
Sampling from a distribution

ICIC Astrostats Workshop, September 2014

Andrew Jaffe

September 11, 2014

In [1]: # You should run this line the first time to get the LaTeX output!

from IPython.external import mathjax; mathjax.install_mathjax()

Some setup

In [2]: import math

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt

%matplotlib inline

0.0.1 Given some distribution P (θ|D), how do we use or understand its properties?

In [3]: def p_gaussian(x, mu=0, sigma=1):

""" a univariate gaussian distribution """

return (2*math.pi*sigma)**(-0.5)*np.exp(-0.5*(x-mu)**2/sigma)

def p_multigaussian(x, mu, covar):

""" multivariate gaussian PDF """

detC = np.linalg.det(2*math.pi*covar)

delx = x-mu

Cinv_mu = np.linalg.solve(covar, delx)

chi2 = np.dot(delx, Cinv_mu)

return detC**(-0.5)*np.exp(-chi2/2.0)

We can plot it:

In [4]: x = np.linspace(-5,5,100)

plt.plot(x, p_gaussian(x))

plt.xlabel("x")

plt.ylabel("$p(x)$")

Out[4]: <matplotlib.text.Text at 0x108807e10>

1

0.1 Moments

If we have an analytic (or just computable) form for the distribution, we can work out the moments by
integration:

〈xn〉 =

∫
xnp(x) dx

In [5]: import scipy.integrate as si

norm = si.quad(p_gaussian,-10,10)[0]

mean = si.quad(lambda x: x*p_gaussian(x), -10, 10)[0]

var = si.quad(lambda x: x*x*p_gaussian(x), -10, 10)[0] - mean**2

print "normalization: %f" % norm

print "mean: %f " % mean

print "variance: %f " % var

normalization: 1.000000

mean: 0.000000

variance: 1.000000

0.2 Random numbers

Sometimes, though, we want to generate [random] numbers as if they came from a given distribution. (As
we will see later, we can do this in cases even in cases where the distribution itself is hard to compute.)

In some cases, this is easy. Here are random numbers from the uniform distribution over x ∈ (0, 1)

In [6]: np.random.rand(10)

Out[6]: array([0.41412928, 0.36326331, 0.0364867 , 0.55610849, 0.99671092,

0.66151529, 0.25614466, 0.57098066, 0.67090961, 0.12927589])

2

(Of course these are really deterministic pseudo-random numbers.)
Your language may be able to generate numbers from some other distributions.

In [7]: print np.random.__doc__

========================

Random Number Generation

========================

==================== ===

Utility functions

==

random sample Uniformly distributed floats over ‘‘[0, 1)‘‘.

random Alias for ‘random sample‘.

bytes Uniformly distributed random bytes.

random integers Uniformly distributed integers in a given range.

permutation Randomly permute a sequence / generate a random sequence.

shuffle Randomly permute a sequence in place.

seed Seed the random number generator.

==================== ===

==================== ===

Compatibility functions

==

rand Uniformly distributed values.

randn Normally distributed values.

ranf Uniformly distributed floating point numbers.

randint Uniformly distributed integers in a given range.

==================== ===

==================== ===

Univariate distributions

==

beta Beta distribution over ‘‘[0, 1]‘‘.

binomial Binomial distribution.

chisquare :math:‘\chi^2‘ distribution.

exponential Exponential distribution.

f F (Fisher-Snedecor) distribution.

gamma Gamma distribution.

geometric Geometric distribution.

gumbel Gumbel distribution.

hypergeometric Hypergeometric distribution.

laplace Laplace distribution.

logistic Logistic distribution.

lognormal Log-normal distribution.

logseries Logarithmic series distribution.

negative binomial Negative binomial distribution.

noncentral chisquare Non-central chi-square distribution.

noncentral f Non-central F distribution.

normal Normal / Gaussian distribution.

pareto Pareto distribution.

poisson Poisson distribution.

power Power distribution.

rayleigh Rayleigh distribution.

triangular Triangular distribution.

