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Road map
□ Examples
■ Gaussian Linear models
■ Poisson statistics

□ Confidence intervals 
□ Hierarchical Models
■ Nuisance parameters
■ Sufficient and nearly-sufficient statistics

□ Model comparison: Model likelihood/Bayesian 
Evidence
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The Gaussian Distribution

□ Moments: 
■ all higher cumulants κn= 0

□ Central Limit Theorem
■ Arises very often: sum of many independent “random variables” 

tends to Gaussian 
■ Additive noise is often well-described as Gaussian

□ Maximum Entropy
■ Bayesian interpretation: if you know only the mean and 

variance, Gaussian is the “least informative” consistent 
distribution. 
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Inference from a Gaussian:
Averaging

□ Consider data = signal + noise, 
□ 	

 di = s + ni

■ Noise, ni, has zero mean, known variance σ2

□ Assign a Gaussian to  (di – s)
■ Alternately: keep ni as a parameter and marginalize over it with 

p(di|ni s I) = δ(di-ni-s)

■ Prior for s (i.e., a and b)?
□ To be careful of limits, use Gaussian with width Σ, take 
Σ→∞ at end of calculation
■ Same answer with unifom dist’n in (-Σ1,Σ2)→(-∞,∞)

→calculation
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Inference from a Gaussian: 
Averaging

□ Posterior:

■ best estimate of signal is average ± stdev: 
□ s = d̄ ± σb = d̄ ± σ/√N

■ What if we don’t know σ? try Jefferys P(σ|I)∝1/σ
□ marginalized P(s|I) ∝ [s - 2s〈d〉 + 〈d2〉]-1/2

□ (very broad distribution!)

P (s|dI) =
1⇤
2�⇥2

b

exp
�
�1

2
(s� d̄)2

⇥2
b

⇥

Wednesday, 11 September 13



Inference from a Gaussian:
Straight-line fitting

□ Now consider data = signal + noise, where signal depends 
linearly on time:
■ di = ati + b + ni, with “iid” gaussian noise ⟨ni⟩=0; ⟨ni2⟩=σ2

□ Likelihood function is 

■ Multivariate gaussian in d
■ Linear in (a,b): aIso has form of a multivariate gaussian in (a,b) 
□ but not a distribution in (a,b) until you apply Bayes’ theorem 

and add a prior
■ Maximized at the value of the “least squares” est. for (a,b), with 

the same numerical values for the errors (& covariance)
□ (but, recall, with a very different interpretation of those errors)
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a = 3.231402 ± 0.356205
b = 1.758491 ± 0.061171
cov(a,b) = -0.018710
rab = -0.858655
chi2 = 37.047120

Inference from a Gaussian:
Straight-line fitting

□ This means that for these problems you can just 
use usual canned routines... 
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General linear models (I)
□ Consider

i.e., a sum of known functions with unknown amplitudes, 
plus noise — want to estimate ap

■ e.g., linear fit: f0(t)=1, f1(t)=t
□ assume zero-mean Gaussian noise, possibly 

correlated:  ⟨n⟩=0, ⟨ni nj⟩=Nij

■ typically, noise is stationary (isotropic): Nij=N(ti-tj)
□ rewrite in matrix-vector form:

□ Likelihood:
P (di|xpI) =

1

|2⇡N |1/2
exp
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General linear models (II)

□ Can rewrite the likelihood as 

□ with 
□ Parameter-independent factor is just
□ Parameter-dependent factor shows that 

likelihood is multivariate Gaussian with mean 

and variance C

di =
P

p Aipxp + ni with Aip = fp(ti)
complete 

the square
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General linear models (III)
□ In limit of an infinitely wide uniform (or Gaussian) 

prior on x: 

nb. normalization cancels out 
□ Covariance matrix 	

 	

 	

 	

 	

     gives error 

if we marginalize all other parameters. 
□ Inverse covariance gives error

if we fix other parameters
■ nb. marginalization doesn’t move mean (max) values for this case
■ cf. Fisher matrix F⇔C−1

