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1 Cosmology with Supernovae Ia

The aim of this exercise is to write an MCMC code to estimate cosmological parameters from supernova
Ia data. Supernova Ia are standard candles (or can be made so), so can be used to measure the contents
of the Universe.

2 Theory and parameters

The flux from a supernova of luminosity L is given by

f =
L

4πD2
L

where DL is the Luminosity Distance. In Big Bang cosmology it is given by

DL =
(1 + z)c

H0

√
|1− Ω|

Sk(r),

where

r(z) =
√
|1− Ω|

∫ z

0

dz′√
Ωm(1 + z′)3 + Ωv + (1− Ω)(1 + z′)2

.

and Sk(r) = sin r, r, sinh r, depending on whether Ω ≡ Ωm + Ωv is > 1,= 1, or < 1, and z is the
observed redshift of the supernova. Ωm,Ωv and H0 are the density parameters (today) in matter,
vacuum energy, and the Hubble constant. It is beyond the scope of these notes to derive this, but it
is standard material for an undergraduate cosmology course.

For a flat Universe (Ω = 1), this simplifies to

DL(z) = 3000h−1(1 + z)
∫ z

0

dz′√
Ωm(1 + z′)3 + 1− Ωm

Mpc,

where H0 = 100hkm s−1 Mpc−1. To avoid evaluating integrals to calculate DL, we can use an accurate
fitting formula (valid for flat universes only), given by U.-L. Pen, ApJS, 120:4950, 1999:

DL(z) =
c

H0
(1 + z)

[
η(1,Ω0)− η

(
1

1 + z
,Ω0

)]
where

η(a,Ω0) = 2
√
s3 + 1

[
1
a4
− 0.1540

s

a3
+ 0.4304

s2

a2
+ 0.19097

s3

a
+ 0.066941s4

]−1/8

and s3 ≡ (1− Ω0)/Ω0. This is claimed to be accurate to better than 0.4% for 0.2 ≤ Ω0 ≤ 1.
Fluxes are usually expressed in magnitudes, where m = −2.5 log10 F+constant. The distance

modulus is µ = m−M , where M is the absolute magnitude, which is the value of m if the source is
at a distance 10pc. With DL in Mpc1, this is

µ = 25− 5 log10 h+ 5 log10

(
D∗L
Mpc

)
1There is a simplification in the exercise here; we assume we know what the absolute magnitude (or luminosity) of

type I supernovae are, but in fact unless we have supernovae with known distances, we don’t. In fact M and h are
degenerate, since M is set from low-redshift supernovae where we assume Hubble’s law to give us the distance. For the
purpose of this exercise, we will cheat.
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The Hubble constant has been factored out of DL: D∗L ≡ DL(h = 1).
If we have measurements of µ, then we can use Bayesian arguments to estimate the parameters

Ωm,Ωv, h. For anyone unfamiliar with cosmology, these numbers are somewhere between 0 and 1.

3 Data

The data file (from the Riess et al 2007 ‘gold’ sample) consists of measurements of the redshift (assumed
precisely accurate), and a distance modulus µi, with associated measurement errors σi. The sample
file (SN.dat) contains one header line and there are n = 291 supernovae in total, with z < 1.8.

SN z mu sigma quality
SN90O 0.030 35.90 0.21 Gold
SN90T 0.040 36.38 0.20 Gold
SN90af 0.050 36.84 0.22 Gold
. . .

Plot these data on a graph.

4 Exercise

Write an MCMC code to estimate h and Ωm from the supernova dataset, assuming the Universe is
flat and the errors are gaussian, i.e. assume that the likelihood is

L ∝ exp

[
−1

2

n∑
i=1

(µi − µth(zi))2

σ2
i

]

where µth is the theoretical value of the distance modulus, for which you will need to compute the
integral for D∗L numerically, using the fitting formula for a flat universe.

• For the errors, assume there is an intrinsic scatter of 0.1 mag in the supernova luminosity, which
should be added in quadrature to the errors in the table.

• Assume uniform priors on the parameters (so you estimate the likelihood)

• You might like to start with a very simple ‘top-hat’ proposal distribution, where the new point
is selected from a rectangular region centred on the old point. For this you will need a simple
random number generator.

• Explore visually the chain when you have (a) a very small proposal distribution, and (b) a very
large proposal distribution, for a maximum of 1000 trials. What do you conclude?

• Show how the acceptance probability changes as you change the size of the proposal distribution.

• Once you have settled on a ‘reasonable’ proposal distribution, compute the average value of the
parameter estimates under the posterior distribution, and their variances and covariance.

• Optionally, generalise to non-flat Universes and include Ωv as an independent parameter.

4.1 Tips

If you are estimating h, Ωm and Ωv, you can precalculate DL for h = 1 as a function of Ωm and Ωv,
and do a bilinear interpolation when you are running the chains (and divide by h). This will be much
faster than computing DL every time you change parameters.
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5 Extensions

• Write and apply a Gelman-Rubin convergence test, and deduce roughly how long the chains
should be for convergence.

• Extend to perform Hamiltonian Monte Carlo. You might like to try to compare the performance
of MCMC and HMC; you will need to decide what the right criterion is.

For HMC, the algorithm is (from Hajian 2006):

Hamiltonian Monte Carlo
1: initialize x(0)

2: for i = 1 to Nsamples

3: u ∼ N (0, 1) (Normal distribution)
4: (x∗(0),u

∗
(0)) = (x(i−1),u)

5: for j = 1 to N
6: make a leapfrog move: (x∗(j−1),u

∗
(j−1))→ (x∗(j),u

∗
(j))

7: end for
8: (x∗,u∗) = (x(N),u(N))
9: draw α ∼ Uniform(0,1)
10: if α < min{1, e−(H(x∗,u∗)−H(x,u))}
11: x(i) = x∗

12: else
13: x(i) = x(i−1)

14: end for

H = − lnL + K, where K = u · u/2. Approximate U by a bivariate gaussian with covariances
estimated from the MCMC code:

U =
1
2

(θ − θ0)αC−1
αβ (θ − θ0)β.

You can evolve the system with a näıve Euler method, or use the leapfrog algorithm:

ui

(
t+

ε

2

)
= ui(t)−

ε

2

(
∂U

∂xi

)
x(t)

(1)

xi(t+ ε) = xi(t) + εui

(
t+

ε

2

)
ui(t+ ε) = ui

(
t+

ε

2

)
− ε

2

(
∂U

∂xi

)
x(t+ε)

.

Issues to consider are how many integration steps per point in the chain, and how big those steps
are. For some discussion, see Hajian (2006), astroph/0608679.
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