
ICIC Data Analysis Workshop

Imperial College 

5-8 September 2016

Sponsored by STFC 
and Winton Capital



Course	Team
Alan	Heavens	
Andrew	Jaffe	

Daniel	Mortlock		
Jonathan	Pritchard	
Elena	Sellen:n	

Roberto Trotta  
Louise Hayward



Logis:cs	and	events
• Fire	exits	
• I/O:	Tea/coffee/lunch,	toilets.		

• Code	of	conduct	(see	website)	
• Events:		

• Breakfast	in	Beit	Hall	7-10	a.m.	(Workshop	starts	9.15)	
• Monday:	5	p.m.	Short	talk	by	Geraint	Harker	(Winton	Capital)	

5.30	p.m.	Drinks	recep:on,	Level	8	Common	Room	and	Roof,	
Blacke[	Lab.	

• Tuesday:	In	Skempton	LT201.	Evening	free	
• Wednesday:	6	p.m.	Barbecue,	58	Princes	Gate	

• Thursday:	1	p.m.	Public	engagement	lunch	(Roberto	Tro[a).		End	
of	Workshop	4	p.m.
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Outline	of	course

• Basic	principles	
• Sampling		

• Numerical	methods	(Parameter	inference)	
• Markov	Chain	Monte	Carlo	(MCMC)	
• Other	samplers	(Gibbs,	HMC)	

• Generalised	Linear	Models	
• Model	comparison:	Bayesian	Evidence		
• Bayesian	vs	FrequenAst:	p-values	
• Bayesian	Hierarchical	Models
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Introduc:on	to	Bayesian	Inference

Alan	Heavens		
Imperial	College	London



Books
• D.	Silvia	&	J.	Skilling:	Data	Analysis:	a	Bayesian	Tutorial	

(CUP)	
• P.	Saha:	Principles	of	Data	Analysis.	(Capella	Archive)																										

h8p://www.physik.uzh.ch/~psaha/pda/pda-a4.pdf	
• T.	Loredo:	Bayesian	Inference	in	the	Physical	Sciences				

h8p://www.astro.cornell.edu/staff/loredo/bayes/	
• M.	Hobson	et	al:	Bayesian	Methods	in	Cosmology	(CUP)	
• D.	Mackay:	InformaIon	Theory,	Inference	and	Learning	

Algorithms.	(CUP)																																																																		
h8p://www.inference.phy.cam.ac.uk/itprnn/book.pdf	

• A.	Gelman	et	al:	Bayesian	Data	Analysis	(CRC	Press)
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LCDM	fits	the	WMAP		
data	well.

Correla:on	Func:on Power	Spectrum	Cl



Inverse	problems
• Most	cosmological	problems	are	inverse	
problems,	where	you	have	a	set	of	data,	and	you	
want	to	infer	something.			

• -	generally	harder	than	predic:ng	the	outcomes	
when	you	know	the	model	and	its	parameters	

• Examples	
– Hypothesis	tes:ng	
– Parameter	inference	
– Model	selec:on



Examples

• Hypothesis	tes:ng	
– Is	the	CMB	radia:on	consistent	with	(ini:ally)	gaussian	
fluctua:ons?	

• Parameter	inference	
– In	the	Big	Bang	model,	what	is	the	value	of	the	ma[er	
density	parameter?	

• Model	selec:on	
– Do	cosmological	data	favour	the	Big	Bang	theory	or	the	
Steady	State	theory?	

– Is	the	gravity	law	Einstein’s	General	Rela:vity	or	a	
different	theory?



What	is	probability?	
• Frequen:st	view:	p	describes	the	relaIve	frequency	of	
outcomes	in	infinitely	long	trials	

• Bayesian	view:	p	expresses	our	degree	of	belief	
• p(A|B)	=	degree	to	which	truth	of	some	logical	
proposi:on	B	implies	that	the	logical	proposi:on	A	is	
also	true.	

