
ICIC Data Analysis Workshop 1

Computational statistics

Daniel Mortlock (mortlock@ic.ac.uk)

Last modified: September 9, 2014

Imperial College London

2 Computational statistics

1 Random numbers

1.1 Definitions

The word “random” is used very often and with great confidence. Most people have an intuitive
sense of what “random” means and hence what a “random number” is. If, however, random
numbers are to be used in statistical algorithms then it is important to have a more precise
definition of what they are, how randomness can be assessed, how random numbers can be
generated using (fundamentally deterministic) computer-based algorithms.

A starting point is to look at some definitions of random:

• “made, done, happening or chosen without method of conscious decision”
(source: Mac Dictionary app)

• “unsystematic, unmethodical, arbitrary, unplanned, undirected, casual, indiscriminate,
nonspecific, haphazard, stray, erratic, chance, accidental”
(source: Mac Dictionary thesaurus)

• “statistics governed by or involving equal chances for each item”
(source: Oxford Dictionaries)

• “having no definite aim or purpose; not sent or guided in a particular direction; made,
done, occurring, etc., without method or conscious choice; haphazard”
(source: Oxford English Dictionary)

Question: How would you define randomness? Imagine that you had to define this concept
for an intelligent person with no background in mathematics.

A random number might then be expected to be a numerical quantity satisfying the above
properites, but of course the nature of mathematics is such that a precise definitions might seem
possible – and is certainly desireable. Some possible definitions are:

• “a sequence (e.g., of bits) that is shorter than any computer program that can produce it”
(Kolmogorov randomness)

• “a sequence in which the value of any one element (or sub-sequence of elements) provides
no information about the value of any other element”
(my attempted definition)

• “a sequence in which each element is generated by a independent stochastic process” (my
alternative attempted definition)

Question: Try and come up with an example that satisfies the above definitions. Try and
come up with an example that contradicts the above definitions.

A simple sequence like 1, 2, 1, 2, 1, 2, . . . can clearly be encoded very e�ciently, and so is not
random in the Kolmogorov sense, in accord with intuition. But sequences like the digits of ⇡ or
e, which are believed to be random, can be encoded very e�ciently.

Imperial College London

ICIC Data Analysis Workshop 3

Figure 1: Images of the “face on Mars” produced by Viking 1 (left) and the Mars Global Surveyor
(right).

Question: Try and come up with a rigorous mathmatical definition of randomness. See if you
– or a classmate – can come up with a counter-example that contradicts this definition.

The above definitions, while precise, are also somewhat abstract, in the sense that they do not
immediately define an answer as to whether a given number fits the definition of randomness.
If a characteristic can be defined then it ought to be possible to determine whether something
fits that definition. A good test, then, for whether randomness has been precisely defined, is
whether it can be identified and/or tested for.

1.2 Tests for randomness

Developing and implementing methods to test for randomness is an entire sub-field of mathe-
matics that brings in ideas from statistics, information theory and even psychology.

The reason for psychological considerations is that the human mind has evolved to be so good
at identifying patterns (i.e., the antithesis of randomess). Indeed, if anything, the human mind
is too good at finding patterns, in the sense that it regularly ascribes significance to what are
really mere coincidences:

• In 1975 the NASA Viking 1 probe took images of the surface of Mars, one of which is
shown in left panel of Fig. 1. Most people instantly recognise this as a face, leading to a
huge number of wild theories about Martian civilisations – and even a central plot point
in the film Mission To Mars. However, subsequent missions had a much higher resolution
cameras, demonstrating that the “face” was in fact just a fairly ordinarily mountain that
had been lit from a particular angle when initially observed by Viking.

• Apple received complaints from early iPod users that the shu✏e feature was not (com-
pletely) random. The main “problem” was that it too often played songs by the same artist
– or even the same song – back-to-back. Of course this sort of coincidence should happen
sometimes, and testing revealed that the RNG that Apple was using was not at fault. The

Imperial College London

4 Computational statistics

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y
Figure 2: Two sets of points produced using di↵erent stochastic processes, only one of which is the
canonical algorithm of drawing points independently from the uniform distribution over the unit square.

solution was to actually make the song sequence less random, adding anti-correlations to
decrease the chance of playing songs by the same artist twice in a row (and precluding a
repeat performance of any given song).

• The images in Fig. 2 show two distributions of points produced by di↵erent processes:
one is a set of independent draws from the uniform distribution over the unit square; the
other has correlations included. Which is which? The pattern on the left was generated
by drawing independent positions drawn from the unit square; the pattern on the right
was generated by drawing independent positions from the unit square sequentially but
rejecting any candidate points which had a separation of less than 0.02 from any of the
prior points.

All of the above examples can be converted into numbers (or sequences of numbers), and so it
is worth examining whether the human has the same fallibilities when faced with more abstract
objects, that maybe have less of a link to evolutionary drivers. In other words, can the human
mind accurately assess whether numbers random?

Question: Which of these numbers is random?

• 11111111 [. . .]?
(all ones)

• 31415926 [. . .]?
(first few decimal digits of ⇡)

• 64338327 [. . .]?
(23rd to 30th decimal digits of ⇡)

• 64914401 [. . .]?
(made up by randomly hitting keys)

• 31173451 [. . .]?
(call to runif in R)

Imperial College London

ICIC Data Analysis Workshop 5

Anyone who answered the above questions presumably has some sort of vague algorithm for
assessing randomness in their mind; but in the cases where a number was shown to have some
simple provenance it is possible that your initial answer changed in light of this new information.
For this reason it is debatable that a single number can even be thought of as random in principle
– perhaps it is only meaningful to think of randomness as a (potential) property of a sequence
of numbers, or of the process that can generate such a sequence (or both)?

Question: Which of the following sequences are random?

• 222, 222, 222, 222, 222, 222, 222, 222, [. . .]?
(all twos)

• 979, 323, 846, 264, 338, 279, 502, 884, [. . .]?
(from ⇡)

• 615, 371, 559, 155, 105, 314, 106, 024, [. . .]?
(made up)

• 726, 327, 487, 966, 329, 692, 014, 392, [. . .]?
(output of runif)

It was maybe possible to assess the randomness of these sequences more easily than to assess
individual numbers . . . but the fact that these sequences could also simply be strung together
as longer numbers – just remove the commas above! – implies that distinction between single
numbers and sequences is rather arbitrary, as both can be arbitrarily long.

Reversing this argument then implies that decimal digit is not a fundamental quantity, as it
could itself be represented as a sequence of (four) binary digits. A single binary digit – a bit
that takes on one of just two values – is, however, an indivisible quantity. Given that a bit
is the unit of information, this reinforces the notion that randomness is inextricably linked to
information, something which is of particular relevance to Bayesian inference.

Considering bits – and, by extension, representing numbers in base 2 – makes at least some
questions clearer. It is surely nonsensical – and certainly not very useful – to try and determine
if 1 is random, any more than it is to ask if 0 is random. The process which led to the value of
a certain bit being set might be random, but the value of the bit just is. Thinking in base 2 is
also rather useful for side-stepping the biases and prejudices of the human mind, because most
people seldom think of numbers in base 2 and so do not recognise them nearly so well.

Question: Are these binary sequences random?

• 111111111111111111111111 [. . .]?
(all ones)

• 110010010000111111011010 [. . .]?
(from ⇡)

• 011011100101110111100010 [. . .]?
(natural numbers)

• 001111011100000010110011 [. . .]?
(from www.random.org)

Imperial College London

6 Computational statistics

Objective tests for randomness

The final step in eradicating subjectivity from random number testing is to make the test itself
mathematical. This is a near textbook example of a classical statistical hypothesis test: there
is a sharply defined null hypothesis (i.e., that the sequence being investigated is random) that
makes specific and testable predictions against which any sequence can be compared.

It is possible to show all but decisively that a finite sequence is non-random, although a formal
proof is never possible. To see this, consider a truly random process being used to generate a
sequence of N bits. Each of the 2N sequences, including 0, 0, 0, . . . , 0, 0, 0, is not only possible,
but equally likely. Hence no self-consistent test could give Pr(random) = 0, although a good
test would give Pr(random) ⌧ 1, and Pr(random) ! 0 as N !1.

The majority of tests for randomness are based on summary statistics that i) can be computed
easily from a sequence and ii) have a simply calculated sampling distribution. Examples include:

• the distribution of digits (which generally should be uniform from 1 to N , where N is the
base)

• the distribution of length M sub-sequences (which reduces to the above if the base is
changed to NM)

• the correlation betwen elements of the sequence at di↵erent lags

• the distribution in higher dimensions produced when elements are combined as the com-
ponents of vectors

• lengths of runs of consecutive digits

• just about any other statistic you can think of!

The sampling distributions of these statistics are known under the null hypothesis (i.e., that the
sequence is random), but there is no obvious alternative to compare against. Hence Bayesian
model comparison techniques cannot be applied and instead classical hypothesis tests – based
on the p-value of the test statistic of the sequence being investigated – are typically used.

Question: Come up with a test for randomness yourself. It might help to consider definite
examples of sequences that you would identify as non-random and which you want your test to
successfully identify as such.

Is ⇡ a random number?

Many of these points come together when considering ⇡. It is, fundamentally, a single number,
but can be treated as a sequence of digits, or a sequence of numbers (i.e., sub-sequences of
consecutive digits) as well. Indeed, ⇡ has probably been studied more than any other number in
the context of randomness (and in other contexts, too). These studies revealed many interesting
properties of of ⇡, but they have also revealed much about the di�culties reasoning well about
hypothesis testing.

For instance, Tu and Fischbach (2005) attained some prominence by subjecting the digits of ⇡ to
a series of null tests, which they also applied to sequences produced by RNGs. Unsurprisingly,
there were no decisive rejections of the null hypothesis, but the potential traps in such reasoning

Imperial College London

ICIC Data Analysis Workshop 7

are well illustrated by Ephraim Fischbach, one of the authors of the study, who was quoted1

“Our work showed no correlations or patterns in ⇡’s number set – in short, ⇡ is indeed a good
source of randomness. However, there were times when ⇡’s performance was outdone by the
RNGs.” The second statement seems to contradict the first – how can a sequence be more
random than one in which no patterns were found?

Still, it is interesting that a completely determined mathematical constant can be a good source
of random numbers – this all but contradicts some of the definitions of randomness discussed
above (and that you might have had).