3

uniform Uniform distribution.

vonmises Von Mises circular distribution.

wald Wald (inverse Gaussian) distribution.

weibull Weibull distribution.

zipf Zipf’s distribution over ranked data.

==================== ===

==================== ===

Multivariate distributions

==

dirichlet Multivariate generalization of Beta distribution.

multinomial Multivariate generalization of the binomial distribution.

multivariate normal Multivariate generalization of the normal distribution.

==================== ===

==================== ===

Standard distributions

==

standard cauchy Standard Cauchy-Lorentz distribution.

standard exponential Standard exponential distribution.

standard gamma Standard Gamma distribution.

standard normal Standard normal distribution.

standard t Standard Student’s t-distribution.

==================== ===

==================== ===

Internal functions

==

get state Get tuple representing internal state of generator.

set state Set state of generator.

==================== ===

0.2.1 We can generate random numbers from these distributions

In [8]: poissons = np.random.poisson(1, size=1200)

In [9]: np.mean(poissons), np.var(poissons)

Out[9]: (0.96499999999999997, 0.9171083333333333)

You can do a lot more with samples: they are essentially simulations of random processes.
Yesterday, we saw an example in the flux-density distribution
For example, if you have a luminosity function P (L), samples from that distribution will be a simulation

of a galaxy population

In [10]: def schechter(x, phi_star=1.0, a=-1.25):

""" the luminosity function n(x) with x = L/Lstar """

return phi_star * x**a * np.exp(-x)

In [11]: logxarr = np.logspace(-2,2,20)

plt.loglog(logxarr, schechter(logxarr))

plt.xlabel("$x=L/L_*$")

plt.ylabel("$N(x)$")

plt.title("Shechter Luminosity Function");

4

0.3 What to do with Samples

Samples xi, (i = 1, . . . , N), from a distribution p(x), satisfy

lim
N→∞

1

N

∑
i

f(x(i)) =

∫
f(x)p(x) dx ≡ 〈f(x)〉

so we can use the samples to calculate estimates for the mean 〈x〉 and other moments of the distribution.
Let’s check with a Gaussian:

In [12]: nsamp = 1000

gaussian_samples = np.random.randn(nsamp) ### 1000 random numbers from a standard normal distribution

avg = np.mean(gaussian_samples)

var = np.var(gaussian_samples)

print "%f ± %f → 0 ± 1" % (avg, var)

-0.009977 ± 1.080914 → 0 ± 1

Let’s see how these are built up

In [13]: avgs = [np.mean(gaussian_samples[:n]) for n in range(1,nsamp)]

vars = [np.var(gaussian_samples[:n]) for n in range(1,nsamp)]

plt.plot(avgs)

plt.plot(vars)

plt.plot([0,999],[0,0])

plt.plot([0,999],[1,1])

plt.ylim(-0.5,1.5)

plt.xlabel("i")

plt.ylabel("$\langle{x}\\rangle$, var x");

5

0.3.1 Other distributions

But you may need to sample from an essentially arbitrary p(x).

In [14]: def p_cos_1(x):

return 0 if (x<-1.0 or x>1.0) else np.cos(x*math.pi/2.0)*math.pi/4.0

p_cos = np.vectorize(p_cos_1, otypes=[np.float])

x = np.linspace(-2,2,100)

plt.plot(x, p_cos(x))

plt.xlabel("x")

plt.ylabel("$p_{cos}(x)$")

norm = si.quad(p_cos,-10,10)[0]

mean = si.quad(lambda x: x*p_cos(x), -2, 2)[0]

var = si.quad(lambda x: x*x*p_cos(x), -2, 2)[0] - mean**2

print "normalization: %f" % norm

print "mean: %f " % mean

print "variance: %f (= %f = 1-8/π^2)" % (var, 1-8/math.pi**2)

normalization: 1.000000

mean: 0.000000

variance: 0.189431 (= 0.189431 = 1-8/π^2)

6

0.3.2 Rejection Sampling

One good tool is called rejection sampling.
Consider the histogram of samples that you will generate: you want to fill in the area underneath the

curve of p(x).