□ Aside:  with a finite Gaussian prior on x, can derive the Wiener filter, as 
well as power-spectrum estimation formalism (see tomorrow’s lecture 
on the CMB)
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Chi-squared
□ The exponential factor of a Gaussian is always of 

the form exp(-χ2/2)
□ Likelihood: χ2=∑(datai - modeli)2/σi²
□ For fixed model, χ2 has χ2 distribution for 
ν=Ndata-Nparameters “degrees of freedom”
■ peaks at χ2=ν±√(2ν)

□ model may be bad if χ2 is too big
■  or too small (“overfitting” — too many parameters)

□ (frequentist argument, but good rule of thumb)
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Poisson rates

□ Likelihood: probability of observing n counts if the 
rate is r 

□ Posterior: probability that rate is r given n counts

□ nb. (n-1) comes from  p(r|I)dr∝1/r

P (n|rI) =
e�rrn

n!

P (r|nI) =
e�rrn�1

(n� 1)!
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Inferences for a Poisson rate

Infer: r = n±√n  (mean±√variance)
Note “asymptotic gaussianity” for large N
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Poisson rates

□ Complications [see Loredo articles and optional 
problems]
■ Backgrounds: n = b + s
□ Can solve for/marginalize over known or unknown b
□ e.g., nb counts from time Tb spent observing background rate b, 

ns from Ts spent observing (s+b)
□ (e.g., Loredo)

■ Spatial or temporal variation in the signal (or 
background): s=s(t)
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Credible Intervals
□ The posterior contains the full inference from the 

data and our priors
□ Sometimes, this can be a bit unwieldy.
□ Traditionally, we compress this down into “credible 

intervals” (cf. frequentist “confidence intervals”)
□ A 100α % credible interval (a,b) is defined s.t.

■ We typically pick traditional values of α such as 68%, 
95%, 99% (1, 2, 3σ)

■ if the mean is 
this is often reported as 

x̄ =
R
xP (x|dI) dx

x = x̄± (x+ � x�)

P (x 2 [x�, x+]|d, I) =
Z

x+

x�

P (x|d, I) dx = ↵
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Confidence Intervals
□ A 100α % confidence interval (a,b) is defined s.t. a 

fraction α of all realizations contain the correct value.
□ Doesn’t depend on the prior. But depends on the 

distribution of possible experimental results (i.e., the 
likelihood, considered as a function of the data, not the 
theoretical parameters) — results that didn’t arise!
■ We typically pick traditional values of α such as 68%, 95%, 

99% (1, 2, 3σ)
■ if the mean is 

this is often reported as 
■ because this looks the same as a credible interval (and for 

problems like the Gaussian is numerically identical), there is 
occasionally confusion...

x̄ =
R
xP (x|dI) dx

x = x̄± (x+ � x�)
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Confidence Intervals in Practice
□ Neyman-Pearson approach
□ Especially complicated when 

the possible parameter 
region has boundaries

□ Feldman & Cousins, “Unified 
approach to the classical 
statistical analysis of small 
signals”, PRD57, 7, 1998

□ For data d and CL f, 
find [x−, x+] s.t. 
P(d ∈ [x−, x+] | µ) = f

□ See also, Daniel’s discussion 
of p-values... 

generally considered to be as serious a flaw as undercover-
age, comes with a price: loss of power in rejecting false
hypotheses.
Our confidence intervals require the full power of Ney-

man’s construction, which for one measured quantity and
one unknown parameter is called the method of ‘‘confidence
belts’’ @10,12#. Figure 1 illustrates such a construction on a
graph of the parameter m vs the measured quantity x . For
each value of m, one examines P(xum) along the horizontal
line through m. One selects an interval

@

x1 ,x2# which is a
subset of this line such that

P
~

xP
@

x1 ,x2#um!

5a . ~2.4!

Such intervals are drawn as horizontal line segments in Fig.
1, at representative values of m. We refer to the interval
@

x1 ,x2# as the ‘‘acceptance region’’ or the ‘‘acceptance in-
terval’’ for that m. In order to specify uniquely the accep-
tance region, one must choose auxiliary criteria. One has
total freedom to make this choice, if the choice is not influ-
enced by the data x0 . The most common choices are

P
~

x,x1um!