• A	logical	proposiIon	is	a	statement	of	fact	that	could	be	
true	or	false	

• The	Bayesian	view	gives	what	we	want:	e.g.	given	
Planck	data,	what	is	the	probability	that	the	density	
parameter	of	the	Universe	is	between	0.9	and	1.1?



p(y|x) =
p(x|y)p(y)

p(x)

Bayes’	Theorem
• Rules	of	probability:	
• p(x)	+	p(not	x)	=	1	 	 	 sum	rule			
• p(x,y)	=	p(x|y)	p(y)		 	 product	rule	

• p(x)	=	Σk	p(x,yk)	 	 	 	 marginalisa:on	

• Sum⟶	integral																con:nuum	limit	(p=pdf)	

• p(x,y)=p(y,x)	gives	Bayes’	theorem

p(x) =
Z

dy p(x, y)

not x, x̄,⇠ x



p(x|y)	is	not	the	same	as	p(y|x)

• x	=	is	male;	y	=	has	beard	
• p(y|x)	=	0.1		
• p(x|y)	=	1

Julia Margaret Cameron



Example

• Suppose	a	medical	test	for	an	allergy	

– gives	a	posi:ve	result	with	probability	0.8	in	pa:ents	with	the	allergy	

– has	a	false	posi:ve	probability	(i.e.	a	posi:ve	result	in	pa:ents	
without	the	allergy)	of	0.1	

– And:	The	probability	of	having	the	allergy	in	the	popula:on	is	0.01.	
• You	take	the	test,	and	it	is	posi:ve	(=T).	What	is	the	probability	that	you	

have	the	allergy	(=A)?	

• RULE	1:	WRITE	DOWN	WHAT	IT	IS	YOU	WANT:	

• p(A	|	T)	

• RULE	2:	THERE	IS	NO	RULE	n	FOR	n>1	

• 										We	know	p(T|A)	=	0.8;				p(T|~A)	=	0.1	 ;		p(A)	=	0.01



Solu:on
• We	want	p(A|T)	
• We	know	p(T|A)	=	0.8;				p(T|~A)	=	0.1	 ;		p(A)	=	0.0	
• Bayes’	theorem:

p(A|T ) = p(T |A) p(A)

p(T )

p(A|T ) = p(T |A) p(A)

p(T,A) + p(T,⇠ A)

p(A|T ) = 0.8⇥ 0.01

0.8⇥ 0.01 + 0.1⇥ 0.99
= 0.075

p(A|T ) = p(T |A) p(A)

p(T |A)p(A) + p(T | ⇠ A)p(⇠ A)

Marginalisation:

Product rule:

Not an effective test. A positive result = 7.5% chance of allergy.



The	O	J	Simpson	trial
• In	1994	the	American	football	player	O	J	Simpson	was	
charged	with	murder	

• Simpson	was	known	to	be	violent	
• The	defence	argued	that	only	1/2500	of	violent	
people	commit	murder,	so	the	informaIon	that	he	is	
known	to	be	violent	is	irrelevant			

• p(M|A)	=	0.0004	
• Statement	was	not	challenged	
• Simpson	was	acqui[ed



Let	us	analyse	this	cri:cally
• What	key	piece	of	informa:on	has	been	conveniently	ignored	by	the	

defence?	

• In	this	case,	there	is	a	body	

• Given	that	the	probability	of	being	murdered	in	the	USA	is	0.00005,	
what	is	the	probability	that	Simpson	was	the	murderer	given	this	
evidence	alone?			

• Nota:on:		

– 	M	=	Simpson	was	the	murderer	

– 	V	=	Simpson	was	violent	

– 	B	=	There	is	a	body	

• Exercise:	apply	Rule	1	

• We	want	p(M	|	B,	V)



RULE	1:	We	want	p(M|B,V)

• p(B|M,V)	=	1	
• p(M|V)	=	0.0004	
• p(~M|V)	=	0.9996	
• p(B|~M,V)	<	0.00005

A very different conclusion: 89% vs 0.04%

p(M |B, V ) =
p(B|M,V )p(M |V )

p(B|M,V )p(M |V ) + p(B|M,⇠ V )p(M | ⇠ V )

p(M |B, V ) =
1⇥ 0.0004

1⇥ 0.0004 + 0.000005⇥ 0.9996
= 0.89



Bayes’	Theorem	and	Inference

• If	we	accept	p	as	a	degree	of	belief,	then	what	
we	open	want	to	determine	is	(RULE	1)	

									:	model	parameter(s),	x:	the	data	
To	compute	it,	use	Bayes’	theorem	
Note	that	these	probabili:es	are	all	condi:onal	
on	a)	prior	informa:on	I,	b)	a	model	M	

p(✓|x) =
p(x|✓)p(✓)

p(x)

p(✓|x) = p(✓|x, I, M) or p(✓|x I M)



No:ng	that																																							makes	its	role	clearer.			
In	model	selecIon	(from	M	and	M’),		

Posteriors,	likelihoods,	priors	and	evidence

Posterior Likelihood	L
Evidence	

or	Marginal	Likelihood
Prior

Reminder:		we	interpret	these	in	the	context	of	a	model	M,	so	all	probabili:es	are	
condi:onal	on	M	(and	on	any	prior	info	I).		E.g.	