In [15]: x = np.linspace(-2,2,100)

plt.plot(x, p_cos(x))

plt.xlabel("x")

plt.ylabel("$p_{cos}(x)$")

Out[15]: <matplotlib.text.Text at 0x1092f2a50>

7

We don’t know how to sample from this pcos(x). But we do know how to sample from (among others)
the uniform distribution, u(x).

In [16]: def u_1(x):

return 0 if (x<-1.0 or x>1.0) else 0.5

u = np.vectorize(u_1, otypes=[np.float])

plt.plot(x, p_cos(x), label="cos")

plt.plot(x, 2*u(x), label="2*uniform") ### note scale factor of 2

plt.fill_between(x, 2*u(x), p_cos(x), hatch="/", facecolor=’w’)

plt.xlabel("x")

plt.ylabel("$p(x)$")

plt.ylim(0,1.1)

plt.legend();

8

What we want to do is reject some fraction of the samples from u(x) — the ones in the shaded region —
so that we get the right numbers for pcos(x).

At a particular value of x, we need to reject exactly the fraction of samples corresponding to the ratio of
pcos(x) to u(x).

In [17]: def rejection_sample(p=p_cos, xlim=(-1,1), pmax=0.9):

"""

use rejection sampling to get samples from p(x), using uniform samples

"""

delx = xlim[1]-xlim[0] #### range of x

scale = delx*pmax

keep = True

while keep: ### loop until you’re meant to keep a sample

generate a sample from u: np.random.random generates from U(0,1)

u_sample = delx*np.random.random()+xlim[0]

fraction_to_keep = p(u_sample)/(scale*u(u_sample))

keep = np.random.random()>fraction_to_keep

return u_sample

In [18]: rsamp = np.array([rejection_sample() for _ in range(1000)])

sample_mean = np.mean(rsamp)

sample_var = np.var(rsamp)

print "sample mean: %f ~ %f" % (sample_mean, 0)

print "sample var: %f ~ %f" % (sample_var, 1-8/math.pi**2)

9

plt.hist(rsamp, normed=True, bins=20)

x = np.linspace(-2,2,100)

plt.plot(x, p_cos(x), label="cos")

plt.plot(x, p_gaussian(x, mu=sample_mean, sigma=np.sqrt(sample_var)), label="gaussian approx")

plt.legend();

sample mean: -0.014500 ~ 0.000000

sample var: 0.177231 ~ 0.189431

Note: * We don’t require our other distribution to be uniform * But it does have to be one we can easily
sample from * And we do need to know the maximum value of the desired p(x) so that we have

[M × u(x)] > p(x)

everywhere. * The Gaussian approximation is OK, but gets the tails badly wrong (cf. the central limit
theorem).

0.4 Other tools for generating samples.

0.4.1 Changing varibles

If we can sample from p(x), we can generate samples from a variety of distributions related to p(x).
Consider the distribution q(y) such that y = y(x) and x is drawn from p(x). These distributions satisfy

p(x) dx = q(y) dy .

From this, we can deduce that

q(y) = p(x)

∣∣∣∣dydx
∣∣∣∣−1

where we need the inverse function x = x(y) on the right-hand side, and must also express the (Jacobian)
derivative in terms of y. (This can be generalized using a Jacobian determinant to multivariate distributions
and non-invertible functions).

10

Exercise: If we have a distribution p(x) for x = log(y) from which we can draw samples xi, how can we
use this to generate samples of y itself?

0.5 Multivariate distributions

Almost nothing that we have done so far depends on the fact that our “random variable” x is a single
(scalar) parameter — it could just as easily be a vector of different parameters, ~x. For example: * the mass
of the sun, M� — a single parameter * the parameters of the ΛCDM universe, {H0, ns,Ωm,ΩΛ,Ωb} * the
individual values of the CMB power spectrum, C`, ` = {2, 3, 4, . . .}

How do we characterise these multivariate distributions?