1.3 Random number generation

The above discussion implicitly makes some distinction between a random number and a process
that might be used to generate a random number, with a particular focus on what these ideas
mean. Critical as such questions are, it is far more important that it is possible to generate
(sequences of) numbers that have at least some of the properties of randomness described above.

1.3.1 Deterministic physical systems

Most people used physical systems to generate random numbers with much simpler physical
systems: decks of cards; dice; coins. The tossing of a coin is a particularly interesting example,
as the dynamics of a falling, rotating coin are very simple, and not significantly chaotic at all.
A machine can toss a coin so that it reliably lands the same way, and a person can learn to do
this to some degree as well. Given this, it is perhaps surprising that coin tossing is used as a
way to generate what is e↵ectively a random bit.

Strange as it may seem, there is no requirement that the system used to generate random
numbers even be dynamic. Reasonably random bits could be generated by asking, e.g., whether
a tall building has an even or odd number of floors, or whether a street name has an even or
odd number of consonants. It is plausible that the these will not be 50/50 splits, but they are
random in the sense of being unknown a priori.

1.3.2 Chaotic physical systems

The macroscopic world (i.e., at human sizes and time scales) is very close to being deterministic
– the sheer number of atoms (>⇠ 1020) in any object that a person can manipulate is su�cient
that the law of large numbers means that the quantum mechanical stochasticity of individual
atoms is almost completely averaged out. Newtonian mechanics is su�cient to explain the
movement of an animal, trajectory of a ball, flow of electric current, etc.. Still, some systems,
while being fundamentally deterministic, are so complex that arrangements with almost identical
initial conditions can evolve into very di↵erent states; such systems are chaotic.

An example that has an impact on us every day is the weather and, more broadly, the Earth’s
climate. The di�culty in predicting the weather is generally seen as a di�culty, but every cloud
has a silver lining – in this case it is that the weather can be used as a RNG. This is actually

1

At https://news.uns.purdue.edu/html4ever/2005/050426.Fischbach.pi.html .

Imperial College London

8 Computational statistics

exploited by the web-site www.random.org, which claims2 to be a “true random number service”
that uses “atmospheric fluctuations” to generate random numbers.

Other, simpler systems can also be utilised in this way, as is often done in lotteries. Despite the
fact that the motion of ⇠ 40 balls in a barrel is a tractable problem in mechanics, most people
are happy to accept that balls drawn in this fashion are e↵ectively random. The reason is that
the system is, once again, chaotic – the large number of collisions between the balls means that
the identity of the ball that rolls out of the barrel cannot be predicted without unreasonably
precise knowledge of the balls starting positions.

Such systems can, however be predicted to some degree, a fact that has occasionally been
exploited. In the 1970s a group of students in California realised that the physics of roulette
was su�ciently predictable that some measurements of the ball’s motion on the wheel (at which
time bets can still be placed) was su�cient to predict the quadrant of the wheel in which the ball
would land, greatly stacking the odds in the gambler’s favour. They actually implemented their
scheme with, amongst other things, early microcomputers hidden in their shoes. This particular
story is told in full in The Newtonian Casino, but the broader point is that it can be quite a
serious issue if the outcome of a random number generator can be predicted even partially.

Question: How could you generate random numbers from the objects in this room?

1.3.3 Quantum mechanical systems

Probably the most fundamental source of random numbers is the physical world. Quantum
mechanics, the theory which describes the behaviour of the microscopic world (and in particular
the fundamental particles that make up atoms) is inherently stochastic. Even perfect knowledge
of a system is insu�cient to predict the result of a measurement or observation with certainty.
For example, The half-life of an unstable isotope might be known with absolute precision, but
that cannot be converted into a definite prediction about when a given atom will decay; it is
only possible to predict the probability that it will decay in a given time interval. That does
not mean the theory is untestable – the predictions for the distribution of decay times of a
collection of unstable atoms can be easily verified. But it does mean that the physical world
has a “truly” random aspect to it, in the sense that Pr(t

decay

|information) is never a delta
function for any possible conditioning information. (This lack of predictivity has nothing to
do with measurement errors or imprecsive models; it is, as far as it has been possible to tell,
fundamental to the workings of the Universe.)

1.3.4 Pure mathematics

As alluded to above, random numbers seem to appear regularly in pure mathematics. Constants
such as ⇡, e and

p
2 seem, when written as a sequence of digits (in any base), to be random.

While it has not been proved that this is the case, none of the many attempts to show that it
is not the case have been decisive (or even o↵ered hints that, e.g., ⇡ is not random).

This deeper philosophical aspects of this – whether a constant that is defined by a simple formula
can be “random” – are discussed above; the more pragmatic statement is that there is no known

2

It pays to be skeptical here – the first five random numbers between 1 and 100 it provided were 14, 21, 36,

51, 95. What is the probability that a truly random process would produce an ascending sequence like this?

Imperial College London

ICIC Data Analysis Workshop 9

reason to distrust any numerical result based on using the digits of, e.g., ⇡ as a source of random
numbers.

That is not to say, however, that ⇡ is a good practical source of random numbers. For that
to be true it would have to be possible to calculate sequences of digits from ⇡ with minimal
computations, and to be able to start anywhere in the sequence. (Always having to start with
3, 1, 4, 1, 5, . . ., would mean either repeating calculations precisely or wasting time getting to a
new starting point millions of digits in; this issue is discussed further below.)

1.3.5 Numerical algorithms

The most useful processes for generating random numbers are, of course, numerical algorithms
that can be implemented on a computer, but the fact that (current) computers are deterministic
generally causes some uneasiness about whether it is even possible for a computer to generate
a random number. One apparently compelling argument is that the output of any computer
program is completely determined by the algorithm and the inputs (or, indeed, from the state
of the algorithm at any intermediate point). However useful such algorithms might be, their
results can never “truly” random in the way that quantum mechanical processes can be. Instead
the requirement must be more pragmatic, for instance that any number (mean of a distribution,
etc.) estimated using a RNG should have the same distribution as if it had been evaluated using
truly random sampling.

Many RNGs are based on using modular arithmetic, exploiting the fact that the remainder
obtained when dividing a large number by a smaller number is di�cult to predict. A very
simple example of a RNG, implemented in R, based on this idea is:

Random draw from a uniform distribution (bad implementation)

runif.bad <- function(n, seed = 1) {

Ensure the sequence starts with the seed (on first call only)

or the previous value.

val <- attr(runif.bad, "valprev")

if (is.null(val)) {

val <- seed

}

Psuedo-random calculation using remainders.

vals <- rep(0, times = n)

for (i in 1:length(vals)) {

val <- (val * 32719 + 3) \%\% 32749

vals[[i]] <- val / 32749

}

Store the last value calculated to continue the sequence.

attr(runif.bad, "valprev") <<- val

Imperial College London

10 Computational statistics

return (vals)

}

Samples from the unit square obtained using runif.bad and runif (the native R RNG, described
below) are shown in Fig. 3.

Question: Why is runif.bad bad? How could you demonstrate that it was bad? But why
does runif.bad produce numbers that could even remotely be considered random?

1.3.6 Random number generation in R

Many powerful algorithms have been developed and several are implemented in the standard
distribution of R. These – as implemented in runif – should be always be used as the basis for
your stochastic calculations. The calling syntax is:

> runif(n, min = 0, max = 1)

where n is the number of values to be calculated and min and max are the optional minimum
and maximum values.

Hence

> vals <- runif(10000, 43.6, 237.4)

> print(vals[37])

[1] 130.182971

should produce a vector of 10000 values uniformly distributed between 43.6 and 237.4. The
period of the R RNG is very high (219937 � 1 in default mode) although still, of couse, finite.
(If it were possible to very quickly calculate sequential digits of ⇡ then it would be possible to
generate a non-period sequence of random numbers; however the computational cost of doing
so is too great.)

Run as shown above, runif is repeatable: if a new R session is started (on the same computer,
and possibly on di↵erent computers) the same sequence will be repeated. This can be useful –
if some problem occurs then it is possible to reproduce the results even if there is a nominally
random component to the algorithm – but it could also be a problem, as multiple independent
runs could instead be exact repeats. This issue is dealt with by seeding the RNG, essentially
choosing where to start in the long sequence. (If ⇡ was being used as a source of random numbers
then the equivalent would be choosing the starting digit.) All common RNGs have the option
of setting the seed, although the implementation can be very di↵erent. In R the random number
generator is seeed by using set.seed, the calling syntax of which is:

set.seed(seed, kind = NULL, normal.kind = NULL)

where the important argument is the integer seed. An example of its use is:

Imperial College London

ICIC Data Analysis Workshop 11

> set.seed(43)

> runif(5)

[1] 0.48503768 0.91076604 0.05767389 0.70539841 0.31349510

> runif(5)

[1] 0.54303263 0.67910090 0.50670364 0.18297172 0.87225859

> set.seed(43)

> runif(5)

[1] 0.48503768 0.91076604 0.05767389 0.70539841 0.31349510

It is good practice to record the value of the seed used (e.g., including it in the header of an
output file) and doing this manually is easier than using R’s enquiry functions to do so. The
reason is that the seed is stored (in .Random.seed) as a long vector of integers. Hence:

> seed <- 43

> set.seed(seed)

> print(seed)

[1] 43

is tidier and easier to understand than:

> set.seed(43)

> seedvals <- .Random.seed

> runif(5)

[1] 0.48503768 0.91076604 0.05767389 0.70539841 0.31349510

> runif(5)

[1] 0.54303263 0.67910090 0.50670364 0.18297172 0.87225859

> .Random.seed <- seedvals

> runif(5)

[1] 0.48503768 0.91076604 0.05767389 0.70539841 0.31349510

It would be convenient to have the seed set randomly every time a program is run, so that
the results are independent each time. This requires some external randomizing factor that
is inherently non-computational. One option is to use information from the computer itself,
such as the current time or the process number assigned to the program that is running. An
implementation that combines both these pieces of information is:

> set.seed(as.integer((as.double(Sys.time()) * 1000 + Sys.getpid()) %% 2^31))

> runif[5]

[1] 0.5853403 0.6229182 0.4019968 0.8551930 0.1681481

> set.seed(as.integer((as.double(Sys.time()) * 1000 + Sys.getpid()) %% 2^31))

> runif[5]

[1] 0.7100214 0.8607342 0.6563417 0.3824806 0.5721210

For most practical purposes, runif can e�ciently and reliably produce long sequences of random
numbers (which themselves are sequences of random bits). Making a computer draw from
uniform(0, 1) is hard – and hard to explain in detail. You will not be expected to know in
detail how this is done – the aims of this course are practical. Transforming the output from
uniform(0, 1) is (relatively) easy. So you will be expected to know, understand and be able to
implement the methods for doing so, even though many (e.g., rnorm, rlnorm, rpois, etc..) are
standard functions in R (and other languages/libraries).