512a , ~2.5!

which leads to ‘‘upper confidence limits’’ ~which satisfy
P(m.m2)512a!, and

P
~

x,x1um!

5P
~

x.x2um!

5
~

12a

!

/2, ~2.6!

which leads to ‘‘central confidence intervals’’ @which satisfy
P(m,m1)5P(m.m2)5(12a)/2#. For these choices, the
full confidence belt construction is rarely mentioned, since a
simpler explanation suffices when one specifies P(x,x1um)
and P(x.x2um) separately. For more complicated choices
which still satisfy the more general specification of Eq. ~2.4!,
an ordering principle is needed to specify which x’s to in-
clude in the acceptance region. We give our ordering prin-
ciple in Sec. IV.

The construction is complete when horizontal acceptance
intervals are drawn for each value of m. Upon performing an
experiment to measure x and obtaining the value x0 , one
draws a vertical line ~shown as a dashed line in Fig. 1!
through x0 on the horizontal axis. The confidence interval is
the union of all values of m for which the corresponding
horizontal interval is intercepted by the vertical line; typi-
cally this is a simply connected interval

@

m1 ,m2# . When
displayed in texts, typically only the end points of the inter-
vals are drawn, which collectively form the ‘‘confidence
belt.’’
By construction, Eq. ~2.3! is satisfied for all m; hence it is

satisfied for m t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts ~for upper
limits and central intervals, respectively! when the observ-

FIG. 1. A generic confidence belt construction and its use. For
each value of m, one draws a horizontal acceptance interval

@

x1 ,x2#
such that P(xP

@

x1 ,x2#um)5a . Upon performing an experiment to
measure x and obtaining the value x0 , one draws the dashed verti-
cal line through x0 . The confidence interval @

m1 ,m2# is the union
of all values of m for which the corresponding acceptance interval is
intercepted by the vertical line.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x51` .

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.

57 3875UNIFIED APPROACH TO THE CLASSICAL . . .
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Nuisance parameters
□ We can sometimes separate our parameter space 

into those parameters that we “care about” and 
those we don’t.
■ E.G., 
□ detector characteristics
□ phenomenological parameters for non-physical models

□ We call these “nuisance parameters” and very 
often marginalize over them.

□ Beware: if the posterior for the nuisance parameter 
is complicated, marginalization may be dangerous
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Bayes’ Theorem

□ Theory parameterized by (continuous) θ:
■ Use probability densities

□ Marginalization

■ φ: “nuisance” parameter
□ e.g., Background level, unknown noise, etc.
□ (but a nuisance in one context is signal in another!)

P (�|DI) =
�

d⇥ P (�⇥|DI)

P (�|DI) d� =
P (�|I)P (D|�I)�

d�� P (��|I)P (D|��I)
d�
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Hierarchical Models
□ “Data reduction” vs “Data Analysis” (vs “Science”?)
□ Describe inference from data as a series of levels: 
■ parameters describing:
□ the instrument

■ e.g., gain, noise properties

□ individual observations
■ e.g., supernova brightness at a particular epoch; galaxy shape for weak lensing

□ the whole survey
■ e.g., mean (unstretched) supernova light curves; luminosity functions

□ the “scientific content” of the data
■ e.g., Hubble diagram; lensing power spectrum

□ the cosmological or astrophysical goals of the survey
■ e.g., Ωm, etc

■ Some parameters need external priors (e.g., instrumental)
■ Some parameters get priors from the next level in the hierarchy
□ e.g., the prior for the Hubble diagram depends on the prior for the 

cosmological parameters
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Hierarchical Models
□ Linear Models with errors in both dimensions
■ e.g., Kelly, B. C. (2007). “Some Aspects of Measurement Error in Linear 

Regression of Astronomical Data”, ApJ 665:1489, 2007, arXiv:0705.2774v1

■ Unlike 1-d errors, need full model for generating data
□ x = ξ+nx; y = η+ny; η = η(ξ; θ)   (e.g., η = αξ+β)
□ actual independent variable ξ ~ p(ξ | ψ,I)
□ actual dependent variable (“signal”) η ~  p(η | ξ,θ,I)
□ observed data x, y ~ p(x,y | η,ξ,I)
□ no analytic solution even for simple models!

