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Logistics and events
* Fire exits
e |/O: Tea/coffee/lunch, toilets.
e Code of conduct (see website)
 Events:
» Breakfast in Beit Hall 7-10 a.m. (Workshop starts 9.15)

 Monday: 5 p.m. Short talk by Geraint Harker (Winton Capital)
5.30 p.m. Drinks reception, Level 8 Common Room and Roof,
Blackett Lab.

* Tuesday: In Skempton LT201. Evening free
 Wednesday: 6 p.m. Barbecue, 58 Princes Gate

* Thursday: 1 p.m. Public engagement lunch (Roberto Trotta). End
of Workshop 4 p.m.
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Outline of course

Basic principles

Sampling

* Numerical methods (Parameter inference)
* Markov Chain Monte Carlo (MCMC)

e Other samplers (Gibbs, HMC)

Generalised Linear Models

Model comparison: Bayesian Evidence
Bayesian vs Frequentist: p-values

Bayesian Hierarchical Models



Introduction to Bayesian Inference

Alan Heavens
Imperial College London
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Books

D. Silvia & J. Skilling: Data Analysis: a Bayesian Tutorial
(CUP)

P. Saha: Principles of Data Analysis. (Capella Archive)
http://www.physik.uzh.ch/~psaha/pda/pda-a4.pdf

T. Loredo: Bayesian Inference in the Physical Sciences
http://www.astro.cornell.edu/staff/loredo/bayes/

M. Hobson et al: Bayesian Methods in Cosmology (CUP)

D. Mackay: Information Theory, Inference and Learning
Algorithms. (CUP)
http://www.inference.phy.cam.ac.uk/itpornn/book.pdf

A. Gelman et al: Bayesian Data Analysis (CRC Press)
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LCDM fits the WMAP
data well.
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Inverse problems

 Most cosmological problems are inverse
problems, where you have a set of data, and you
want to infer something.

e - generally harder than predicting the outcomes
when you know the model and its parameters
 Examples
— Hypothesis testing
— Parameter inference

— Model selection

Icic!



Examples

— Is the CMB radiation consistent with (initially) gaussian
fluctuations?

— In the Big Bang model, what is the value of the matter
density parameter?

— Do cosmological data favour the Big Bang theory or the
Steady State theory?

— |Is the gravity law Einstein’s General Relativity or a
different theory?

ICIC



What is probability?

* Frequentist view: p describes the relative frequency of
outcomes in infinitely long trials

» Bayesian view: p expresses our degree of belief

* p(A|B)=degree to which truth of some logical
proposition B implies that the logical proposition A is
also true.

* Alogical proposition is a statement of fact that could be
true or false

* The Bayesian view gives what we want: e.g. given
Planck data, what is the probability that the density
parameter of the Universe is between 0.9 and 1.17?

IcIc!



Bayes’ Theorem

* Rules of probability:

* p(x) +p(notx) =1 sum rule not x, T, ~
* plxy) =plx]y) ply) product rule

« p(x) =2, p(x,y,) marginalisation

e Sum— integral continuum limit (p=pdf)

p(z) = / dyp(z,y)
* p(x,y)=p(y,x) gives Bayes’ theorem
_ pz|y)p(y)
p(ylz) =
1cIcC! p()




p(x|y) is not the same as p(y|x)

X =is male; y = has beard
* p(y[x)=0.1
* p(x]y)=1

Julia Margaret Cameron
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Example

e Suppose a medical test for an allergy
— gives a positive result with probability 0.8 in patients with the allergy

— has a false positive probability (i.e. a positive result in patients
without the allergy) of 0.1

— And: The probability of having the allergy in the population is 0.01.

* You take the test, and it is positive (=T). What is the probability that you
have the allergy (=A)?

* RULE 1: WRITE DOWN WHAT IT IS YOU WANT:

* p(A]T)

* RULE 2: THERE IS NO RULE n FOR n>1

We know p(T|A)=0.8; p(T|~A)=0.1 ; p(A)=0.01

1cIC!



Solution

e We want p(A|T)
 Weknow p(T|A)=0.8; p(T|~A)=0.1 ; p(A)=0.0

e Bayes’ theorem: B p(T|A)p(A)
p(A|T) — p(T)
— __ p(T1A)p(4)
Marginalisation: p(A|T) — p(T, A) —I—p(T, ~ A)
| B p(T'A) p(4)
Product rule: p(A|T) — p(T\A)p(A) —I—p(T‘ ~ A)p(w A)
DAIT) — 0.8 x 0.01 0,075

- 0.8 x 0.01 4+ 0.1 x 0.99
ICIC

Not an effective test. A positive result = 7.5% chance of allergy.