Imperial College London

12 Computational statistics

1.4 Uses of random numbers

The ability to do something does not mean that it should be done, and none of the above
discussion of random numbers gives any hint as to why anyone would want to generate random
numbers. It turns out that a good RNG is an incredibly powerful tool, with applications in a
number of fields:

• mathematics (evaluation of integrals; optimization problems; etc..)

• statistics (simulation; parameter estimation in Bayesian inference; etc.)

• physical sciences (modelling of complex systems; testing; etc..)

• crytography (generation of keys; etc.)

• finance/taxation (tax evation; etc.)

• gambling (on-line casinos; security testing; etc.)

Most of these applications are beyond the scope of this course, but a few are key topics; these
are listed in bold above.

Imperial College London

ICIC Data Analysis Workshop 13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 3: Points uniformly sampled from the unit square produced using runif.bad (left) and runif

(right). The di↵erent rows show sample sizes of N = 300 (top row), N = 3000 (middle row) and
N = 30000 (bottom row).

Imperial College London

14 Computational statistics

2 Simulation

2.1 Introduction

Simulation is the very general term for generating a realisation – or many realisations – of the
output from a stochastic process. This can range from simply generating samples from some
specified target density to modelling the formation of structure in the entire Universe from
simple initial conditions. In the latter case the target distribution cannot be written down, and
really cannot even be expressed in any useful form at all – except as simulated draws from a
huge ensemble of possibilities.

In many ways a large set of (preferably uncorrelated) samples from a distribution is operationally
equivalent to the distribution itself – anything that can be calculated from the former can be
estimated from the latter. There is, of course, some error in any estimated quantity, but this
can usually be reduced to the level of practical insignificance by obtaining a su�ciently high
number of samples. In most cases arbitrary precision can be obtained in the limit of infinite
sample size.

Moreover, it is only in a few simple cases (uniform distribution, normal distribution, etc.) that
it is possible to obtain any useful analytic results, and these most often find their use in the
toy problems used to illustrate basic principles in textbooks. In some cases it is reasonable to
approximate real world processes with these standard distributions – analytic results are always
to be preferred if available, not least because they can be verified – but it is not always su�cient
to fall back on this option. Hence there is a great utility in being able to generate samples
from a broad range of distributions, and there is a great need for generic algorithms not only to
generate samples, but also to post-process the samples to calculate quantities of interest.

2.1.1 Post-processing samples

The basic output of all sampling algorithm is the same: a potentially correlated set of N
s

samples
{x

s

} = {x
1

,x
2

, . . . ,x
N

s

} with associated weights {W
s

} = {W
1

, W
2

, . . . ,W
N

s

}, drawn from the
(potentially unnormalised) target density p(x), where x = (x

1

, x
2

, . . . , x
N

p

)T is a point in the
N

p

-dimensional space over which the density is defined. Given these samples and weights, the
distribution is e↵ectively approximated in terms of Dirac delta functions as

p̂(x) =
P

N

s

s=1

W
s

�
D

(x� x

s

)
P

N

s

s=1

W
s

, (1)

where the denominator can be ignored if the weights have been scaled to add to unity. While
most distributions of interest are much smoother than the above sum of delta functions, any
derived quantities of interest are inevitably obtained by some sort of averaging, either over a
small region (in the case of binning) or globally (in the case of an integral quantity). It is really
the values of these derived quantities that can be estimated to high accuracy by sampling the
posterior distribution. The key mathematical point is that if x

i

is drawn from the density p(x),
then

lim
N!1

1
N

N

X

i=1

f(x
i

) =
Z

p(x) f(x) dx. (2)

Imperial College London

ICIC Data Analysis Workshop 15

A list of samples {x
s

} is almost never interpreted or presented directly – the human mind
cannot make much sense of what is essentially just a huge lists of numbers. The closest thing
to any direct presentation of the samples is a scatter plot, although even this is problematic
if the samples have non-uniform weights, as it is di�cult to reflect this fact graphically (and
correlations are even more di�cult to represent). Rather, the uitlity of {x

s

} is that it can be
used to estimate various derived quantities, such as means, covariances, credible intervals, etc.

Mean and (co)variance of a distribution

The natural estimate of the posterior mean of the p’th parameter of a distribution is

x̂
p,mean

=
P

N

s

s=1

W
s

x
p,s

P

N

s

s=1

W
s

, (3)

which could also considered as an estimator of the expectation value, Exp(x
p

). The correspond-
ing covariance matrix has elements which can be estimated as

Ĉ
p,p

0 =
P

N

s

s=1

W
s

(x
p,s

� x̂
p,mean

)(x
p

0
,s

� x̂
p

0
,mean

)
P

N

s

s=1

W
s

. (4)

Highest density credible regions

As the boundary of the highest density credible region depends in part on the probability density,
it is necessary to bin the samples from the posterior in some way, which in turn implies that a
range for each of the parameters must be chosen. A simple, if not completely robust, option is
to use the posterior mean and variance calculated as described above to determine a (hopefully)
inclusive range in each parameter. For the p’th parameter a reasonable range might be given by
x

p,min

= x̂
p,mean

� 5Ĉ
1/2

p,p

and x
p,max

= x̂
p,mean

+ 5Ĉ
1/2

p,p

, where x̂
p,mean

and Ĉ
1/2

p,p

are estimated as
described above.

Ideally, binning would be avoided, and methods such as Delaunay triangulation have been used
to convert a set of samples into a continuous density. The computational cost of such approaches
are, however, considerable, and binning onto a simple one- or two-dimensional grid is the most
common option.

Marginalisation

The marginal distribution of some subset of parameters can be estimated very simply from the
samples {x

s

} by simply truncating the components of each sample that are not of interest. It is

Imperial College London

16 Computational statistics

interesting that such a potentially di�cult analytical problem of calculating a potentially multi-
dimensional integral over a subspace of some distribution, can be achieved almost trivially with
access to a large set of samples. The immediate implication is that sampling is the equivalent
of integration, an idea that will be returned to several times subsequently.

The distribution of derived quantities

If some quantity, y, is a function y(x), of the distribution’s parameters, then its distribution can
be approximated by

q(y) =
P

N

s

s=1

W
s

�
D

[y � y(x
s

)]
P

N

s

s=1

W
s

. (5)

Operationally, this means simply calculating y
s

= y(x
s

) for each of the N
s

samples; these can
then be used to calculate expectation values, etc., using the techniques described above.

Density plot

Simply making a histogram of a set of samples gives a clear picture of the both the underlying
density and the degree to which the sampling process makes this estimate imprecise. Other, more
sophisticated options are possible (e.g., using kernel density estimation), but they inevitably
induce correlations and have an artificially smooth output, which can be misleading.

Correlations

Some simulation methods produce correlated samples from the target density. This is not
necessarily a problem, as the chains can be post-processed correctly if the correlation structure
is known; but the inconvenience and chance of misinterpretation can be considerable.

The standard tool for assessing the degree to which the elements of a chain are non-independent
is the chain’s auto-correlation function. For a one-dimensional chain (or a single parameter of a
multi-dimensional chain) the autocorrelation is defined for lags of � = 0, 1, 2, . . . N � 1 as

Ĉ
�

=
1

N ��

N��

X

i=1

(x
i

� x̂
mean

)(x
i+�

� x̂
mean

)
Ĉ2

, (6)

where µ̂ is the empirical sample mean, evaluated as in Eq. (??) and Ĉ is the empirical sample
variance, evaluated as in Eq. (4) and here it is assumed that the samples are equally weighted.
Clearly Ĉ

0

= 1 by construction, regardless of the correlation structure of the chain; an uncor-
related chain would have Ĉ

�

= 0 on average for all � � 1. For most non-trivial sampling
algorithms (most obviously MCMC), Ĉ

�

will drop from unity to zero for increasing �. The
worst case scenario is that Ĉ

�

is significantly non-zero even as C ! N � 1, implying that all
the samples are highly correlated.

It is possible to obtain (approximately) independent samples by finding a threshold �
min

above
which Ĉ

�

' 0 and producing a new, shorter chain in which only every �
min

’th element is
retained. This process is known as thinning.

Thinned chains are particularly useful for producing diagnostic plots, such as two-parameter
scatter plots of the chain, as any such plots with inter-sample correlations are liable to misin-
terpretation.

Imperial College London

ICIC Data Analysis Workshop 17

E↵ective sample size

A correlated set of samples clearly contains less useful information about the generating distri-
bution than an uncorrelated sample of the same size. In the extreme case that all the samples
are identical even an infinite sample contains no more information than just its first value. It is
clearly important to be able to quantify this idea to assess the utility of a correlated sample.

One approach is to characterise a sample of N values by its “e↵ective sample size”, N
e↵

, defined
to be the size of an uncorrelated sample that encodes the same information. Several definitions
of N

e↵

are in use, but a common and useful choice is to define

N
e↵

=
N

1 + 2
P

�

max

�1

�=1

C
�

(7)

where C
�

is the empirical auto-correlation defined in Eq. (6) above and �
max

is the lowest value
of � for which C

�

< 0. This is motivated by the fact that, as shown by ?, the variance of
any derived estimator scales with the denominator of Eq. (7). The reason for the truncation of
the sum is to avoid the noisy high-lag contributions that yield spurious negative values of C

�

,
although this is only a heuristic recipe.

Thinning

Correlated chains can be used “as is”, but it is often desireable to post-process a set of samples
to produce an (almost) uncorrelated chain by discarding some elements, a process known as
“thinning”. Even though this necessarily involves a loss of information, it is often worthwhile
because the resultant chains have such simple statistical properties.