(see Daniel’s discussion tomorrow)

□ Models as Directed Acyclic Graphs
■ e.g., Mandel et al, “Type IA Supernova Light Curve 

Inference”, ApJ 704:629, 2009, arXiv:0908.0536 

8 Mandel et al.

µψ,Σψ

τA

ψ1

ψN

A1

AN

φ1

φN

µN

µ1

D1

DN

z1

zN

Fig. 1.— Directed acyclic graph for hierarchical Bayesian infer-
ence from a training set of Type Ia SN light curves. This is a
graphical representation of the joint distribution of unknown pa-
rameters and observations for a training set of N SN Ia. Each
parameter is represented by a node, and the links between node in-
dicate relationships of conditional probability. The variables in the
far left column are the hyperparameters which describe the pop-
ulation probability distribution of supernova characteristics, and
the population distribution of extinction values. The variables in
the middle left column describe the distances, extinctions, and ab-
solute light curves of individual supernovae. The variables in the
middle right column are the observable parameters that describe
the apparent light curves of individual SN Ia. The final column con-
tains the observations of the redshifts and multi-band light curves
of individual SN Ia. The open nodes describe unknown and hidden
parameters, whereas the shaded nodes describe observed values
that are conditioned upon in the posterior density.

their descendant Ds is observed, even though they are a
priori independent random variables. This dependency
is reflects the tradeoffs involved in explaining the ob-
served light curves as a combination of random fluctua-
tions due to dust, intrinsic randomness of the absolute
light curves, and distance uncertainties attributed to pe-
culiar velocities. The Bayesian approach is not to pick
out just one possible combination of the separate fac-
tors, but to consider the probability distribution over
the whole ensemble of hypotheses.

Another consequence of this conditional dependency is
that there are unblocked paths between the SN Ia pop-
ulation hyperparameters, µψ and Σψ and the dust ex-
tinction hyperparameter τA. These paths pass through
the conditionally dependent parameters As, ψs, and φs

for each supernova. Thus, the population hyperparame-
ters are also conditionally dependent. This implies that
posterior inferences of µψ,Σψ and those of τA cannot be
separated. This is why we take the global approach, con-
ditioning the global posterior density on the entire data
set simultaneously, and exploring the complete joint pa-
rameter space.

The conditional independence structure implied by the
graph depends neither on the choices of distributions
made in Section 2.2, nor on the particular functional light
curve model that is assumed. We depicted the directed
graph for inference with fixed RV . If we wish to learn
about RV , it would become a random variable with a
population distribution. Hence the graph would include
nodes for each Rs

V and a node for the hyperparameters
αR, with the appropriate links.

µψ,Σψ

τA As

ψs

φs

zs

Ds

s = 1, . . . , NSN

Training

µ̃

Ã

ψ̃

φ̃ D̃

Prediction

µs

Fig. 2.— Directed acyclic graph for training and prediction with
Type Ia SN light curves. The rectangle depicts a plate representing
the NSN SN Ia in the training set. The tilde parameters describe a
new supernova for which we seek to predict the distance modulus.
The open nodes describe unknown and hidden parameters, whereas
the shaded nodes describe observed values that are conditioned
upon in the predictive posterior density.

