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Better answer to Day 1 number count problem:
Likelihood for a

* Normalised distributionis p(S)dS = (a — 1) (;) i,—s
0 0

 Expected number of sources in (S,S5+AS) is A=Np(S)AS

 Choose AS so small that the observed number n in any
bin of width AS is 0 or 1. p(n=0) = exp(-A); p(h=1) =
Aexp(-A)

* Independent, so prob of entire set of source values is

H e~ H e

empty cells filled cells

A=0,  p{SsihH= ] xox ] oS

I C I C filled cells sources



» [ikelihood (and hence posterior, it we assume a
uniform prior for a) is therefore

L(a) H(a —1)sy1s; @

1=1

In L = Z In(a—1)4+ (a—1)In Sy — aln S;] + constant
i=1

 Maximising InL w.r.t. a gives

i111L: ( ! 7 | IHS()—IHS7;> = ()

O , o —
1=1
e |.e. The maximum likelihood value Is =«
T :
a =1

Z?:l In g_o
e Forn=1and S1=250, auL = 2.44
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Central Limit Theorem

Preamble: adding two random variables

* Probability of a random variable £ being larger than z;:

p(72 )= [ depe)

e letZL=Xx+VY.
p(Z > z1) =/ dy/ dzx p(x,y)
— 00 21—Y

e |f xand y are independent,

y

p(ZZZ1)=/ dy/ dx Dy () py(y)
IcIc! IR



_ /_Zdyliy dz p: () py(y)

 Change from xto z=x+y; x=z-y (Note: its more obvious perhaps to leave y
as the outer integral first, but then notice that the limit on z does not depend
on y, so the order can be reversed)

e Since

p(Z> )= / 4z p()

e Wwe can read off

pe) = [ a9

— OO

ICIC! < ie. p(z)is a convolution



Convolution=product in Fourier space

* ‘Characteristic function’ (or [ .
generating function): o(k) —/ drp(x)e

— O

 Characteristic function for zis

* For n independent observations from the same p(x)
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Central limit theorem

0O 050 - , 9 _
@;(k):/ dxp(w)eikx:/ drp(x) |1+ tkx - (Zk;') ..
. ie oo (k) = 1+ i(a)k — %@2)/@2 o
1
» Consider X = ﬁ($1+$2+-~+xn)

e |ts characteristic functionis @x (k) = [¢.(k//n)]"

e If <x>=0 and <x*>=07%, then, truncating the expansion at
second order:

i 2127 2,2
®, (k)= |1 Ug — e Tk /2
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Central limit theorem

. 1
e |nvert the Fourier transform: X = 7(@*1 + Ty 4+ xp)

~X2/(202)
p(X) =

V27O, i
» So we find the pdf for the average X = X/v/n

o—X?/(203 /n)
p(X) = p(X)vn = -
v/ 2mo2/n
* The average of n (many) identically-distributed random
variables tends to a gaussian, with a variance given by the

individual variances divided by n.

€

o

Amazing theorem - we don't
need to know p,, and the

~1 €rrors go down with more i{
[ LICIC! opservations.




Pathological pdfs

o Cauchy distribution p(z) =

does not obey CLT. Why?

e \Variance is infinite
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The Lighthouse: Bayes vs estimator-based Frequentist

Steve Gull, 1st year University of Cambridge tutorial problem, 1988

A lighthouse Is situated at
unknown coordinates Xo,Yo With
respect to a straight coastline
v=0. It sends a series of N
flashes in random directions,
and these are recorded on the
coastline at positions x.

X2 X1 X3

Using a Bayesian approach, find the posterior
|1CIE| distribution of Xg,Yyo, given the positions Xx.



X0YO0 s
Solution L|)3
X2 X1 >;3
e Rule 1: we want p(zo, yol{z:i})

* Use Bayes, assuming a uniform prior on Xo,Yo
p(xo, Yol[{2i}) o< p({2i}t|To, yo)p(Zo,Yo) X Hp(%‘\xo,yo)

* Letthe angles wrt the vertical be . Geometry gives

L; — L

. — tanzbi.
0
d;
p(xi|To, yo) = p(¥i|To, yo) di
p(wi‘ibo,y()) — :_/7'(' (—7'('/2 < w < 7'('/2)
ICIC sec? 1; d% _ 1 1A & _QxO)Q dw? S
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 Hence the posterior is

p(Zo, Yo[{zi}) ox H ]

i Yo |14 —

* Product of Cauchy distributions

Posterior probability of lighthouse position

Posterior probability of lighthouse position
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Estimator-based Frequentist analysis for Xo

* Define an estimator. What would youNchoose?

» The average of the x;: To = — Z T =

e Z has a characteristic function ®(k) = ¢N(k)
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(k) = / e [ 2] dx = e'Fzo~Iklyo,

@(k‘) — 6iN]€$0—N|k|yo

o - p(Nzg) = - 5
Invert to get p(Z). pNzo) N {1 (i }
) 1
p(Zg) = (Z0—10)? Having 1000 measurements
Yo {1 | i } IS No better than having 1!
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