The degree of thinning required to obtain a reasonably uncorrelated sample can be judged from
auto-correlation structure of a chain as desribed above. A heuristic approach is to identify a lag
scale, �

max

, above which the correlations are su�ciently small to be acceptable, and then to
keep one element in �

max

. The result is a considerably reduced chain of length ⇠ N/�
max

but
that is largely uncorrelated, and so has an e↵ective sample size of ⇠ N/�

max

as well.

Thinned chains are particularly useful for producing diagnostic plots, such as two-parameter
scatter plots of the chain, as any such plots with inter-sample correlations are liable to misin-
terpretation.

2.2 Simulation methods

In the context of this course, simulation is mainly concerned with taking the output of a RNG
(that produces random bits or, more commonly, large random integrers) and producing samples
drawn from a non-uniform target distribution given only its density. In some cases (e.g., the
inverse transform method discussed in Section 2.2.2) this is just a simple transformation that
can be applied directly to the outputs of the RNG; in more complex cases (Section 2.2.3 and
Section 2.2.4) some more exploratory techniques (i.e., involving some “wasted” random numbers)
are needed because the target distribution does not have convenient analytical properities. In
the most extreme cases, in which the broad properties of the target distribution (e.g., its mean
or variance) are not known a priori then the distribution must be explored and characterised as
well as sampled from; this is a su�ciently di↵erent process that it is treated separately.

Imperial College London

18 Computational statistics

Figure 4: The distribution of collision energies measured by the ATLAS detector at the LHC compared
to predictions from highly realistic simulations. Predictions are shown for several di↵erent Higgs boson
masses, one of which corresponds well with the data.

Figure 5: The distribution of dark matter in simulated clusters of galaxies. The plot is close to one
billion light years across (or, at least, the region simulated is).

Another distinct aspect of simulation is that it is possible to generate samples from distributions
even without access to the density. These are often cases in which the notion of “simulation” is
very clearly linked to the more colloquial use of the word outside statistics. Examples include:

• Fig. 4 compares the results from the ATLAS detector at CERN’s Large Hadron Collider
(LHC) to simulations of the expected signal for di↵erent putative Higgs boson masses.
These simulations, which were vital to the recent announcement that the Higgs boson
had been discovered, were incredibly complicated, including models of sub-atomic particle
interactions, detector e�ciencies, background signals, etc., but technically the output was
“just” a set of samples from the fairly benign looking distribution shown by the histogram
in the figure.

• Fig. 5 shows the distribution of dark matter obtained by integrating the coupled di↵er-
ential equations that describe the motion of billions of particles subject to each others’
gravitational pull. Even though this might seem unrelated to statistics, the initial con-

Imperial College London

ICIC Data Analysis Workshop 19

ditions for these simulations are very simple, and the final result is, e↵ectively, a single
sample from a highly complex billion-dimensional distribution.

Question: What is the distribution, Pr(s|N) of nearest neighbour distances, s, between N
points uniformly distributed on the unit square? What about if there is an additional require-
ment that no two points can be within a separation s

min

of each other?

Question: What is the distribution, Pr(x
mean

|2N + 1), of the mean, x
mean

, of 2N + 1 points
x

i

⇠ normal(0, 12)? What is the distribution, Pr(x
median

|2N + 1) of the median, x
median

, of
2N + 1 points x

i

⇠ normal(0, 12)? Assuming these values are noisy measurements of some
quantity, which is the better estimator for true value, x? What if the measurements had instead
been drawn from a student t-distribution of N

dof

= 5?

2.2.1 Transformation methods

Given a set of samples {x
s

} drawn from a density p(x), what distribution will be sampled by
applying the strictly monotonic (and hence bijective) transformation y

s

= y(x
s

)? A sample
between x and x + dx would be mapped into the range between y(x) and y(x + dx) = y(x) +
dy/dxdx, so the transformed density is given by the usual change of variables,

q(y) =
�

�

�

�

dx

dy

�

�

�

�

p[x(y)]. (8)

This result is particularly useful if the starting point is the uniform distribution, which can be
written as

p(u) = uniform(u; 0, 1) = Pr(u|uniform, 0, 1) = ⇥(u) ⇥(1� u), (9)

where ⇥(u) is the Heaviside step function. Applying the transformation x(u) then gives

q(x) =
�

�

�

�

du

dx

�

�

�

�

⇥[u(x)] ⇥[1� u(x)]. (10)

Question: Given a RNG that can produce samples from uniform(0, 1), how would you gener-
ate a sample from uniform(a, b)? How does your answer relate to the above transformation?
The intuitive way to do this is to multiply u by b� a and then add a. This implies a transfor-
mation defined by x(u) = a+(b�a)u, for which u(x) = (x�a)/(b�a) and du/dx = 1/(b�a).

2.2.2 The inverse transform method

The inverse transform method is the most e�cient and precise option for sampling from a
one-dimensional distribution; however it requires the target distribution be i) analytically (or
easily numerically) integrable and ii) that the cumulative distribution can be analytically (or
numerically) inverted. If both of these criteria are met then it is possible to make draw from
the target density by simply transforming a single output from runif.

Given a one-dimensional target density p(x), with associated cumulative distribution P (x) =
R

x

�1 p(x0) dx0, which can be inverted to give x(P), a random sample from p(x) is given by:

Imperial College London

20 Computational statistics

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P(
x)

u

x(u)

Figure 6: Illustration of the inverse transform method.

0 2 4

0.
0

0.
4

0.
8

x

p(
x)

0 2 4

0.
0

0.
4

0.
8

x

P(
x)

0.0 0.4 0.8

0
2

4

P

x(
P)

Figure 7: Illustration of the inverse transform method for a Rayleigh distribution.

1. Draw u ⇠ uniform(0, 1).

2. Calculate x(P) for P = u.

This algorithm can seem somewhat counter-inituitive, but this method is justified by the trans-
formation argument above. Given that transforming u to x(u) gives draws from a distribution
that is proportional to |du/dx|, this implies identifying p(x) with |du/dx| and hence P (x) with
u(x).

The inverse transform algorithm is very simple; the di�culty is in calculating x(P). Still, this
can be done for a number of common distributions, and so the inverse transform method is an
important lower rung in the hierarchy of sampling methods that can be deployed on problems
of practical interest.

Question: Use the inverse transform method to generate samples from the exponential distri-
bution with density p(x) = ⇥(x)/� exp(�x/�)?
The cumulative distribution is P (x) = ⇥(x) [1� exp(x/�)], which can be inverted to give
x(P) = �� log(1� P) . . .

Question: Use the inverse transform method (as illustrated in Fig. 7 to generate samples from
the Rayleigh distribution with density p(r) = Rayleigh(�2) = ⇥(r) r/�2 exp[�r2/(2�2)]. This is

Imperial College London

ICIC Data Analysis Workshop 21

the distribution of the magnitude of a two-dimensional vector comprised of components x and
y which are drawn from normal(0, �2).
The cumulative distribution is P (r) = ⇥(r)[1 � exp(�r2/(2�2)], which can be inverted to give
r(P) = �[�2 log(1� P)]1/2 . . .

2.2.3 The grid method

The grid method is useful if and only if the target density is expensive to evaluate – if not then
other methods should be used, as it is neither particular accurate nor particularly fast. Its only
virtue is that only a small number of evaluations of the target density are needed.

The algorithm for the grid method to obtain a sample from (an approximation to) the one-
dimensional density p(x) is:

1. Identify the range from x
min

to x
max

over which most of the mass of p(x) is distributed.

2. Divide the range into N bins of width �x = (x
max

� x
min

)/N and centred at x
i

=
x

min

+ (i + 1/2) �x.

3. Draw i from {1, 2, . . . , N} with weights W
i

= p(x
i

) using the multinomial method (see
below).

4. Draw x from uniform(x
i

��x/2, x
i

+ �x/2).

Question: How should the initial sampling range be chosen? What fraction of the probability
should lie in this range?

Question: Why are values generated in this way not drawn from p(x)? What density are they
drawn from?
They are drawn from the piece-wise constant distribution that approximates p(x).

Multinomial sampling

A basic workhorse routine that underlies a number of aspects of simulation is to draw an integer,
i, from a set of N weights {W

i

} (all of which must be non-negative, and at least one of which
must be positive). A basic algorithm for doing so is straightforward, although it can easily be
rendered slow if N is large.

There is an e�cient implementation of multinomial sampling in R, available through the sample
function:

Imperial College London

22 Computational statistics

0 2 4 6 8 10

0
1

2
3

4
5

6
7

x

p(
x)

0 2 4 6 8 10

0
1

2
3

4
5

6
7

x

p(
x)

Figure 8: Illustration of the rejection method using a uniform envelope function (left) and a more
e�cient normal envelope function (right).

> sample.int(n, size = n, replace = FALSE, prob = NULL)

As the syntax – particularly the two instances of n – is a little counter-intuitive, its use is best
illustrated by example:

> weights <- c(0.1, 0.9, 0.4, 0.1)

> nsmp <- 30

> sample.int(length(weights), size = nsmp, replace = TRUE, prob = weights)

[1] 2 3 1 3 3 2 2 3 2 2 2 1 4 2 2 2 2 2 2 2 2 2 1 2 3 4 2 3 1 2

Multinomial sampling is particularly useful in sampling from mixture models.

2.2.4 Rejection sampling

Rejection sampling is, in its simplest form, a basic method of generating independent samples
from distributions of compact support and low dimensionality, but it can be extended to broader
classes of distributions if su�cient information about them is available.

Basic rejection sampling

The basic algorithm for generating a single sample from the target density p(x) which has
support only in the range a x b and has a peak density of p

max

is:

1. Draw x
trial

from uniform(a, b).

2. Draw p
trial

from uniform(0, p
max

).

3. If p
trial

 p(x
trial

) then set x = x
trial

; otherwise return to Step 1.

Imperial College London

ICIC Data Analysis Workshop 23

This algorithm is illustrated in Fig. 8. This method can only be used (at least in this form) if
both a and b are finite and if p

max

is known.

Question: Name some common distributions which do not satisfy all of the above require-
ments.

Even if the above criteria are satisfied, rejection sampling is e�cient only for a small class of
distributions which have reasonably uniform support over the relevant range.

