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Road map

Examples
Gaussian Linear models
Poisson statistics

Confidence intervals

Hierarchical Models
Nuisance parameters
Sufficient and nearly-sufficient statistics

Model comparison: Model likelihood/Bayesian
Evidence
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The Gaussian Distribution

1 o
ex
V2mo? ===

P(z|pol) =

5 Moments: e e
= all higher cumulants x,=0
o Central Limit Theorem

= Arises very often: sum of many independent “random variables”
tends to Gaussian

= Additive noise is often well-described as Gaussian
o Maximum Entropy

= Bayesian interpretation: if you know only the mean and
variance, Gaussian is the “least informative’” consistent
&CIE' distribution.
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Inference from a Gaussian:
Averaging

-~ Consider data = signal + noise,
R et S )]

= Noise, 1, has zero mean, known variance o0

- Assign a Gaussian to (d; —s)
= Alternately: keep n; as a parameter and marginalize over it with
p(din;s I) = o(d;-n;-s)

= Prior for s (i.e., a and b)?

o To be careful of limits, use Gaussian with width 2, take
2 —oo0 at end of calculation

= Same answer with unifom dist'n in (-2,,2,) = (-0,00)

iIcicl — calculation
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Inference from a Gaussian:

Averaging
-~ Posterior:
== - 1 (s—=d)*
P(s|dl) = = exp e

= best estimate of signal is average * stdev:
- s=d+0p=d+ 0NN

= What if we don’t know o7 try Jefferys P(cll)xc1/0

- marginalized P(sll)  [s - 2s {d) + (d?) ]2
1 (very broad distribution!)

ICIC!
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Inference from a Gaussian:
Straight-line fitting

~ Now consider data = signal + noise, where signal depends
linearly on time:

s d.= at; + b + nj;, with “iid” gaussian noise (n)=0; (n;*)=c"

7 Likelihood function is -
1 | e ==
P(d|a7b7l):HiWeXp {_5( agz ) }
= Multivariate gaussian in d

= Linear in (a,b): also has form of a multivariate gaussian in (a,b)

o but not a distribution in (a,b) until you apply Bayes’ theorem
and add a prior

= Maximized at the value of the “least squares” est. for (a,b), with
the same numerical values for the errors (& covariance)

5 (but, recall, with a very different interpretation of those errors)
marginals?

ICIC! -

Wednesday, 11 September 13



Inference from a Gaussian:

Straight-line fitting

o This means that for these problems you can just
use usual canned routines...

20

10

1cIc!

chi2 = 37.047120 yesh

a = 3.231402 + 0.356205 I
b=1.758491 + 0.061171 il
cov(a,b) =-0.018710 L
rab = -0.858655 %8

10
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General linear models (I)

o Consider  d(t:) =), xpfp(ti) +ny
i.e., a sum of known functions with unknown amplitudes,
plus noise — want to estimate a,

= e.g, linear fit: fo(?)=1, f1(?)=t

-~ assume zero-mean Gaussian noise, possibly
correlated: <n)=0, <n; n;)=N;;

= typically, noise is stationary (isotropic): N;=N(ti-t;)
0 rewrite in matrix-vector form:
di =), AipTp + n; with-A,, —f, ()
o Likelihood:
P(d;|zpl) =

ICIC

= -
p _i(d =

2 N|V2
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General linear models (ll)

dz' — Zp Aipélip - T ; with Aip — fp(ti)
complete
o Can rewrite the likelihood as the square

Pld syl ocexp —%(d = A= Aa?)] X exp [—%(a} == :E)]
X exp _—%(d A e e AWd)] X exp {—%(w W= Wd)]

L ~ = NG —7
-~ -~

depends on data, not params depends on data and params
1 with W= (A'"N"'4)7"A"N~" and C=(A"N'4)~}
. - - s
-~ Parameter-independent factor is just e Xmax

-~ Parameter-dependent factor shows that
likelihood is multivariate Gaussian with mean
=Wz =(ATN-14)"1ATN-14

and variance C
ICIC!
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General linear models (lil)

In limit of an infinitely wide uniform (or Gaussian)

prior on X:

Ul - exp [—%(a: = Wd)]

\27TC’|1/2

2
nb. normalization cancels out ¢ Xmax

Covariance matrix <5Cli‘p 5$q> — Cpq gives error O'Z%
if we marginalize all other parameters

= Cpp

1
Inverse covariance gives error O'p =l C
if we fix other parameters

nb. marginalization doesn’t move mean (max) values for this case
cf. Fisher matrix F<C!

