Hybrid (Hamiltonian) Monte Carlo

We would like to increase the acceptance rate to improve efficiency, and
explore the target distribution efficiently (‘good mixing’)

We have a hard problem in many dimensions. Solution:

Make things harder: add in M auxiliary variables, one for each parameter
in the model.

Imagine each of the parameters in the problem as a coordinate.
Target distribution =» effective potential
For each coordinate HMC generates a generalised momentum.

It then samples from the extended target distribution in 2M dimensions.

HMC

HMC explores this 2M-dimensional space by treating the
problem as a dynamical system, and evolving the phase
space coordinates by solving the dynamical equations.

Finally, it ignores the momenta (marginalising, as in
MCMC), and this gives a sample of the original target
distribution.

May help with decorrelating the points in the chain.

Invented by particle physicists (Duan et al 1987)
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Theory

Potential U(#) = —Inp(0)
For each 0, generate a momentum u,,.
K.E. K=uTu/2
Define a Hamiltonian
H(O,u) =U(0) + K(u)
and define an extended target density
p(6,u) = exp [~ H (6, u)]

Magic of HMC

Evolve as a dynamical system

09a William Rowan Hamilton

H remains constant, so extended target
density is uniform — all points get accepted!

Also, you can make big jumps — good mixing, if
you generate a new u each time
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Complications

Evolving the system takes time. Take big steps.

We don’t know the complete U = - In p (it’s what
we are looking for)

If we can quickly evaluate the derivative of U, fine.

We might approximate U (from a short MCMC)
U= %(9 ~ 00)aCap (0 — 00)

H is therefore not constant

Use Metropolis-Hastings. Accept new point with

probability

min{l,exp[—H(0",u*) + H(0,u)|}

Algorithm

Hamiltonian Monte Carlo
1: initialize x(q)
2: fori=11to Nsgmples

3: u~ N(0,1)

4: (XTQ)’ u?o)) = (X(i-1), 1)

5: forj=1toN

6: make a leapfrog move: (x’(*j_l),uzj_l)) —
(<) u5))

7: end for

8: (x*,u") = (x(v), uw))

9: draw o ~ (0,1)

10: if a < min{1, e~ (HOu)=HGw)L
11: X() = X"

12: else

13: X(z) = X(ifl)

14: end for

From Hajian 2006
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HMC vs MCMC
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MCMC run
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