Rejection sampling with an envelope function

Rejection sampling would not be of much practical use if subject to the limitations described
above; fortunately, the basic algorithm can be extended to be used to e�ciently generate samples
from densities which are non-zero everywhere and/or are sharply-peaked. The key change is to
adopt an envelope function which is more closely matched to the target density than the uniform
distribution implicitly used above. The envelope function must be related to a normalised density
p
envelope

(x), but multiplied by some constant C > 1 so that C p
envelope

(x) � p(x) for all x.

The algorithm is very similar to the basic rejection sampling algorithm above:

1. Draw x
trial

from p
envelope

(x).

2. Draw p
trial

from uniform[0, Cp
envelope

(x
trial

)].

3. If p
trial

 p(x
trial

) then set x = x
trial

; otherwise return to Step 1.

Question: How can basic rejection sampling be recast in terms of an envelope function?

The “art” here is finding an envelope function that can easily be sampled from and, when
suitably scaled, closely follows the target density.

2.3 Common distributions

A clear clear heirarchy of distributions has developed within computational statistics, with the
uniform distribution at the bottom and essentially arbitrary, problem-specific distributions at
the top. In between are the “common” distributions, such as normal, exponential, Poisson,
etc., although their defining characteristic is not so much that they are genuinely common in
the real world, but that they are mathematically tractable, with analytic densities, cumulative
distributions, quantiles, etc.. Even the most complicated of simulations (e.g., those used at the
Large Hadron Collider to generate mock data-sets under an assumed particle physics model) are
based on the ability to sample from these common distributions. Sampling algorithms for some
(e.g., the normal distribution) have been described above; some other cases are included here;
and algorithms for sampling from many more are decribed elsewhere (and implemented wll in
R).

2.3.1 The normal distribution

The single most important distribution in statistics is the normal distribution. (Why?) An
immediate corrollary is that it vital to be able to draw independent samples from the normal

Imperial College London

24 Computational statistics

distribution e�ciently. Ideally, it would be possible to use the inverse transform method, but
the density

p(x) = normal(x;µ,�2) =
1

(2⇡)1/2�
exp

"

�1
2

✓

x� µ

�

◆

2

#

(11)

is only integrable in terms of the error function as

P (x) =
1
2

1 + erf
✓

x� µ

21/2�

◆�

. (12)

This is not expressable in terms of elementary functions and is not analytically invertible.

Fortunately, a “trick” makes it possible to sample e↵ectively from p(x) = normal(x;µ,�2). The
starting point is to consider two quantities, x and y, both of which are normally distributed.
Treating these as Cartesian coordinates, the quantity r = (x2 + y2)1/2 is then distributed ac-
cording to the Rayleigh distribution considered above and � = arctan(y, x) (defined to behave
like atan2 in R) is uniformly distributed between 0 and 2⇡. Hence an algorithm for e�ciently
drawing a sample from normal(0, 12) is:

1. Draw r from the unit Rayleigh distribution, Rayleigh(12).

2. Draw � from uniform(0, 2⇡).

3. Calculate x = r cos(�) and y = r sin(�), both of which are independent random draws
from normal(0, 12).

Condensing the above leads to the form known as the Box Muller transform, which is more
compact, if less clear. Drawing u

1

and u
2

independently from uniform(0, 1), the quantity

x = µ + �[�2 ln(u
1

)]1/2 cos(2⇡u
2

) (13)

is drawn from normal(µ, �2).

Multivariate normal distribution

To generate a sample x from a multivariate normal distribution with density p(x) = normal(µ,⌃),
where ⌃ is the N ⇥N covariance matrix:

1. Generate a vector y by drawing N components y
i

⇠ normal(0, 1).

2. Apply the linear transform x = µ + Ly, where L is any matrix such that LLT = ⌃. (A
simple option is the Cholesky decomposition, so that L is lower triangular.)

Question: Why is the distribution the same even for di↵erent choices of L?

Question: What are the expectation values hxi and h(x� µ)(x� µ)Ti?

Imperial College London

ICIC Data Analysis Workshop 25

2.3.2 The Poisson distribution

The Poisson distribution,

Pr(n|�) = Poisson(n;�) = ⇥(n)
�n exp(��)

n!
, (14)

gives the probability of n events occurring in an interval, given a rate �. The Poisson distribution
has wide applicability because so many real world processes can be reasonably well modelled as
independent events that occur with a known (or unknown) frequency.

Question: What real world processes can be reasonably well described by the Poisson distri-
bution? In each case try to come up with reasons why it is not perfectly/absolutely Poisson.

In practice, the Poisson distribution can be sampled using the rpois function in R:

> rpois(n, lambda)

But the Poisson distribution is a particularly useful case to illustrate how the di↵erent sampling
techniques described above can be deployed for di↵erent � ranges and combined into an accurate
and e�cient algorithm for sampling from a Poisson distribution.

Question: Use the fact that the periods, T , between successive Poisson events are distributed
as Pr(T |�) = ⇥(T) � exp(��T) to write a routine to sample from Poisson(n;�).
Keep sampling from Pr(t|�), summing the values until the sum is greater than 1; the number of
draws is n. Key point is that if � is the mean number of events in time t then the waiting time
is 1/�. It is a direct simulation of a period of time 1.

Question: In the high-� limit the Poisson probability becomes Pr(n|�) / exp[�1/2(n��)2/�].
Use rejection sampling to sample from the Poisson distribution in this limit.
Use the normal distribution normal(� + 1/2, �) as an envelope function for the continuous dis-
tribution proportional to p(x) = exp[�1/2(dxe � �)2/�] and then take n to be the integer part

Imperial College London

26 Computational statistics

of x.

Imperial College London

ICIC Data Analysis Workshop 27

3 Iterative sampling methods

3.1 Introduction

While the simulation methods described in Section 2 were quite di↵erent from each other –
the most e�cient (e.g., the inverse CDF method) used extensive information about the target
distribution to provide a highly-e�cient simulation algorithm, whereas others (e.g., basic rejec-
tion sampling) assumed very little about the target distribution but were correspondingly slow
– the fact that all these sampling approaches generated independent samples from the target
distribution immediately implies that the first samples drawn (or, equivalently, the first den-
sity evaluations) were not used to refine the algorithm in any way. Independent samples are,
of course, desireable from a statistical point of view, but in general it is impossible to sam-
ple an arbitrary distribution (or, equivalently, a multi-dimensional distribution with unknown
mean, covariance and correlation structure) without using some sort of sampling technique that
“learns” about the distribution and adjusts its sampling scheme accordingly. Such iterative
techniques are the subject of this section.

All the algorithms described below produce samples from an arbitrary multi-dimensional target
density p(x) given only the ability to i) evaluate p(x) and ii) the ability to generate random
numbers. The common feature of these algorithms is that generate a sequence of samples in
which, at each stage, some of the information obtained in generating the previous samples is
used to determine what region of the parameter space to explore subsequently. The result is
that these algorithms, while very powerful and general, produce correlated samples of the target
density that are correlated, non-uniformly weighted or both.

Question: How would you explore a density given only the ability to evaluate the density at
any position? (A useful conceit is to imagine that you are trying to explore a mountain range
in the fog – you cannot see the overall landscape, but can take altitude readings.)

3.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms are a particular popular and commonly-used
family of sampling methods that are almost ubiquitous in, particularly, Bayesian parameter
estimation. The most basic MCMC algorithms are incredibly simple; and, in principle, even
a basic MCMC algorithm can generate samples from an arbitrary distribution, albeit only in
the limit of an infinite number of density evaluations. In practice, MCMC methods are not, of
course, a panacea: great care must be taken to check any results obtained from a finite set of
samples generated using the most sophisticated of MCMC methods.

3.2.1 Markov chains

A Markov chain is an ordered sequence of points {x
s

} = {x
1

,x
2

, . . . ,x
N

s

}, in which the position
of the s’th point, x

s

, depends explicitly only on x

s�1

. The s’th sample hence is drawn from some
distribution of the from Pr(x

s

|x
s�1

), which is independent of x

s�2

,x
s�3

, . . . (and, in principle,
also independent of x

s�1

, although in this case the ordering is arbitrary and so the sample
is not really a chain; none of the MCMC processes considered here have this independence).
As such, Markov chains cannot be the optimal way to explore a distribution, as almost all of
the information obtained from the previous evaluations is disregarded – a hypothetical non-
Markovian algorithm which used the full set of previous evaluations could be considerably more

Imperial College London

28 Computational statistics

e�cient. However, the fact that most elements of a Markov chain are not directly dependent
means that it is easy to understand the stochastic properties of the process and, in particular,
to choose Pr(x

s

|x
s�1

) so that the limiting distribution of the chain is the target density.

Algorithm

There is no general prescription for how to generate or choose the first sample, x

1

, but if an
MCMC algorithm is designed to explore a target distribution then any results calculated from
a su�ciently large set of samples should be independent of the starting point. In practice the
starting point is often chosen at random, with multiple, independent chains run to check that
the final results are indeed robust.

Once the Markov process has been started, the next element of the chain, x

s

, is generated from
the previous point, x

s�1

, by the following procedure:

1. Draw a trial point from the (as yet unspecified) proposal distribution Pr(x
trial

|x
s�1

, trial),
the form of which can be chosen to increase the e�ciency of the algorithm.

2. Accept the trial point with the (as yet unspecified) probability Pr(accept|x
trial

,x
s�1

); for
some MCMC algorithms this is always unity (i.e., the trial point is always accepted).

3. If the trial point is accepted then set x

s

= x

trial

; otherwise set x

s

= x

s�1

.

This process is repeated (at least ⇠ 103 times, and as many as ⇠ 108 times in some applications),
building up a large set of samples. Both Pr(x

trial

|x
s�1

, trial) and Pr(accept|x
trial

,x
s�1

) remain
general at this stage; the inter-related choice of these two functions defines the particular MCMC
algorithm.