2.3.2. Directed Graph for Prediction

The directed graph for the prediction task using data
from a new supernova is presented in Figure 2. We de-
pict the entire training set of supernovae on a plate which
is understood to represent NSN different instances. The
quantities relevant to the prediction supernova are la-
beled with tildes. The essential difference between train-
ing and prediction is that in the training set we use dis-
tance information from the redshift, whereas in predic-
tion we do not. The task of prediction is to infer the
joint probability density of the hidden quantities µ̃, Ã,
and ψ̃ by fitting the light curve data D̃ described by
the observable parameters φ̃ plus measurement noise.
The unblocked paths between the training set and the
prediction set depict how information from the train-
ing set constrains the population hyperparameters (i.e.
by informing the posterior density), which in turn pass
that information (and its uncertainty) onto the predic-
tion variables. The marginal predictive posterior density
for the new supernova’s distance modulus is obtained by
integrating over the uncertainties in the population hy-
perparameters µψ, Σψ, and τA, and over the extinction
Ã, magnitudes and the shape parameters, φ̃.

2.4. Statistical Computation of the Global Posterior
Density

The global posterior probability density of all param-
eters and hyperparameters of the full model conditioned
on the training set database of SN Ia observations, Eq.
18, is a function of many variables. Consider a minimal
model that does not account for dust extinction. We
suppose it has one shape parameter θ, and models light
curves in three filters. There are four observable param-
eters, plus one for the distance modulus, for each super-
nova. In addition, the hyperparameters µψ and Σψ con-
tain four plus ten variables (since the covariance matrix
of the absolute magnitudes and light curve shape param-

Population
parameters

individual
SNe

SNe
Obs’ns
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Sufficient  Statistics
□ Sometimes, the likelihood only depends on a [simple] 

function of the data, a “statistic”, S(D) 
■ P(D | theory) dD = P(S(D)| theory) dS
□ trivial if you can invert to get D(S), but can be true in other cases

■ e.g., when estimating the mean of iid Gaussian data, the likelihood 
only depends on ∑i di/n and n.
□ (independent of the prior)
□ i.e., the sufficient statistic is what we’re interested in

■ This is especially nice in the context of hierarchical models as we can 
consider each step as data compression  
□ Will see this in more detail tomorrow with the CMB

■ Sometimes this is only approximately true
□ e.g., an estimate of the power spectrum Ĉℓ (even with errors) contains most but 

not all information about the underlying field
■ not to be confused with the full likelihood P(data| Cℓ)
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Bayesian Model Comparison
□ Until now, given a model, measure its parameters
□ Move “up” a level: choose between models
■ Deuterium line or interloper?
■ Flat universe or curved?
■ Dark Energy or cosmological constant?
■ Is a given star/galaxy a member of a cluster or a 

superposition?
■ Dark matter or MOND?
■ (nb. not just between two)

□ But really, just apply the same machinery
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Bayesian Model Comparison

□ How do we tell if our model (choice of 
parameters, θ) is a good description of the data?

□ Need to specify alternatives: can choose amongst 
models (but no pure “goodness-of-fit” test)

□ Let the prior information be I = I0 (I1 + I2 + ...)
■ common information (I0) and a choice between 

Model 1(I1), Model 2 (I2), ... 
■ Now, use Bayes' thm to get P(Ii | data)
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Bayesian Model Comparison

□ Full set of parameters are then 
■ i: choose between models
■ θi: parameters for each model
□ (can be different for each model – and different numbers of 

parameters per model)
□ Joint likelihood for model i and its parameters:

P (i�i|DI) � P (i|I)P (�i|I0I)P (D|�iI0I)
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Bayes' theorem and model 
comparison

□ Marginalize over parameters θi:

but recall usual Bayes' thm:

so

— just the normalization!

P (i�i|DI) � P (i|I)P (�i|I0I)P (D|�iI0I)

P (�|DI) d� =
P (�|I)P (D|�I)�

d�� P (��|I)P (D|��I)
d�

� P (�|I)P (D|�I)
P (D|I)

d�

P (i|DI) � P (i|I)P (D|IIi) Model likelihood
(sometimes called 

“evidence”)
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Model Comparison

■ model probability ∝ average likelihood, weighted by prior
■ automatic penalty for more complicated models (≡ more 

parameter 'volume')
■ recall for the linear model, normalization 

gives factor ~ |N|1/2 ∝ volume of error ellipsoid

—prior  
—likelihood

likelihood strongly-peaked compared 
to prior, but better “best fit”

P (i|DI) � P (i|I)P (D|IIi)

