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Better answer to Day 1 number count problem: 
Likelihood for α

• Normalised distribution is  

• Expected number of sources in (S,S+ΔS) is λ=Np(S)ΔS 

• Choose ΔS so small that the observed number n in any 
bin of width ΔS is 0 or 1.  p(n=0) = exp(-λ); p(n=1) = 
λexp(-λ) 

• Independent, so prob of entire set of source values is
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• Likelihood (and hence posterior, if we assume a 
uniform prior for α) is therefore  
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• Maximising lnL w.r.t. α  gives

• i.e. The maximum likelihood value is 

• For n=1 and S1=2S0, αML = 2.44 
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Central Limit Theorem

• Probability of a random variable Z being larger than z1:

• Let Z = x + y. 

• If x and y are independent,
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Preamble: adding two random variables



• Change from x to z=x+y; x=z-y (Note: it’s more obvious perhaps to leave y 
as the outer integral first, but then notice that the limit on z does not depend 
on y, so the order can be reversed)

• Since 

• we can read off
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• i.e. p(z) is a convolution

p(Z � z1) =

Z 1

z1

dz

Z 1

�1
dy p

x

(z � y) p
y

(y)



Convolution=product in Fourier space

• ‘Characteristic function’ (or 
generating function):

• Characteristic function for z is

• For n independent observations from the same p(x)
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Central limit theorem

• Consider X =
1p
n

(x1 + x2 + · · ·+ xn)

• Its characteristic function is �
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• i.e.

• If <x>=0 and <x2>=σ2, then, truncating the expansion at 
second order: 
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Central limit theorem
X =

1p
n

(x1 + x2 + · · ·+ xn)

• So we find the pdf for the average  

• Invert the Fourier transform:
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p
n

• The average of n (many) identically-distributed random 
variables tends to a gaussian, with a variance given by the 
individual variances divided by n. 

Amazing theorem - we don’t 
need to know px, and the 
errors go down with more 
observations.

p(X̄) = p(X)
p
n =

e�X

2
/(2�2

x

/n)

p
2⇡�2

x

/n
.



Pathological pdfs

• Cauchy distribution

does not obey CLT.  Why?

• Variance is infinite
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The Lighthouse: Bayes vs estimator-based Frequentist 
Steve Gull, 1st year University of Cambridge tutorial problem, 1988

A lighthouse is situated at 
unknown coordinates x0,y0 with 
respect to a straight coastline 
y=0.  It sends a series of N 
flashes in random directions, 
and these are recorded on the 
coastline at positions xi.  

x2      x1                        x3

Using a Bayesian approach, find the posterior  
distribution of x0,y0, given the positions xi.



Solution

• Rule 1: we want

• Let the angles wrt the vertical be ψi. Geometry gives

p(x0, y0|{xi})

p(x0, y0|{xi}) / p({xi}|x0, y0)p(x0, y0) /
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• Use Bayes, assuming a uniform prior on x0,y0

xi � x0

y0
= tan i.

p(xi|x0, y0) = p( i|x0, y0)

����
d i

dxi

����

sec2  i
d i

dxi
=

1

y0
)


1 +

(xi � x0)2

y

2
0

�
d i

dxi
=

1

y0

p( i|x0, y0) = 1/⇡ (�⇡/2 <  < ⇡/2)

x2      x1                        x3

ψ3

x0,y0



• Hence the posterior is

• Product of Cauchy distributions
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Estimator-based Frequentist analysis for x0

• Define an estimator. What would you choose?

• Z has a characteristic function
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• The average of the xi:
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• Invert to get p(Z):

Having 1000 measurements  
is no better than having 1!
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