0.5.1 Moments

We can just as easily write down moments of a multivariate distribution, p(~x):

〈xixj · · · 〉 =

∫
dnx (xixj · · ·)p(~x)

Just as a univariate Gaussian distribution is completely described by its mean, µ, and variance, σ2, a
multivariate Gaussian distribution is described by its vector of means ~µ = 〈~x〉 and the covariance matrix

Cij = 〈(xi − µi)(xj − µj)〉

We can often use a gaussian with the same mean and variance as those of the samples as an approximation
to the distribution.

0.5.2 Multivariate Samples and marginalization

Samples from a multivariate distribution can be very useful. In particular, marginalizing over one or the
other is equivalent to just ignoring the samples of that variable. I.E., If we have a list of samples from p(x, y):

x_1 y_1

x_2 y_2

...

x_n y_n

In this case, * xi are samples from p(x) =
∫
dy p(x, y), and * yi are samples from p(y) =

∫
dx p(x, y)

0.6 Plotting and Summarizing

Especially in one dimension, your plotting package may be able to do things for you:

In [19]: plt.hist(gaussian_samples, normed=True, bins=20)

plt.plot(x, p_gaussian(x));

11

But there are some useful general tools for visualizing samples.
Consider a much simpler problem, when we have both the samples, xi, themselves, as well as the actual

value of the distribution at those points, p(xi). (It’s much harder without that information – the general
problem of characterising the distribution of samples in many dimensions is very hard!)

We generally want to characterise high-probability regions of p(x), i.e., those regions that have the largest
values of p(x) and enclose some fraction α of the total probability:

α =

∫
p>q(α)

p(x) dx

where the value q depends on the chose level α. For α = 1, this is just q = 0 and gives the whole range of
x; for α = 0 this is just any q greater than the maximum value of p. Typically, we try to find those regions
that enclose the equivalent of n-σ for a Gaussian distribution.

This seems like a complicated definition, but it’s easy to approximate from N samples x(i): * Sort the
samples in order of decreasing probability p

(
x(i)
)
. * Work your way down the list until you have α × N

samples: all of those samples come from the level-α region, and the last value gives an approximation
q(α) ≈ p

(
x(i)
)

In [20]: sorted_probabilities = np.sort(p_gaussian(gaussian_samples))

n = len(gaussian_samples)

alphas = [0.683, 0.954, 0.9973]

q_levels = [sorted_probabilities[np.round((1-a)*n)] for a in alphas]

print q_levels

[0.23669849853114167, 0.046010471571392327, 0.0025621679947923979]

In [21]: covar = np.array([[5.0, 5.0],

[5.0, 10.0]])

mean = (3,2)

nsamples = np.random.multivariate_normal(mean=mean, cov=covar, size=10000)

psamples = np.array([p_multigaussian(xi, mean, covar) for xi in nsamples])

12

sorted_probabilities = np.sort(psamples)

n = len(nsamples)

alphas = [0.683, 0.954, 0.9973] ### these are not the right levels for 1-, 2-, 3-sigma for 2 variables!

q_levels = [sorted_probabilities[np.round((1-a)*n)] for a in alphas]

colors = np.zeros_like(psamples)

for col, lev in enumerate(q_levels):

colors[psamples<lev] = col

samples_mean = np.average(nsamples.transpose(), axis=1)

samples_covar = np.cov(nsamples.transpose())

print "mean: ", samples_mean

print "covar: ", samples_covar

xarr = np.linspace(-10,15,100)

yarr = np.linspace(-15,20,100)

xi,yi = np.meshgrid(xarr, yarr)

zshape = xi.shape

zarr = np.array([np.log(p_multigaussian(xy, samples_mean, samples_covar)) for xy in zip(xi.flat, yi.flat)])

zarr = zarr-max(zarr)