The	evidence	looks	rather	odd	–	what	is	the	probability	of	the	data?		For	parameter	
inference,	we	can	ignore	it	–	it	simply	normalises	the	posterior.		If	you	need	it,

p(✓|x) =
p(x|✓)p(✓)

p(x)

p(x) =

X

k

p(x|✓k)p(✓k) or p(x) =

Z
d✓ p(x|✓)p(✓)



Meaning
If	we	work	within	the	framework	of	a	single	model,
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p(✓|x) / p(x|✓) p(✓)

Our state of knowledge 
before the experiment 
(the prior)

The probability of 
getting the data 
we got (likelihood)

Our state of knowledge 
after the experiment 
(the posterior)

After the experiment, the posterior may act as the prior for the next 
experiment: we ‘update the prior’ with the information from the 
experiment



Self-consistent?

• Yes.		Consider	data	from	2	experiments.		We	
can	do	one	of	3	things:	
– Define	prior;	obtain	posterior	from	dataset	1;	
update	the	prior,	then	analyse	dataset	2	

– As	above,	but	swap	1	and	2	
– Define	prior;	obtain	posterior	from	datasets	1	and	
2	combined	

• These	have	to	(and	do)	give	the	same	answers

22



A	diversion	on	priors

• You	bring	more	prior	informa:on	than	you	may	
think…

23What is the probability that White wins?

Credit: Daniel Mortlock



Forward	modelling

With	noise	proper:es	we	
can	predict	the		
Sampling	Distribu4on	
(the	probability	of	
obtaining	a	general	set	of	
data).		

The	Likelihood	refers	to	
the	specific	data	we	
have)	-	as	a	func:on	of	θ	
It	isn’t	a	probability,	
strictly	(not	normalised)

Note:	this	is	just	the	expecta:on	value	of	x;		
the	distribu:on	is	needed
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State	your	priors
• In	easy	cases,	the	effect	of	the	prior	is	simple	
• As	experiment	gathers	more	data,	the	likelihood	tends	to	get	

narrower,	and	the	influence	of	the	prior	diminishes	
• Rule	of	thumb:	if	changing	your	prior†	to	another	reasonable	

one	changes	the	answers	a	lot,	you	could	do	with	more	data	
• Reasonable	priors?	Noninforma:ve*	–	constant	prior	(can	

usually	do	this	even	if	infinite	interval	-	the	normalisa:on	is	
not	important	so	may	not	need	to	be	set).	

• scale	parameters	in															;	uniform	in	log	of	parameter	
(Jeffreys’	prior)	

• Bayesian	reasoning	is	NOT	subjec:ve	-	posterior	is	
determined	unambiguously	from	the	prior	and	likelihood	

†	I	mean	the	raw	theore:cal	one,	not	modified	by	an	experiment	
*	Actually,	it’s	be[er	not	to	use	these	terms	–	other	people	use	them	to	mean	different	

things	–	just	say	what	your	prior	is!		Uniform	priors	can	in	fact	be	very	informa:ve.
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From	Sivia	&	Skilling’s	Data	Analysis	book.			IS	THE	COIN	FAIR?	
Model:	independent	throws	of	coin.		Parameter	θ	=	probability	of	H

p(θ|H) p(θ|HH)

p(θ|HHT) p(θ|HHTT)

Uniform	Prior
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The	effect	of	priors

Sivia	&	Skilling

Priors	=	“It’s	likely	to	be	nearly	fair”,	“It’s	likely	to	be	very	unfair”



• VSA	CMB		
experiment	
(Slosar	et	al	2003)

h	≈	0.7	±	0.1

Priors:		ΩΛ≥0		
10	≤	age	≤	20	Gyr

There	are	no	data	in	
these	plots	–	it	is	all	
coming	from	the	prior!

p(✓1) =
Z

d✓j 6=1 p(x|✓) p(✓)



VSA	posterior



• Write	down	what	you	want	to	know.		For	parameter	
inference	it	is	typically:	

• What	is		M			?	
• What	is/are	x?	
• What	is/are					?	
• What	is	I	?	
• You	might	want	p(M|x	I)…this	is	Model	SelecIon	-	see	

later

Summary

31

✓

p(✓|x, I,M)



You choose 	
this one

?

Do	you	change	your	choice?	

This	is	the	Monty	Hall	problem

The	Monty	Hall	problem:		
An	exercise	in	using	Bayes’	theorem