This two-step process can also be recast in terms of a single distribution, Pr(x
s

|x
s�1

), which
is given in terms of Pr(x

trial

|x
s�1

, trial) and Pr(accept|x
trial

,x
s�1

) by marginalising over x

trial

.
From the above algorithm the conditional distribution of x

s

is

Pr(x
s

|x
trial

,x
s�1

) = Pr(accept|x
trial

,x
s�1

) �
D

(x
s

� x

trial

)
+[1� Pr(accept|x

trial

,x
s�1

)] �
D

(x
s

� x

s�1

). (15)

Marginalising over the trial position then gives

Pr(x
s

|x
s�1

) =
Z

Pr(x0
trial

|x
s�1

, trial) Pr(x
s

|x0
trial

,x
s�1

) dx

0
trial

= Pr(x
s

|x
s�1

, trial) Pr(accept|x
s

,x
s�1

)

+ �
D

(x
s

� x

s�1

)

1�
Z

Pr(x0|x
s�1

, trial) Pr(accept|x0,x
s�1

) dx

0
�

, (16)

where in the second line the integration parameter has been changed from x

0
trial

to x

0 to em-
phasize the shift away from the idea of a trial point. If the trial point is always accepted then
Pr(accept|x

trial

,x
s�1

) = 1 and so Eq. (16) simplifies to

Pr(x
s

|x
s�1

) = Pr(x
s

|x
s�1

, trial). (17)

Imperial College London

ICIC Data Analysis Workshop 29

As defined to this point, Pr(x
s

|x
s�1

) has no explicit relationship with the target density, p(x),
and a general Markov process would not, in general, produce samples from p(x). Several re-
quirements must be met to ensure that this is the case.

Stationary distribution

The main requirement for MCMC to be useful is that the samples are, at least in the limit of
high s, draws from p(x). If the (s� 1)’th element was drawn from some density p(x) then the
s’th element will, from Eq. (16), be drawn from the distribution

Pr(x
s

) =
Z

p(x0
s�1

) Pr(x
s

|x0
s�1

) dx

0
s�1

=

=

=

= p(x
s

) +
Z

⇥

p(x0) Pr(x
s

|x0, trial) Pr(accept|x
s

,x0) (18)

� p(x
s

) Pr(x0|x
s

, trial) Pr(accept|x0,x
s

)
⇤

dx

0.

Hence the s’th point will be drawn from the target density (and from the same density as the
s’th point) if the above integrand is zero. This criterion will be satisfied if, for any pair of points
x

1

and x

2

,

p(x
1

) Pr(x
2

|x
1

, trial) Pr(accept|x
1

,x
2

) = p(x
2

) Pr(x
1

|x
2

, trial) Pr(accept|x
2

,x
1

). (19)

Rearranging Eq. (19) implies that the proposal and acceptance probabilities must satisfy

Pr(x
2

|x
1

, trial) Pr(accept|x
1

,x
2

)
Pr(x

1

|x
2

, trial) Pr(accept|x
2

,x
1

)
=

p(x
2

)
p(x

1

)
, (20)

which is known as “detailed balance”. Note that, as this relationship is defined in terms of the
density ratio between di↵erent points, there is no need for the target density to be normalised,
which is often a critical practical consideration.

There are several distinct ways in which detailed balance can be satisfied, although not all
options are equally useful:

• If the proposal distribution is taken to be independent of the target density, so that
Pr(x

2

|x
1

, trial) = Pr(x
1

|x
2

, trial), then the acceptance probability must include the neces-
sary dependence on p(x); this approach is used in the Metropolis algorithm (Section 3.2.2).

• For an MCMC algorithm in which moves are always accepted, Pr(accept|x
1

,x
2

) = 1 and
the detailed balance criterion reduces to

Pr(x
2

|x
1

, trial)
Pr(x

1

|x
2

, trial)
=

p(x
2

)
p(x

1

)
.

Imperial College London

30 Computational statistics

Figure 9: Example of a combination of target and proposal distribution that would not result in the
former being correctly sampled.

Figure 10: Trace plot showing how a one-parameter chain moves towards the peak of the target density.

One solution to this is to have Pr(x
2

|x
1

, trial) = Pr(x
2

|trial) / p(x
2

), which is true of
Gibbs sampling (Section 3.2.3).

Exhaustiveness

Detailed balance ensures that pairs of points are sampled with the correct relative frequency,
but there is also the global desideratum that the chain must be capable of exploring the entire
parameter space.

This requirement is certainly satisfied if Pr(x
s

|x
s�1

) is non-zero for all x

s

, whereas if, e.g.,
Pr(x

s

|x
s�1

) / ⇥(r � |x
s

� x

s�1

|) then there would be no way for a chain to move between
di↵erent high-density regions separated by a distance of more than 2r and the chain would not
be exhaustive, as illustrated in Fig. 9. Another problem can arise if Pr(x

s

|x
s�1

) is periodic in
structure – while there might be no bound to the region that could be sampled, certain regions
could never be explored.

These considerations are critical mathematically, and must be satisfied for the process to be
capable in principle of exploring the full distribution. However, they are rarely important in
practice.

Burn-in

Imperial College London

ICIC Data Analysis Workshop 31

If the target distribution is known to be unimodal and the approximate location of the peak
is also known then it is perfectly legitimate – and, indeed, preferable – to start sampling from
that location in parameter space [i.e., if p(x) is known to be unimodal with its peak close to
x̂ then choosing x

1

' x̂ guarantees that this first sample is already a plausible draw from the
target distribution]. If the target density is known (how?) to be unimodal then repeat chains
can be started from the same position; if it is multi-modal then the problem is considerably
more di�cult.

Unfortunately, it is in general not known where the target density is appreciable, but one of
the key attributes of most MCMC algorithms is that they can usually be run with an arbitrary
starting point. The resultant chain will then tend to propagate towards the peak of the density,
a process known as “burn-in”. The only problem is that these first points can be in regions of
parameter space with arbitrarily small densities that would most likely not have been sampled
in a chain of plausible length.

The crude, if e↵ective, solution to this problem is simply to remove these first elements from
the chain, which can be done after sampling is completed. No general rigorous algorithms
for doing this exist, but heuristic options abound. A simpe guide is that any sample which
has an appreciable probability, relative to the peak probability sampled, would have been a
plausible first sample were it possible to draw directly from the target distribution. Under the
assumption that the chain has eventually reached the region(s) of high probability the samples
that are generated after it has first reached this high density region are acceptable.

One useful visual diagnostic is a trace plot, in which the value of one parameter is plotted against
sample number, as shown in Fig. 10.

Convergence tests

MCMC algorithms could be run indefinitely – there is no universal stopping criterion. In most
cases the errors on any estimates (e.g., of means, covariances, etc.) vary with the number of
samples as N

s

�1/2, although the scaling of this convergence depends on the degree of correlation
in the chain (and hence on both the precise sampling algorithm and the nature of the target
distribution).

One key idea is that multiple independent chains should converge on the same stationary dis-
tribution, and so any quantities derived from di↵erent chains should be consistent with being
drawn from the same distribution. If multiple chains exhibit significant di↵erences then it is
likely that the target distribution has not been sampled well; but passing such a test is not a
guarantee that the sampling has been e↵ective.

Gelman, A. and Rubin, D. B. (1992) devised a heuristic convergence test based on this principle
that just uses the sample means and variances of the marginal distributions of independent chains
(that have been pruned of pre-burn-in elements). The test can be applied to each parameter
independently, so without loss of generality a single-parameter model is considered here for
simplicity. Assuming that N

c

chains of (equal) length N
s

, with elements {x
c,s

} (where c 2
{1, 2, . . . , N

c

} and s 2 {1, 2, . . . , N
s

}), have been generated, the test is peformed by:

1. Calculate the mean of each chain:

x̄
c

=
1
N

s

N

s

X

s=1

x
c,s

.

Imperial College London

32 Computational statistics

2. Calculate the variance of each chain:

�2

c

=
1

N
s

� 1

N

s

X

s=1

(x
c,s

� x̄
c

)2.

3. Calculate the mean of all the chains (i.e., the best combined estimate for the mean of the
distribution):

x̄ =
1

N
c

N

c

X

c=1

1
N

s

N

s

X

s=1

x
c,s

=
1

N
c

N

c

X

c=1

x̄
c

.

4. Calculate the average of the individual chains’ variances:

�2

chain

=
1

N
c

N

c

X

i=1

�2

c

.

5. Calculate the (empirical) variance of the chains’ means:

�2

mean

=
1

N
c

N

c

X

c=1

(x̄
c

� x̄)2.

6. Calculate the ratio

R̂ =
N

c

�1

N

c

�2

chain

+ 1

N

c

�2

mean

�2

chain

and use this to assess convergence. If the chains are well mixed and have all sampled the
target distribution then �2

chain

' �2

mean

and R̂ ' 1, whereas if the chains have sampled
di↵erent parts of the target distribution then their individual variances will be less than the
variance between the estimates of the chains and R̂ > 1. The common heuristic approach
is to regard the chains as converged if R̂ <⇠ 1.2.

Question: Generate multiple realistiations of N
c

= 4 chains of N
s

= 104 samples from
normal(0, 12) using rnorm and calculate sampling distribution of the Gelman-Rubin convergence
statistic. Does R̂ = 1.2 seem like an appropriate rejection criterion? What is the chance that it
would falsely reject a fully converged set of 4 chains of 104 elements?

3.2.2 The Metropolis(-Hastings) algorithm

The Metropolis(-Hastings) (MH) algorithm is probably the most commonly used variety of
MCMC, as it is simple, intuitive and (with some refinements) e↵ective on a wide variety of
problems. MH sampling algorithms are e↵ectively a guided random walk that preferentially
samples from the high-probability regions while exploring the full range of possibilities.

Algorithm

The MH algorithm is a two-step process for generating each link in the chain. Given a previous
point x

s�1

, the next point is obtained by:

Imperial College London

ICIC Data Analysis Workshop 33

1. Draw a trial point from the proposal distribution Pr(x
trial

|x
s�1

), the form of which can
be chosen to increase the e�ciency of the algorithm.

2. Accept the trial point with probability

Pr(accept|x
trial

,x
s�1

) = min

p(x
trial

)
p(x

s�1

)
, 1

�

= min
n

eln[p(x

trial

)]�ln[p(xs�1

)], 1
o

,

which is unity if the trial point is more probable than the previous point, but is only
zero if p(x

trial

) = 0. The second expression, which depends only on the di↵erence of the
logarithms of the density at the two points, is useful in cases where the density itself
is di�cult to represent using whatever precision is available computationally. It is also
implicit here that ln(0) is, while technically undefined, less than ln(x) if x > 0.

3. If the trial point is accepted then set x

s

= x

trial

; otherwise set x

s

= x

s�1

.