zarr.shape = zshape

dchi2 = np.array([2.30, 6.17, 11.8]) ### corresponding to *1D* 1,2,3sigma

with plt.rc_context(rc={’figure.figsize’: (10.0, 10.0)}):

plt.figure()

plt.axes().set_aspect(’equal’);

plt.subplot(2,2,3)

plt.title("2D Histogram")

plt.hist2d(nsamples[:,0], nsamples[:,1], bins=30)

plt.subplot(2,2,2)

plt.title("color by $\ln(p)$")

plt.scatter(nsamples[:,0], nsamples[:,1], c=np.log(psamples), marker=’.’, lw=0)

plt.contour(xi, yi, zarr, levels=-0.5*(dchi2)*2)

plt.subplot(2,2,1)

plt.title("color by intervals")

plt.scatter(nsamples[:,0], nsamples[:,1], c=colors, marker=’.’, lw=0)

plt.contour(xi, yi, zarr, levels=-0.5*(dchi2)*2)

mean: [2.99109787 1.96168081]

covar: [[5.06887825 5.02110853]

[5.02110853 9.97389658]]

13

In [22]: with plt.rc_context(rc={’figure.figsize’: (10.0, 10.0)}):

plt.figure()

plt.axes().set_aspect(’equal’);

plt.subplot(2,2,3)

plt.scatter(nsamples[:,0], nsamples[:,1], c=colors, marker=’.’, lw=0)

plt.contour(xi, yi, zarr, levels=-0.5*(dchi2)*2)

plt.xlabel("x")

plt.ylabel("y")

save the 2-d x and y limits for use in the histograms

xlim=plt.xlim()

ylim=plt.ylim()

plt.subplot(2,2,4)

14

plt.hist(nsamples[:,1],normed=True, bins=20, orientation=’horizontal’)

plt.xlabel("$p(y)$")

plt.ylim(ylim)

plt.subplot(2,2,1)

plt.hist(nsamples[:,0],normed=True, bins=20)

plt.ylabel("$p(x)$")

plt.xlim(xlim)

0.7 Importance Sampling

The basic idea of importace sampling is simple. Consider our fundamental “theorem of sampling”:

lim
N→∞

1

N

∑
i

f(x(i)) =

∫
f(x)p(x) dx ≡ 〈f(x)〉p

15

(where we add a subscript to 〈· · · 〉 to indicate that the expectation is taken with respect to the distribution
p(x).)

We can multiply and divide by some function q(x) inside the integral:∫
f(x)

q(x)
q(x)p(x) dx ≡

〈
f(x)p(x)

q(x)

〉
q

but this is still equal to our original 〈f(x)〉p.
Hence, if we have samples from q(x), we can estimate averages of f(x) under p(x):

lim
N→∞

1

N

∑
i

f(x(i))p(x(i))

q(x(i))
= 〈f(x)〉p

We can think of this as just a re-weighting of our samples by wi = p(x(i))/q(x(i)).
This is particularly useful for re-analyzing MCMC chains. If our chain was created with some prior π1(x),

we can “substitute in” a new prior π2(x) by reweighting by π2/π1. For example, we may have created some
chains from Planck with a uniform prior on the tensor-to-scalar ratio, r, but want to re-analyze our results
with the BICEP2 results b(r), so we just reweight by b(r)/u(r) = b(r).

Note that the reweighted samples are not themselves individual random samples from the new distribu-
tion. So, when we are using the graphical techniques from before to find confidence intervals, we don’t work
our way down from the highest probability one at a time – instead, we now add up the wi until we get the
right fraction of the total weight.

16

	Given some distribution P(|D), how do we use or understand its properties?
	Moments
	Random numbers
	We can generate random numbers from these distributions

	What to do with Samples
	Other distributions
	Rejection Sampling

	Other tools for generating samples.
	Changing varibles

	Multivariate distributions
	Moments
	Multivariate Samples and marginalization

	Plotting and Summarizing
	Importance Sampling

