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Outline

* |[nverse problems: from data to theory
* Probability review, and Bayes’ theorem

e Parameter Estimation

* Priors

* Marginalisation

* Errors

* Error prediction and experimental
design: Fisher Matrices
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LCDM fits the WMAP
data well.
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Inverse problems

 Most cosmological problems are inverse
problems, where you have a set of data, and
you want to infer something.

* This is harder than predicting the outcomes
when you know the model and its parameters

e Examples
— Hypothesis testing
— Parameter estimation

— Model selection
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Examples

 Hypothesis testing

— |s the CMB radiation consistent with (initially) gaussian
fluctuations?

e Parameter estimation

— In the Big Bang model, what is the value of the matter
density parameter?

e Model selection

— Do cosmological data favour the Big Bang theory or the
Steady State theory?

— |s the gravity law General Relativity or a different
higher-dimensional theory?
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What is probability?

Frequentist view: p describes the relative
in infinitely long trials

Bayesian view: p expresses our deqgree of belief

Bayesian view is what we seem to want from
experiments: e.g. given the Planck data, what is the
probability that the density parameter of the Universe
is between 0.9 and 1.17

Cosmology is in good shape for inference because we
have decent model(s) with parameters — well-posed

|1CIE| problem




Bayes’ Theorem

e Rules of probability:

* p(x)+p(notx) =1 sum rule

* p(x,y) = p(x]y) p(y) product rule

e p(x)=Z, p(x,y,) marginalisation

e Sum— integral continuum limit (p=pdf)

p(r) = / dy p(x,y)
* p(x,y)=p(y,x) gives Bayes’ theorem

o — PEly)py)
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p(x|y) is not the same as p(y|x)

* x =female, y=pregnant

* ply
* p(x
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The Monty Hall problem:

An exercise in using Bayes’ theorem

Do you change your choice?

This is the Monty Hall problem

Twist: After you make your first choice, an earthquake
ECIC opens another door. Should you change your choice?




Bayes’ Theorem and Inference

* |f we accept p as a degree of belief, then what
we often want to determine is*

p(0]z)

f: model parameter(s), x: the data
p(x|0)p(0)

To compute it, use Bayes’ theorem »(%lr) == 7

Note that these probabilities are all conditional
on a) prior information |, b) a model M
p(0|x) = p(0|z,I, M) or p(f|x I M)

*This is RULE 1: start by writing down what it is you want to know
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Posteriors, likelihoods, priors and evidence

p(x|0)p(0)

p(x)

p(0]z) =

Posterior Likelihood L Evidence Prior

Remember that we interpret these in the context of a model M, so all probabilities are
conditional on M (and on any prior info ). E.g. p(6) = p(6|M)

The looks rather odd — what is the probability of the data? For parameter
estimation, we can ignore it — it simply normalises the posterior. If you need it,

= 2 el (6 or ple) = [ spiaiope

nnnnnnnnnnn

Noting that p( ) = (:E|M) makes its role clearer. i

&CIE' In (from M and M), p(x|M) # p(x|M’)

mmmmmmmmmmmmmmmmm




Forward modelling p(z|0)
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With noise
properties we can
predict the
Sampling
Distribution (the
probability of
obtaining a general
set of data).

The Likelihood
refers to the
specific data we
have) - it isn’t a
probability, strictly.




Case study: the mean

* Given a set of N independent samples {x;} from the
same distribution, with gaussian dispersion o, what is
the mean of the distribution u = (x)?

* Bayes: compute the posterior probability p(p|{z;})

 Frequentist: devise an estimator (1 for W. Ideally it
should be unbiased, so (i) = p and have as small an
error as possible (minimum variance).

* These lead to apparently identical results (although
they aren’t), but the interpretation is very different
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State your priors

* |n easy cases, the effect of the prior is simple

* As experiment gathers more data, the likelihood tends to get
narrower, and the influence of the prior diminishes

if changing your priort to another reasonable
one changes the answers significantly, you need more data

Noninformative™ — constant prior

* scale parameters in ; uniform in log of parameter
(Jeffreys’ prior™) 0, 00)

in more complicated, multidimensional cases, your
prior may have subtle effects...

T I mean the raw theoretical one, not modified by an experiment

* Actually, it’s better not to use these terms — other people use them to mean different
things — just say what your prior is!