Aside: with a finite Gaussian prior on x, can derive the Wiener filter, as
well as power-spectrum estimation formalism (see tomorrow’s lecture

on the CMB)
ICIC
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Chi-squared

The exponential factor of a Gaussian is always of
the form exp(-y?/2)

Likelihood: y2=> (data; - model;)?/0?

For fixed model, %2 has %2 distribution for
V=Ndata-Nparameters degrees of freedom”

peaks at X2=Vi\/ (2V)
model may be bad if 2 is too big

or too small (“overfitting” — too many parameters)
(frequentist argument, but good rule of thumb)

ICIC
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Poisson rates

Likelihood: probability of observing n counts if the

rate is r

o e A

=

il —

n!

Posterior: probability that rate is r given n counts

e—rrn—l

(n — 1)!
nb. (n-1) comes from p(r|)drx1/r

e

ICIC
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Inferences for a Poisson rate

NOt enOugh ~ Hi=0 1N=1 IN=-2
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—— | "
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Infer: »=nt\n (meanz\variance) /
Note “asymptotic gaussianity” for large N

IcIC!
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Poisson rates

Complications [see Loredo articles and optional
problems]

Backgrounds:n = b + s
Can solve for/marginalize over known or unknown b
e.g., n, counts from time 7, spent observing background rate 5,
n,from T spent observing (s+b)

(e.g., Loredo)

Spatial or temporal variation in the signal (or
background): s=s(¥)

ICIC
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Credible Intervals

The posterior contains the full inference from the
data and our priors

Sometimes, this can be a bit unwieldy.

Traditionally, we compress this down into “credible
intervals” (cf. frequentist “confidence intervals™)

A 100a % credible interval (a,b) is defined s.t.
+

X

e e TR / P P ——

HET=T

We typically pick traditional values of a such as 68%,
95%, 99% (1, 2, 30)

if the mean is £ = | zP(z|dI) dz
1cic! this is often reportedas * =z + (z4 — x_)
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Confidence Intervals

A 100a % confidence interval (a,b) is defined s.t. a
fraction o of all realizations contain the correct value.

Doesn’t depend on the prior. But depends on the
distribution of possible experimental results (i.e., the
likelihood, considered as a function of the data, not the
theoretical parameters) — results that didn’t arise!
We typically pick traditional values of o such as 68%, 95%,
99% (1,2, 30)
if the mean is T = [ P (z|dI) dx
this is often reportedas © = &+ (z3 — x_)

because this looks the same as a credible interval (and for
problems like the Gaussian is numerically identical), there is
occasionally confusion...

ICIC
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Confidence Intervals in Practice

© Neyman-Pearson approach

-~ Especially complicated when

the possible parameter
region has boundaries

© Feldman & Cousins, “Unified
approach to the classical

statistical analysis of small
signals”, PRD57, 7, 1998

7 For data d and CL f,
find [x-, x+] s.t.
P(d € [x-, x+] | W) =f

- See also, Daniel’s discussion
of p-values...

ICIC
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FIG. 1. A generic confidence belt construction and its use. For
each value of u, one draws a horizontal acceptance interval [ x; ,x, |
such that P(x € [x, ,x,]| ) = a. Upon performing an experiment to
measure x and obtaining the value x,, one draws the dashed verti-
cal line through x,. The confidence interval [ i ,u,] is the union
of all values of u for which the corresponding acceptance interval is

intercepted by the vertical line.
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Nuisance parameters

We can sometimes separate our parameter space

into those parameters that we “care about” and
those we don’t.

e

detector characteristics
phenomenological parameters for non-physical models

We call these “nuisance parameters’ and very
often marginalize over them.

