measurements where "bin" events and can only report number of events in one or more finite intervals (counting process).

- Fine measurements where count individual events (point process)

• Poisson statistics obey two key properties:

(1) Given an event rate *r*, the probability for finding an event in an interval d*t* is proportional to the size of the interval

$$p(E|r,I) = r \,\mathrm{d}t.$$

(2) Probabilities for different intervals are independent

ICIC Poisson inference

 Let's say we measure n events in an interval of time T and we want to infer the event rate r

$$p(r|n, I) = \frac{p(n|r, I)p(r|I)}{p(n|I)}$$

Likelihood

$$p(n|r,I) = \frac{(rT)^n}{n!}e^{-rT}$$

- For prior two common options:
 - r known to be non-zero. Its a scale parameter $p(r|I) \propto 1/r = 1/[r\log(r_u/r_l)]$
 - r can be zero. Uniform prior

 $p(r|I) = 1/r_u$

• Taking scale parameter prior, we get posterior

$$p(r|n, I) = \frac{Te^{-rT}(rT)^{n-1}}{(n-1)!}$$

Best estimate of rate is then $rT = (n-1) \pm \sqrt{n-1}$

(uniform prior would give n)

Likelihood p(d|theta,M)

- All these distributions turn up as likelihoods.
- e.g. Inference for a signal *s* given Gaussian noise *n* uncorrelated between measurements and observed data *d*

$$P(d_i|s_i,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(d_i - s_i)^2}{2\sigma^2}\right] \qquad \langle n_i \rangle = 0, \ \langle n_i n_j \rangle = \delta_{ij}\sigma^2$$

 Most generally may need complicated likelihood that incorporates complex experimental effects e.g. Planck likelihood code.

ICIC

Prior P(theta)

- How do we choose prior? Possibly using prior observations. Often to encode ignorance about s
- Common options?

Gaussian with zero mean and variance Σ . (possibly Let $\Sigma \rightarrow \infty$ at end of calculation)

Uniform in range $[\Sigma_1, \Sigma_2]$. (Again might let $\Sigma_1 \rightarrow -\infty$, $\Sigma_2 \rightarrow \infty$ at end)

"Jeffrey's prior", $p(s|I) \ge 1/s$. Appropriate if ignorant about scale of *s*. Equivalent to flat prior on $\log s$

 Conjugate priors: for many likelihoods can choose prior so that posterior has same form as prior (but hopefully narrower!)
 e.g. Gaussian prior + Gaussian likelihood leads to Gaussian posterior

Summary

- Moments of posterior help convey complex info
- Marginalisation $p(\theta_1|x) = \int p(\theta_1, \theta_2, \dots |x) d\theta_2 d\theta_3 \dots$
- Confidence intervals $\overline{\theta} = \int \theta p(\theta|x) d\theta$
- Distributions uniform, exponential, Gaussian, Binomial, Poisson. Occur as likelihoods and priors.

ICIC Gaussian inference

• Problem: want to estimate signal s, given n noisy observations $\{d_i\}$

data = signal + noise

- Need **model** for observations: $d_i = s + n_i$
- Noise: assume $n_i=(d_i-s)$ is Gaussian zero mean & known variance σ^2
- Work through Bayes theorem:

$$p(s|\mathbf{d}, I) = \frac{p(\mathbf{d}|s, I)p(s|I)}{p(\mathbf{d}|I)}$$

ICIC

Prior p(s|I)

- How do we choose prior? Often to encode ignorance about s
- Common options?

Gaussian with zero mean and variance Σ . Let $\Sigma \rightarrow \infty$ at end of calculation

Uniform in range [Σ_1, Σ_2]. Again let $\Sigma_1 \rightarrow -\infty$, $\Sigma_2 \rightarrow \infty$ at end

"Jeffrey's prior", $p(s|I) \ge 1/s$. Appropriate if ignorant about scale of *s*. Equivalent to flat prior on log*s*

• Here adopt uniform prior:

$$p(s|I) = \frac{1}{\Sigma_2 - \Sigma_1}$$
 if $\Sigma_1 \le s \le \Sigma_2$

ICIC

Likelihood $p(\mathbf{d}|s, I)$

• We've decided our noise is Gaussian, so for individual datum have $\frac{1}{m(d_i \mid e_i I)} = \frac{1}{m(d_i \mid e_i I)} = \frac{1}{m(d_i \mid e_i I)}$

$$p(d_i|s, I) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\frac{(d_i - s)^2}{\sigma^2}\right]$$

\ 9 T

- For full data set: $p(\mathbf{d}|s, I) = (2\pi\sigma^2)^{n/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i}^{n} (d_i - s)^2\right]$
- Fine, but helpful to manipulate analytically Recall mean $\overline{d} = \frac{1}{N} \sum_{i} d_{i}$.

$$\sum_{i=1}^{n} (d_i - s)^2 = \sum_{i=1}^{n} (d_i^2 - 2d_i s + s^2) = N(s - \bar{d})^2 + N\sum_{i=1}^{n} \frac{(d_i - \bar{d})^2}{N}$$

• Result separates into two parts

$$data+parameters \qquad data \text{ only}$$

$$p(\mathbf{d}|s,I) = (2\pi\sigma^2)^{n/2} \exp\left[-\frac{1}{2\sigma_b^2}(s-\bar{d})^2\right] \exp\left[-\frac{1}{2\sigma_b^2}\langle (d_i-\bar{d})^2\rangle\right]$$

$$\sigma_b \equiv \sigma/\sqrt{N} \qquad \langle (d_i-\bar{d})^2\rangle = \sum_i \frac{(d_i-\bar{d})^2}{N}.$$