This last step is critical to the algorithm: a MH chain must inevitably include sequences in
which the trail point is rejected, resulting in x

s

= x

s+1

= x

s+2

= . . .; if the chain does not
include such sequences it is almost certainly not sampling the target distribution e↵ectively.

Stationary distribution

Independent of the form of Pr(x
trial

|x
s�1

), the MH algorithm satisfies Eq. (20) and so its sta-
tionary distribution will be p(x). The fact that this can be demonstrated so simply is a key to
the utility of the MH algorithm.

Question: A particularly intuitive way of understanding the detailed balance of the MH
algorithm is to consider the case of the simple target density

p(x) = f
1

�
D

(x
A

) + (1� f
1

)�
D

(x
B

),

with 0 < f
A

< 1. Provided the trial distribution is su�ciently broad that transitions between
the two points can occur [i.e., Pr(x

2

|x
1

, trial) > 0], the geometrical aspect of the situation is
irrelevant; the key point is simply that the chain can exist in one of two states, A and B, with
ssociated occupation probabilities f

A

and 1 � f
A

. The sampling algorithm is then defined in
terms of the transition probabilities, Pr(A|A) = 1 � Pr(B|A), Pr(A|B) = 1 � Pr(B|B). If the
chain is in state A at one step, what is the probability that it will be in state A on the next
step? If the probability that the chain is in state A on the previous step is f

A

(as desired), what
is the probability that it is in state A on the next step? How does this determine the values of
the transition probabilities?
The probability of being in state A in the next turn is f

A

Pr(A|A) + (1� f
A

) Pr(A|B). But this
should equal f

A

. Applying this criterion and utilising the fact that Pr(A|A) = 1�Pr(B|A) then
yields

Pr(B|A)
Pr(A|B)

=
1� f

A

f
A

.

Proposal distribution

The one aspect of the MH algorithm that can be tuned is the proposal distribution. While most
combinations of proposal and target distributions will result in full sampling in the limit of infi-
nite samples, there is a clear motivation for the Markov chain to explore the target distribution

Imperial College London

34 Computational statistics

as e�ciently as possible. That the proposal distribution can be tuned to do this can be seen
easily by considering two extreme cases.

If the proposal distribution is very concentrated relative to the scales on which the target density
varies then p(x

trial

) ' p(x) for all proposed points x

trial

. The acceptance probability is then
Pr(accept|x

trial

,x) ' 1, and almost all jumps are accepted; but the result is that the distribution
is explored very slowly. (An analogy would be an adventurer trying to explore a mountain range
by taking steps of a few millimetres.)

The other extreme is that the proposal distribution is much broader than region of parame-
ter space for which the density is appreciable. If x

s�1

is in a region of high density (as it
will tend to be) then the odds are that x

trial

will be outside the high density region and so
Pr(accept|x

trial

,x) ' 0, and almost all jumps will be rejected. The resultant chain would just
contain many copies of the current position until a jump was eventually accepted. The final
chain would then contain very few independent points and the exploration of the target dis-
tribution would be very ine�cient. (An analogy would be an adventurer trying to explore a
mountain range by taking steps of millions of kilometres.)

Given that proposal distributions can be too narrow or too broad, the implication is that there is
a range of intermediate values that are well suited to the target distribution. The most e�cient
sampling occurs if the acceptance ratio is in the range from ⇠ 20% to ⇠ 40%, although these
figures are distribution-dependent. More to the point, these values are only concerned with the
e�ciency of the sampling scheme – even an acceptance ratio of a ⇠ 5% or ⇠ 90% will produce
a useful set of samples run for long enough. (And a large set of highly-correlated samples can
be made less unwieldy by thinning, as described above.)

The most commonly used proposal distribution is a multi-variate normal, so that

Pr(x
trial

|x
s�1

) = normal(x
trial

;x
s�1

,⌃)

=
1

[(2⇡)N |⌃|]1/2

exp

�1
2
(x

trial

� x

s�1

)T⌃�1(x
trial

� x

s�1

)
�

, (21)

where ⌃ is the covariance matrix. Samples from this distribution can be drawn using the
algorithm given in Section 2.3.1.

In the absence of any information about the structure of p(x), there is no reason to prefer
correlations between parameters, in which case the covariance matrix is diagonal, so that C

p,p

0 =
�
p,p

0⌃
p,p

) and the trial point can be generated component by component by using x
trial,p

⇠
normal(x

trial,p

;x
s�1,p

,⌃
p,p

), for p = 1, 2, . . . , N
p

.

One way of learning about the distribution is by from the initial samples drawn; if the “guessed”
proposal distribution is ine�cient then the sampling will not be very e↵ective, but will still
provide some information about the range of the high-probability region in each parameter
(and about the correlations). A reasonable choice is then to use the covariance matrix of the
chain, calculated using Eq. (4) for the proposal distribution. Note, however, that if the proposal
distribution is updated in this manner then the chain must be started from scratch – combining
samples produced using di↵erent proposal distributions does not necessarily satisfy detailed
balance.

Even if the parameters are not strongly correlated, some information is required to set sensible
scales for the “width” of the proposal in each of the coordinates. A proposal of normal(0, 12)
could be quite useless even if just the units of the parameter in question are extreme. As with

Imperial College London

ICIC Data Analysis Workshop 35

0 5000 15000 25000

−3
−2

−1
0

1

sample, s

x

0 500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

sample, s

x

0.0 0.5 1.0 1.5

0
20

40
60

80
10
0

x

nu
m
be
r

0 5000 15000 25000

−1
.0

−0
.5

0.
0

0.
5

1.
0

lag, delta

C
_d

el
ta

0 500 1000 1500 2000 2500

−1
.0

−0
.5

0.
0

0.
5

1.
0

lag, delta

C
_d

el
ta

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

un
no

rm
al

is
ed

 d
en

si
ty,

 p
(x

)
Figure 11: Worked example of the MH algorithm. The trace plot and auto-correlation function are
shown in (a) and (b) before any post-processing and in (c) and (d) after the burn-in points have been
removed and the chain has been thinned. The resultant histogram is shown in (e), which can be compared
to the (normalised) target density in (f).

most problems in computational statistics, some “external” information is needed in order to
produce a practical algorithm.

Worked example

Consider the task of generating samples from the (unnormalised) univariate density

p(x) / exp
"

�1
2

✓

x� 0.3
0.1

◆

2

#

+ ⇥(x) exp
✓

� x

0.2

◆

+ ⇥(x� 0.8) ⇥(0.9� x), (22)

where ⇥(x) is the Heaviside step function.

Several options are available:

• The three components of this density are all analytically integrable and could be sampled
from separately. This would be very quick computationally, but would require some algebra
and coding. It would also not be easily extendable to even very similar distributions if,
e.g., one of the components was replace by a non-analytic funtion.

• Rejection sampling would be plausible, although some work would be required to ensure
that a suitable envelope function was found.

Imperial College London

36 Computational statistics

• Running MCMC using the MH algorithm is plausible. If a normal proposal distribu-
tion was used then there would be only one parameter (i.e., the width of the proposal
distribution) to tune, although a number of convergence checks would be needed.

What if the actual form of p(x) was not known? Imagine instead that the density is a “black
box” routine that returns the density for any supplied value of x. In this case no analytic
techniques could be used to generate samples from p(x); it would also be impossible to use
rejection sampling as there would be no way to come up with an envelope function. MCMC –
and MH in particular – can be used, however, as these methods require only minimal “prior”
information about the density from which samples are required.

Some inputs are required, though: a starting value; and a proposal distribution. Here a starting
value is arbitrarily chosen to be in the interval �100 x 100 and the proposal distribution is
taken to be the unit normal distribution centred on the previous point, i.e., Pr(x

s

|x
s�1

, trial) =
normal(x

s

;x
s�1

, 12). While these are arbitrary choices, they will eventually result in samples
from p(x); the only question is whether they will do so in a useful number of iterations.

The MH algorithm was run for N
s

= 30, 000 steps, yielding a chain with 6, 063 unique values,
implying an acceptance ratio of ⇠ 0.2. These will not, in general, be independent samples
from the target density: there will be a burn-in phase that means the first samples are not
representative; and the samples will be correlated, so that the e↵ective sample size is less than
N

s

. These issues can be at least partially assessed graphically.

The most basic graphical diagnostic is a trace plot, which simply shows x
s

vs. sample number
s. This is shown in Fig. 11 (a), and shows both an initial burn-in period, followed by apparently
stationary sampling of the target density. The heuristic burn-in cut-o↵ of defined by finding the
first sample for which p(x

s

) � 0.1p
max

appears to provide a sensible cut-o↵; all the samples after
this are regarded as being drawn from p(x).

It is, however, clear from the trace plot that the samples are correlated. This can be seen more
clearly in an auto-correlation plot, in which C

�

vs. lag � is plotted, as in Fig. 11(b). The
correlated chain could be used as is, but in a simple setting like this (i.e., in which large samples
can be generated with minimal computational e↵ort) it is a useful simplifying step to thin
the chain to produce a smaller set of (almost) independent samples. Here the auto-correlation
function goes to zero for lags of � >⇠ 10, suggesting the chain be thinned by this amount.

The trace plot and auto-correlation function of the thinned post-burn-in chain is shown in Fig. 11
(c) and (d), respectively. These plots are now very uninteresting – but this is the desired state,
as this is the way such plots would appear if it had been possible to draw independent samples
from the target distribution in the first place.

These checks do not, however, demonstrate that the sampling procedure has explored the full
density – if there were multiple, well-separated peaks then this might have only found one.
Repeating this process for 10 separate chains and evaluating the Gelman-Rubin convergence
statistic does confirm that this is the case.

Question: How would the situation be changed if the density was q(x) = p(x) + exp[�(x �
10100)2/2] instead?

Having run these diagnostic checks, it is then reasonable to examine the chains to see what they
imply about the distribution. For a univariate distribution like this, almost all the available
information is captured in a simple histogram, as shown in Fig. 11 (e). In this case it is possible

Imperial College London

ICIC Data Analysis Workshop 37

to compare the results to a direct plot of the (normalised) density, something that is not possible
in higher-dimensional settings. (If it is possible to make a plot of the distribution directly then
the grid of values used to do so is probably more useful than a set of samples, and any subsequent
calculations should make use of this.)