Beware: if the posterior for the nuisance parameter
is complicated, marginalization may be dangerous

ICIC
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Bayes’ Theorem

P(6|DI) df =

P(0|1)P(D|01)
[ae" P(6'|1)P(D|0'T)

Theory parameterized by (continuous) 0:
Use probability densities

do

Marginalization

P(8|DI) = [ dy P(8¢|DI)
(P:“nuisance’” parameter

e.g., Background level, unknown noise, etc.
(but a nuisance in one context is signal in another!)

ICIC
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Hierarchical Models

“Data reduction” vs “Data Analysis” (vs “Science™?)
Describe inference from data as a series of levels:

parameters describing:
the instrument
e.g., gain, noise properties

individual observations
e.g., supernova brightness at a particular epoch; galaxy shape for weak lensing

the whole survey
e.g., mean (unstretched) supernova light curves; luminosity functions

the “scientific content” of the data
e.g., Hubble diagram; lensing power spectrum

the cosmological or astrophysical goals of the survey
e.g., Qm, etc

Some parameters need external priors (e.g., instrumental)
Some parameters get priors from the next level in the hierarchy

e.g., the prior for the Hubble diagram depends on the prior for the
ICIC cosmological parameters
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Hierarchical Models

Linear Models with errors in both dimensions

e.g., Kelly, B. C. (2007).“Some Aspects of Measurement Error in Linear
Regression of Astronomical Data”, Ap] 665:1489,2007, arXiv:0705.2774v|

Unlike |-d errors, need full model for generating data

X = Ctng y =Mt n=n(G; 0) (€.g.,M
actual independent variable ¢ ~ p(& | v,I)

= actp)

actual dependent variable (“signal”) n ~ p(n | &,0,I)

observed data x, y ~ p(x,y | n,C,I)

no analytic solution even for simple models!
(see Daniel’s discussion tomorrow)

Models as Directed Acyclic Graphs

e.g., Mandel et al,"Type |IA Supernova Light Curve
Inference”, ApJ] 704:629, 2009, arXiv:0908.0536

ICIC

Population individual SNe
parameters SNe Obs’ns
E‘

=] (&)

D
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http://arxiv.org/abs/0908.0536
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Sufficient Statistics

Sometimes, the likelihood only depends on a [simple]
function of the data, a “statistic”, S(D)

P(D | theory) dD = P(S(D)| theory) dS
trivial if you can invert to get D(S), but can be true in other cases

e.g., when estimating the mean of iid Gaussian data, the likelihood
only depends on ) di/n and n.

(independent of the prior)
i.e., the sufficient statistic is what we’re interested in

This is especially nice in the context of hierarchical models as we can
consider each step as data compression

Will see this in more detail tomorrow with the CMB

Sometimes this is only approximately true

e.g., an estimate of the power spectrum C; (even with errors) contains most but
not all information about the underlying field

not to be confused with the full likelihood P(data| C)
ICIC
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Bayesian Model Comparison

Until now, given a model, measure its parameters

Move “up” a level: choose between models
Deuterium line or interloper?
Flat universe or curved?
Dark Energy or cosmological constant!?

Is a given star/galaxy a member of a cluster or a
superposition?

Dark matter or MOND?

(nb. not just between two)

But really, just apply the same machinery

ICIC
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Bayesian Model Comparison

- How do we tell if our model (choice of
parameters, 0) is a good description of the data?

-~ Need to specify alternatives: can choose amongst
models (but no pure “goodness-of-fit” test)

1 Let the prior information be I =1, (I, + 1, + ...)

=« common information (I,,) and a choice between
Model 1(I,), Model 2 (1,), ...