ICIC Evidence $p(\mathbf{d}|I)$

Evidence plays role of normalisation factor here

$$1 = \int \mathrm{d}s \, p(s|\mathbf{d}, I) = \int \mathrm{d}s \, \frac{p(\mathbf{d}|s, I)p(s|I)}{p(\mathbf{d}|I)} \qquad \longrightarrow \qquad p(\mathbf{d}|I) = \int \mathrm{d}s \, p(\mathbf{d}|s, I)p(s|I)$$

So taking results for prior and likelihood

$$p(\mathbf{d}|I) = \int_{\Sigma_1}^{\Sigma_2} \mathrm{d}s \, (2\pi\sigma^2)^{n/2} \exp\left[-\frac{1}{2\sigma_b^2}(s-\bar{d})^2\right] \exp\left[-\frac{1}{2\sigma_b^2}\langle (d_i-\bar{d})^2\rangle\right] \frac{1}{\Sigma_2 - \Sigma_1} \\ = (2\pi\sigma^2)^{n/2} \exp\left[-\frac{1}{2\sigma_b^2}\langle (d_i-\bar{d})^2\rangle\right] \frac{1}{\Sigma_2 - \Sigma_1} \\ \times \int_{\Sigma_1}^{\Sigma_2} \mathrm{d}s \, \exp\left[-\frac{1}{2\sigma_b^2}(s-\bar{d})^2\right]$$

Recall definition of error function

$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t$$

Gives final result for evidence

$$p(\mathbf{d}|I) = (2\pi\sigma^2)^{N/2} \exp\left[-\frac{1}{2\sigma_b^2} \langle (d_i - \bar{d})^2 \rangle\right] \frac{1}{\Sigma_2 - \Sigma_1} \frac{\sqrt{2\pi\sigma^2}}{\sqrt{N}} \frac{1}{2} \left[\operatorname{erf}\left(\frac{\Sigma_2 - \bar{d}}{\sigma\sqrt{2/N}}\right) - \operatorname{erf}\left(\frac{\Sigma_1 - \bar{d}}{\sigma\sqrt{2/N}}\right) \right]$$

Posterior

Combine results in Bayes theorem $p(s|\mathbf{d}, I) = \frac{p(\mathbf{d}|s, I)p(s|I)}{p(\mathbf{d}|I)}$

$$= \left[p(\mathbf{d}|s,I) = (2\pi\sigma^2)^{n/2} \exp\left[-\frac{1}{2\sigma_b^2}(s-\bar{d})^2\right] \exp\left[-\frac{1}{2\sigma_b^2}\langle (d_i-\bar{d})^2\rangle\right] \right] \quad \mathsf{X}$$

$$p(\mathbf{d}|I) = (2\pi\sigma^2)^{N/2} \exp\left[-\frac{1}{2\sigma_b^2} \langle (d_i - \bar{d})^2 \rangle\right] \frac{1}{\Sigma_2 - \Sigma_1} \frac{\sqrt{2\pi\sigma^2}}{\sqrt{N}} \frac{1}{2} \left[\operatorname{erf}\left(\frac{\Sigma_2 - \bar{d}}{\sigma\sqrt{2/N}}\right) - \operatorname{erf}\left(\frac{\Sigma_1 - \bar{d}}{\sigma\sqrt{2/N}}\right) \right]$$

 $p(s|I) = \frac{1}{\Sigma_2 - \Sigma_1}$

Gives the posterior

$$p(s|\mathbf{d},I) = \frac{\sqrt{N}}{\sqrt{2\pi\sigma^2}} 2\left[\operatorname{erf}\left(\frac{\Sigma_2 - \bar{d}}{\sigma\sqrt{2/N}}\right) - \operatorname{erf}\left(\frac{\Sigma_1 - \bar{d}}{\sigma\sqrt{2/N}}\right) \right]^{-1} \exp\left[-\frac{1}{2\sigma_b^2}(s - \bar{d})^2\right]$$

Taking limit $\Sigma_1 \rightarrow -\infty$, $\Sigma_2 \rightarrow \infty$

$$p(s|\mathbf{d}, I) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left[-\frac{1}{2\sigma_b^2}(s-\bar{d})^2\right]$$

ICIC

Inference?

Posterior contains everything that we infer about signal

$$p(s|\mathbf{d}, I) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left[-\frac{1}{2\sigma_b^2}(s-\bar{d})^2\right]$$

Best estimate of signal is peak of posterior

Bayesian 68% confidence interval $s = \bar{d} \pm \sigma_b = \bar{d} \pm \sigma / \sqrt{N}$.

Alternative priors? Infinite Gaussian gives same result.

If didn't know σ^2 : assume Jeffrey's prior $p(\sigma|I) \propto 1/\sigma$, then marginalise over σ , leads to broader posterior $p(s|I) \propto [s - 2s\langle d \rangle + \langle d^2 \rangle]^{-2}$.

(connected to Student-t distribution, same maximum, more conservative bound)

Toy example

Simple example $s_{true}=10, \sigma=2$

Make a random data set

6.07335, 11.213, 7.86354, 11.2595, 10.5425, 6.5558, 9.20705, 8.04459, 10.2605, 10.9534 ...