Question: What would have happened if the proposal distribution was taken to be Pr(x
s

|x
s�1

, trial) =
normal(x

s

;x
s�1

, 1002)? Or Pr(x
s

|x
s�1

, trial) = normal(x
s

;x
s�1

, 0.012)?

3.2.3 Gibbs sampling

A very di↵erent form of MCMC is provided by Gibbs sampling, in which only a single parameter
is explored in any one step. This is useful if (all) the conditional distributions of the target
distribution are known and can be sampled from easily. As such, Gibbs sampling is particularly
useful for sampling distributions of high dimensionality in which most of the paramters are not
directly linked, as is often the case for heirarchical models. It is hence useful to notate the target
density p(x) as a probability distribution Pr(x) = Pr(x

1

, x
2

, . . . , x
N

p

), so that the conditional
distribution of the i’th can be denoted as Pr(x

i

|x
1

, x
2

, . . . , x
i�1

, x
i+1

, . . . , x
N

p

�1

, x
N

p

)

Algorithm

Given an initial position x

1

= (x
1,1

, x
2,1

, . . . , x
N

p

,1

), standard Gibbs sampling involves drawing
from each conditional distribution successively, according to

x
1,2

⇠ Pr(x
1

|x
2,1

, x
3,1

, . . . , x
N

p

�1,1

, x
N

p

,1

),
x

2,2

⇠ Pr(x
2

|x
1,2

, x
3,1

, . . . , x
N

p

�1,1

, x
N

p

,1

),
...

x
N

p

�1,2

⇠ Pr(x
N

p

�1

|x
1,2

, x
2,2

, . . . , x
N

p

�1,1

),
x

N

p

,2

⇠ Pr(x
N

p

|x
1,2

, x
2,2

, . . . , x
N

p

�1,2

, x
N

p

�1,2

),

where, in each case, the latest value for all the parameters (other than that being sampled) is
used. The sequence then repeats, with a new value obtained that is conditional on the updated
values of all the other parameters.

Hence this sequence of draws yields N
p

new samples

x

1

= (x
1,2

, x
2,1

, . . . , x
N

p

�1,1

, x
N

p

,1

),
x

2

= (x
1,2

, x
2,2

, . . . , x
N

p

�1,1

, x
N

p

,1

),
...

x

N

p

�1

= (x
1,2

, x
2,2

, . . . , x
N

p

�1,2

, x
N

p

,1

),
x

N

p

= (x
1,2

, x
2,2

, . . . , x
N

p

�1,2

, x
N

p

,2

),

where some care must be taken with the indexing. Clearly, successive samples are correlated,
and one option is to only retain the N

p

’th sample (i.e., after a full cycle); however x

s+N

p

is not

independent of x

s

, despite the fact that every parameter has been explored.

Exhaustiveness

Imperial College London

38 Computational statistics

There are certain classes of distribution that Gibbs sampling can never fully explore, most
obviously those with separate peaks that are not aligned in any of the sampling parameters.
Whereas the MH algorithm will, with a proposal distribution of broad support, eventually sample
from an arbitrary distribution, Gibbs sampling has no equivalent of the proposal distribution
that can be adjusted.

Stationarity

The stationary distribution of can be most easily seen in the simple case of a two-dimensional
density for which x = (x, y). Assuming the s’th sample to be the result of a “move” in the
x-direction, it is distributed according to

x
s

⇠ Pr(x
s

, |y
s�1

) (23)

and

y
s

⇠ �
D

(y
s

� y
s�1

). (24)

But if (x
s�1

, y
s�1

) is itself already a draw from p(x, y) then y
s

is drawn from the target density
by construction, and x

s

is sampled from the correct conditional distribution. Hence Gibbs
sampling will produce (correlated) draws from the target distribution, but whereas a single
MH step locally explores all the parameters simultaneously, a Gibbs sampling step explores one
parameter globally.

Question: Consider the two-dimensional target density

p(x) = f
A

�
D

(x� x

A

) + f
B

�
D

(x� x

B

) + f
C

�
D

(x� x

C

) + f
D

�
D

(x� x

D

), (25)

where f
A

+ f
B

+ f
C

+ f
D

= 1, and the points are aligned according to: x
A

= x
C

and y
A

= y
B

;
x

B

= x
D

and y
B

= y
A

; x
C

= x
A

and y
C

= y
D

; and x
D

= x
B

and y
D

= y
B

. What is the
probability that x

s

= x

A

, given that x

s�2

is drawn from the target density?
This is given by

Pr(x
s

= x

A

) =
X

p2{A,B,C,D}
Pr(x

s�2

= x

p

) Pr(x
s

= x

A

|x
s�2

= x

p

)

= f
A

f
A

f
A

+ f
B

f
A

f
A

+ f
C

(A ! A ! A)

+ f
B

f
A

f
A

+ f
B

f
A

f
A

+ f
C

(B ! A ! A)

+ f
C

f
C

f
C

+ f
D

f
A

f
A

+ f
C

(C ! C ! A)

+ f
D

f
C

f
C

+ f
D

f
A

f
A

+ f
C

(D ! C ! A)

= f
A

,

as requried.

Utility

Imperial College London

ICIC Data Analysis Workshop 39

Figure 12: Illustration of the nested sampling scheme in two dimensions.

The most common use for Gibbs sampling is to explore a heirarchical model, which can have a
large number of parameters (e.g., hundreds or more, making MH sampling hopelessly ine↵ecient),
most of which are not directly linked to each other. In that case it is usually much easier to
make draws from the simple(r) conditional distributions than from the joint distribution.

Question: Consider a survey of students’ heights in which the data consist of the measuremed
(i.e., noisy) heights of all N ' 30 students in the class, {ĥ

i

}, and the aim is to determine the
posterior distribution of the model parameters: the students’ N true heights, {h

i

}, and the
population mean, H, and variance, ⌃2. Assuming that the measurement process gives sampling
distributions ĥ

i

⇠ normal(h
i

, �2

i

) and that the population itself is defined by h ⇠ normal(H,⌃2),
what are the conditional distributions for the h

i

, H and ⌃? How could these be used to generate
samples from the full posterior distribution Pr({h

i

}, H, ⌃|{ĥ
i

, �
i

})? How could these samples
then be used to estimate the height of the i’th student?

3.2.4 Metropolis-within-Gibbs sampling

It is generally possible to combine MH and Gibbs sampling if neither algorithm is itself suitable
for the entire sampling problem. If one (or more) of the conditionals is not a standard distribu-
tion then that parameter can be sampled using a univariate MH draw. The optimal approach
is essentially completely problem-specific; the key point is to be aware that such options are
available.

Imperial College London

40 Computational statistics

Figure 13: Weight vs. sample number for a typical nested sampling run.

3.3 Nested sampling

Nested sampling (Skilling, 2004) is a relatively new algorithm that increasingly is being used
in astronomy and cosmology, in part due to the availability of the MultiNest code (Feroz
et al., 2009). Unlike MCMC methods, nested sampling produces independent samples from
the target density. The samples are not uniformly weighted, however, which is a something
of a disadvantage (or at least an inconvenience). That said, MCMC algorithms which have a
accept/reject step (e.g., MH) e↵ectively produce non-uniformly weighted samples as well; the
only di↵erence is that the weights are integers. The most important distinction between the
output of nested sampling and MCMC methods is that it also provides an estimate of the
normalisation integral of the distribution.

Algorithm

Given a density p(x) that is only non-zero over some region R ⇢ Rn (and where x 2 Rn), nested
sampling (which is illustrated schematically in Fig. 12) proceeds as follows:

1. Set the sample counter to i = 1.

2. Choose a number of live points, N , usually in the range 100-1000, which will determine
the accuracy of the algorithm.

3. Distribute the live points uniformly within R and evaluate p
j

= p(x
j

) for j 2 {1, 2, . . . , N}.

4. Select the point with the lowest value of p
j

and assign this as the i’th sample (i.e., x

i

= x

j

and p
i

= p
j

) with weight W
i

= e�i/Np
i

.

5. Replace the above point with a new point x

i,new

such that p(x
i,new

) > p
i

(i.e., the new
point must have a higher density than the old point which was just discarded).

6. Repeat steps 4 and 5 until the weights of the new points are much less (e.g., <⇠ 10�3) of
the sum of the weights of the previous points that their contribution will be minimal.

7. Add the remaining all N “surviving” live points to the list of samples, assigning them
equal weight W

i

= e�j/Np
i

, leaving an eventual total of j + N samples.

Nested sampling produces a set of di↵erently-weighted but independent samples from the target
density. As such it is quite di↵erent from MCMC algorithms, which all produce correlated

Imperial College London

ICIC Data Analysis Workshop 41

samples. Another important di↵erence is that the need to create the initial sample of live points
means that it cannot, at least in this simple form, sample a distribution with infinitely broad
support. This limitation can be overcome by mapping Rn to some finite volume.

The most important distinctive feature of nested sampling is that the generation of a new point
x with p(x) becomes increasingly di�cult/ine�cieint as the algorithm explores ever smaller
regions of ever greater densities. One option for doing this e�ciently is to always sample from
an ellipsoid that contains all the other suriving live points, but there is no formal guarantee
that this ellipsoid will bound all the regions with densities above the current threshold. For
the generally reasonably compact densities that arise in practical numerical problems numerical
tests have shown that this approach is a good approximation, but no general proof is possible.

In terms of the output of the algorithm it is the weights of the samples that is critical to their
interpretation. The first samples have low weights because the density is low (assuming that the
initial sampling volume is large enough to include regions of low density) and the final samples
have low weights because of the exponential factor; hence it is the intermediate samples which
determine how e↵ectively the density has been sampled. This weight profile is illustrated in
Fig. 13.

Imperial College London

42 Computational statistics

References

Feroz, F., Hobson, M. P., and Bridges, M. (2009). MULTINEST: an e�cient and robust Bayesian
inference tool for cosmology and particle physics. Monthly Notices of the Royal Astronomical

Society , 398, 1601–1614.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statistical Science, 7, 457–511.

Skilling, J. (2004). Nested sampling. In AIP Conference Proceedings of the 24th International

Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering ,
volume 735 of Lecture Notes in Physics, Berlin Springer Verlag , pages 395–405.

Tu, S.-J. and Fischbach, A. (2005). A study on the randomness of pi. International Journal of

Modern Physics, 16, 281–294.

Imperial College London