= Now, use Bayes' thm to get P(I, | data)

ICIC!
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Bayesian Model Comparison

- Full set of parameters are then
= |:choose between models
= 8. parameters for each model

5 (can be different for each model — and different numbers of
parameters per model)

- Joint likelihood for model / and its parameters:

P(i0;|DI) < P(|I)P(6;|IoI)P(D|0;Io1)

ICIC
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Bayes' theorem and model
comparison

-+ Marginalize over parameters 9:.
P(10;|DI) < P(2|1)P(0;|1o1)P(D|0;1y1)

but recall usual Bayes' thm: >
= P(0|1)P(D|61)
P(0|DI) do = Tao" P@D)P (D|9’])d9

POIP(DOT) . X
= R LT

e

et e P FCDHEE Model likelihood

e — T (sometimes called
|1CIE|_ Just the normailization “evidence”)




Model Comparison
P(i|DI) « P(i|I)P(D|IL)
P(l1) [ d6:P@:\TT)P(DI6LT

= model probability « average likelihood, weighted by prior

= automatic penalty for more complicated models (= more
parameter 'volume')

° ° ° e 2
= recall for the linear model, normalization o< ¢ Xmax
gives factor ~ |N|!/? « volume of error ellipsoid

=

likelihood strongly-peaked compared
to prior, but better “best fit”

ICIC!
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Ockham's Razor

P(i|DI) P(i|T) / d0; P(6;|I1,)P(D|6;I,1)

posterior volume

R

P\ Ppax (DV0; 1o 1; ,
(&l1) (D|0:o 1) prior volume

|

favors better-fitting model Favors simpler model
(often, more complicated one) “Ockham Factor”

=

likelihood strongly-peaked compared
to prior, but better “best fit”

ICIC!
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Ockham's Razor

P(i| DI)

P(ill) / 46, P(6:|11,)P(D|6, ;1)

posterior volume

S R T e e SN T _
(&l1) (D|0:lo 1) prior volume

- Linear, Gaussian deeIs: 2
PmaX(D‘(gz]) — —Xmin/ 2

€
2w M |2

= volume « |M112=0,0,03...0n5 for correlation matrix M

= must have proper prior distributions (finite IMl) for this
to make sense

ICIC!
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Model comparison and parameter
priors P(06ill)

~ Now, all priors must be normalized

-~ Model likelihoods must converge:
P(D|IL) = [ d9;P(6;|I1;,)P(D|0;I;1)
7 e.g., linear models

= This is a very serious restriction in some cases.

= Note that the posterior for a parameter may — and
usually does — exist in the limit of an infinitely-wide
prior, but in general the evidence does not:

ter: ]
e P(i|I)Pmax(D|9¢IOIi)pOS erior volume

prior volume
——0
ICIC!
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Application: is the Universe flat?

71 nested models: f -

= old std CDM:
Q,=0, Q =1 -
« flat: Q,+Q, =1 < °F)
o Q/\=O, OSQmS1 0'4;
« 0=Q_<1, 0=Q,<1

0.0
0 0.2 0.4 0.6 0.8 1.0

= Integrate likelihood over regions for each model:

5 CMB alone prefers both std CDM & flat
1 CMB+SNe prefers flat

= (would really prefer (0,=0.7, QO _=0.3, but that's not an a priori model that would occur to us!)

1cIc!
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Conclusions

Gaussian linear models are equivalent to
“generalized least squares”

Hierarchical Models can describe the full solution
for a general scientific problem from data gathering
to science exploitation

there is very often a lot of data compression along the
way, in the form of sufficient (or nearly sufficient)

statsitics

The model likelihood (aka Bayesian Evidence) is a
tool for comparing well-specified models (but
there is no real “alternative-free” test in the

Bayesian formalism).
ICIC
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Lunchtime logistics

5 On campus: SCRO' & |CR @
— go out main walkway
from here Yr(Huxley 31 1).
Other cafeterias are
available.

o Off campus:
Gloucester Road

o After lunch: please sit in
alternate rows for the
problem session (so we
can reach you, not to avoid
working together!)

1cIc!
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