= P (i|I)
�

d�iP (�i|IIi)P (D|�iIiI)

/ e��2

max
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Ockham's Razor

□  

—prior  
—likelihood

P (i|DI) = P (i|I)
�

d�iP (�i|IIi)P (D|�iIiI)

� P (i|I)Pmax(D|�iI0Ii)
posterior volume

prior volume

Favors simpler model
“Ockham Factor”

likelihood strongly-peaked compared 
to prior, but better “best fit”
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Ockham's Razor

□ Linear, Gaussian models:
■  

■ volume ∝ |M|1/2=σ1σ2σ3...σN for correlation matrix M
■ must have proper prior distributions (finite |M|) for this 

to make sense

P (i|DI) = P (i|I)
�

d�iP (�i|IIi)P (D|�iIiI)

� P (i|I)Pmax(D|�iI0Ii)
posterior volume

prior volume

Pmax(D|�iI) =
1

|2⇥M |1/2
e��2

min/2
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Model comparison and parameter 
priors P(θi|I)

□ Now, all priors must be normalized
□ Model likelihoods must converge:

□ e.g., linear models
□ This is a very serious restriction in some cases. 
■ Note that the posterior for a parameter may — and 

usually does — exist in the limit of an infinitely-wide 
prior, but in general the evidence does not:

P (D|IIi) =
�

d�iP (�i|IIi)P (D|�iIiI)

P (i|DI) ' P (i|I)P
max

(D|✓iI0Ii)
posterior volume

prior volume

! 0
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Application: is the Universe flat?

□ nested models:
■ old std CDM:
ΩΛ=0, Ωm=1

■ flat: ΩΛ+Ωm=1
■ ΩΛ=0, 0≤Ωm≤1
■ 0≤Ωm≤1, 0≤ΩΛ≤1

■ Integrate likelihood over regions for each model:
□ CMB alone prefers both std CDM & flat
□ CMB+SNe prefers flat

■ (would really prefer ΩΛ=0.7, Ωm=0.3, but that's not an a priori model that would occur to us!)
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Conclusions
□ Gaussian linear models are equivalent to 

“generalized least squares”
□ Hierarchical Models can describe the full solution 

for a general scientific problem from data gathering 
to science exploitation
■ there is very often a lot of data compression along the 

way, in the form of sufficient (or nearly sufficient) 
statsitics

□ The model likelihood (aka Bayesian Evidence) is a 
tool for comparing well-specified models (but 
there is no real “alternative-free” test in the 
Bayesian formalism).
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Lunchtime logistics
□ On campus: SCR    & JCR 

— go out main walkway 
from here    (Huxley 311). 
Other cafeterias are 
available.

□ Off campus: 
Gloucester Road

□ After lunch: please sit in 
alternate rows for the 
problem session (so we 
can reach you, not to avoid 
working together!)

South 
Kensington

Buildings where wheelchair 
access is not possible 
at this time

1 Beit Quadrangle
2 Imperial College Union
3 Ethos Sports Centre
4 Prince’s Gdns, North Side
 Garden Hall
5 Weeks Hall
6 Blackett Laboratory
7 Roderic Hill Building
8 Bone Building
9 Royal School of Mines
10 Aston Webb
11 Bessemer Building

12 Goldsmiths Building
13 Huxley Building
14 ACE Extension
15 William Penney
 Laboratory
16 Electrical Engineering
17 Business School
18 53 Prince’s Gate
19 Eastside
20 Sherfield Building
 Student Hub
 Conference Office

21 Grantham Institute
 for Climate Change
22 Faculty Building 
23 58 Prince’s Gate 
24 170 Queen’s Gate
25 Imperial College and
 Science Museum Libraries
26  Queen’s Tower
27  Skempton Building
28  Mechanical Engineering
 Building
29 Southside

30 Sir Ernst Chain Building –  
 Wolfson Laboratories
31 Flowers Building
32 Chemistry Building 
33 Sir Alexander Fleming 
 Building
34 Chemistry RCS1
35 52 Prince’s Gate
36 Alumni Visitor Centre
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