The O J Simpson trial

* In 1994 the American football player O J Simpson was
charged with murder

* Simpson was known to be violent

* The defence argued that only 1/2500 of violent
people commit murder, so the information that he is
known to be violent is irrelevant

* p(M]A)=0.0004
* Statement was not challenged

* Simpson was acquitted

IcIcC!



Let us analyse this critically

* What key piece of information has been conveniently ignored by the
defence?

* Inthis case, there is a body

* Given that the probability of being murdered in the USA is 0.00005,

what is the probability that Simpson was the murderer given this
evidence alone?

* Notation:
— M = Simpson was the murderer
— V =Simpson was violent

— B =Thereis a body

Exercise: apply Rule 1
We want p(M | B, V)

Icic!



RULE 1: We want p(M|B,V)

p(B|M, V)p(M|V)
p(BIM, V)p(M|V) + p(B|M, ~ V)p(M| ~ V)

p(M|B,V) —

* p(B|MV)=1

* p(M|V) = 0.0004

e p(*M|V) =0.9996

« p(B|~M,V) < 0.00005
1 x 0.0004

M B — f— .
P(MIB,V) = 15575004+ 0.000005 x 0.9996 — -3

IlCIa A very different conclusion: 89% vs 0.04%



Bayes’ Theorem and Inference

* |f we accept p as a degree of belief, then what
we often want to determine is (RULE 1)

p(0]z)

6: model parameter(s), x: the data
p(z|6)p(0)

To compute it, use Bayes’ theorem »(%lx) ==

Note that these probabilities are all conditional
on a) prior information /, b) a model M

p(0|z) = p0|z, I, M) or p(@|x I M)
IcIc!



Posteriors, likelihoods, priors and evidence

PR LC10"C)

p(z)

Evidence Prior

Posterior Likelihood L 5 parginal Likelihood

Reminder: we interpret these in the context of a model M, so all probabilities are
conditional on M (and on any prior info ). E.g. p(6) = p(0| M)

The looks rather odd — what is the ? For parameter
inference, we can ignore it — it simply normalises the posterior. If you need it,

= 3 pleldn)ni0e) or i) = [ sp(aioe

Notlng that p( ) (:E|M) makes its role clearer.
ICIC!' |, (from M and M), p(x|M) # p(x| M)
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Meaning

If we work within the framework of a single model,

p(0]z) o p(x|0) p(0)

Our state of knowledge The probability of Our state of knowledge
after the experiment getting the data before the experiment
(the posterior) we got (likelihood) (the prior)

After the experiment, the posterior may act as the prior for the next
experiment: we ‘update the prior’ with the information from the
experiment



Self-consistent?

* Yes. Consider data from 2 experiments. We
can do one of 3 things:

— Define prior; obtain posterior from dataset 1;
update the prior, then analyse dataset 2

— As above, but swap 1 and 2

— Define prior; obtain posterior from datasets 1 and
2 combined

 These have to (and do) give the same answers



A diversion on priors

* You bring more prior information than you may
think...

Credit: Daniel Mortlock

What is the probability that White wins?
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LCDM fits the WMAP
data well.
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State your priors

* |n easy cases, the effect of the prior is simple

* As experiment gathers more data, the likelihood tends to get
narrower, and the influence of the prior diminishes

* Rule of thumb: if changing your priort to another reasonable
one changes the answers a lot, you could do with more data

* Reasonable priors? Noninformative™ — constant prior (can
usually do this even if infinite interval - the normalisation is
not important so may not need to be set).

* scale parametersin [0,00) ; uniform in log of parameter
(Jeffreys’ prior)

* Bayesian reasoning is NOT subjective - posterior is
determined unambiguously from the prior and likelihood
I mean the raw theoretical one, not modified by an experiment

* Actually, it’s better not to use these terms — other people use them to mean different
tb.i_nfs — just say what your prior is! Uniform priors can in fact be very informative.



From Sivia & Skilling’s Data Analysis book. IS THE COIN FAIR?
Model: independent throws of coin. Parameter 8 = probability of H
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The effect of priors
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e VSACMB
experiment

(Slosar et al 2003)

Priors: Qa=0
10 < age <20 Gyr

h=0.710.1

There are no data in
these plots — it is all
coming from the prior!

p(61) = / df;+1 p(x|0) p(0)

1cIc!

L 1 1 1

02 04 06 08 1

Age

! ] 1 |

0 0102030405

T



VSA posterior
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Summary

* Write down what you want to know. For parameter
inference it is typically:

p(0|x, I, M)
e Whatis M ?
 What is/are x?
¢ What is/are 07?
* Whatis/?

* You might want p(M/x [)...this is Model Selection - see
later

Icic!
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The Monty Hall problem:

An exercise in using Bayes’ theorem

Do you change your choice?

This is the Monty Hall problem

1cIc!