ICIC




From Sivia & Skilling’s Data Analysis book. 1S THE COIN FAIR?
Model: independent throws of coin. Parameter 6 = probability of H
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The effect of priors Priors = “It’s likely to be nearly fair”, “It’s likely to be very unfair”
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 VSA CMB
experiment

(Slosar et al 2003)

Priors: Qa=0
10 < age < 20 Gyr

h=0.7%0.1

There are no data in
these plots —it is all
coming from the prior!

p(61) = / df ;1 p(x]0) p(0)

IcIC!

1 1 b

-0.2-0.1 0 0.1 0.2

| |

10 12 14 16 18 20

Age

10 20 30 40 50

1010 A,

F— 1 1 b —

0 02 04 06 08 1

0 0102030405

T




VSA posterior
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Estimating the parameter(s)

* Commonly the mode is used (the peak of the
posterior)

* Mode = Maximum Likelihood Estimator, if the priors
are uniform

* The posterior mean may also be quoted, but
beware

* Ranges containing x% of the posterior probability of
the parameter are called credibility intervals (or
Bayesian confidence intervals)
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Errors

* If we assume uniform priors, then the posterior is proportional to the likelihood.

If further, we assume that the likelihood is single-moded (one peak at (9()) , We can
make a Taylor expansion of InL:

In L(z;0) = In L(x; 60) + 3 (6 — Ooa) 252 (05 — O0p) + - -
L(CB; 9) — LO eXp [—%(Qa — QQQ)HQB(QQ — 905) -+ .. }

where the Hessian matrix is defined by these equations. Comparing this with a
gaussian, the conditional error (keeping all other parameters fixed) is

L 1
Ya = JH.L

Marginalising over all other parameters gives the marginal error

Oq = \/(H_l)aa
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How do | get error bars in several

dimensions?

 Read Numerical Recipes, Chapter 15.6

()
G~ %on

68% confidence

mterval on @,

68% confidence re,
on a; and a; jointly

P 5 6
68.3% 1.00 2.30 3.53 4.72 5.89 7.04
90% 2.71 4.61 6.25 7.78 9.24 10.6
95.4% 4.00 6.17 8.02 9.70 11.3 12.8
99% 6.63 9.21 11.3 133 15.1 16.8
99.73% | 9.00 11.8 14.2 16.3 182 20.1
99.99% 15.1 184 21.1 235 25.7 27.8

Beware! Assumes gaussian
distribution

Say what your errors are!
e.g. 1o, 2 parameter




Multimodal posteriors etc

 Peak may not be gaussian

 Multimodal? Characterising it by
a mode and an error is probably ~ _Gs
inadequate. May have to “From CMBEasy MCMC

BENITFZ

present the full posterior. AR T

» Mean posterior may not be
useful in this case —itcouldbe : = - ]
very unlikely, ifitisavalley =~
between 2 peaks. |

piz.Tlm,)

T I
||||||
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Non-gaussian likelihoods: number
counts

* Aradio source is observed with a telescope which can
detect sources with fluxes above So. The radio source
has a flux S1 = 2So.

What is the slope of the number counts? (Assume N(S)dS
a SedS) I S

Possible answers:

Pretty steep (a>1.5)

Pretty shallow (a<1.5) ﬁ

We can’t tell from one point. 7}  #at.

S_z'ﬁ) (J}l’1 B oar—

dN/d8 (/1
e
=
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Fisher Matrices

e Useful for forecasting errors, and experimental design

 The likelihood depends on the data collected. Can we
estimate the errors before we do the experiment?

 With some assumptions, yes, using the Fisher matrix

2 Angular scale
8 11 ] Z , 90° 18 1 0.2 0.1 0.07°
6000 ‘

= — i NB: Data
FO(B 5000 f H ( .
89& 5’96 e * not quite
‘%3000’ \q gaussian-
, S | | A ~  distributed)
For gaussian data, we need to know only: 200 ERVAV. \
1. The expectation value of the data, pu(6) 100} { 1 tw/ |
. . ‘Mf- |
2. The covariance matrix of the data, C(0) T T T Tt

Multipole moment, ¢
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Gaussian errors

 |f the data have gaussian errors (which may be
correlated) then we can compute the Fisher
matrix easily:

Fag — %TT[C—lC,aC—lC,g -+ C_lMag],

e.g. Tegmark, Taylor, Heavens 1997

bo = (o) Cap = ((® = p)a(® —1)g) Mag=pap’s+pnsps

Forecast marginal error on parameter x : Oqg = \/(F_l)aa

* For independent experiments, the Fisher Matrices
add (the inverse may pleasantly surprise you)
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Combining datasets
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Summary

Write down what you want to know. Typically:
p(O|zIM)

natis 6 ?

nat is I?

nat is M?

S ==

You might want p(M|xl)...Model Selection




