ICIC Data Analysis Workshop: the Bayesics

Alan Heavens
Imperial College London
ICIC Data Analysis Workshop
11 September 2013

Outline

- Inverse problems: from data to theory
- Probability review, and Bayes' theorem
- Parameter Estimation
- Priors
- Marginalisation
- Errors

LCDM fits the WMAP data well.

Power Spectrum C_I

Inverse problems

- Most cosmological problems are inverse problems, where you have a set of data, and you want to infer something.
- This is harder than predicting the outcomes when you know the model and its parameters
- Examples
 - Hypothesis testing
 - Parameter estimation
 - Model selection

Examples

- Hypothesis testing
 - Is the CMB radiation consistent with (initially) gaussian fluctuations?
- Parameter estimation
 - In the Big Bang model, what is the value of the matter density parameter?
- Model selection
 - Do cosmological data favour the Big Bang theory or the Steady State theory?
 - Is the gravity law General Relativity or a different higher-dimensional theory?

What is probability?

- Frequentist view: p describes the relative frequency of outcomes in infinitely long trials
- Bayesian view: p expresses our degree of belief
- Bayesian view is what we seem to want from experiments: e.g. given the Planck data, what is the probability that the density parameter of the Universe is between 0.9 and 1.1?
- Cosmology is in good shape for inference because we have decent model(s) with parameters well-posed
 problem

Bayes' Theorem

Rules of probability:

•
$$p(x)+p(not x) = 1$$

• p(x,y) = p(x|y) p(y)

•
$$p(x) = \Sigma_k p(x,y_k)$$

• Sum \rightarrow integral $p(x) = \int dy \, p(x, y)$

sum rule

product rule

marginalisation

continuum limit (p=pdf)

p(x,y)=p(y,x) gives Bayes' theorem

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

p(x|y) is not the same as p(y|x)

- x = female, y=pregnant
- p(y|x) = 0.03
- p(x|y) = 1

The Monty Hall problem:

An exercise in using Bayes' theorem

You choose this one

?

Do you change your choice?

This is the Monty Hall problem

Twist: After you make your first choice, an earthquake opens another door. Should you change your choice?

Bayes' Theorem and Inference

 If we accept p as a degree of belief, then what we often want to determine is*

$$p(\theta|x)$$

 θ : model parameter(s), x: the data

To compute it, use Bayes' theorem $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$

Note that these probabilities are all conditional on a) prior information I, b) a model M

$$p(\theta|x) = p(\theta|x, I, M) \text{ or } p(\theta|x I M)$$

Posteriors, likelihoods, priors and evidence

Remember that we interpret these in the context of a model M, so all probabilities are conditional on M (and on any prior info I). E.g. $p(\theta) = p(\theta|M)$

The *evidence* looks rather odd – what is the probability of the data? For parameter estimation, we can ignore it – it simply normalises the posterior. If you need it,

$$p(x) = \sum_{k} p(x|\theta_k)p(\theta_k) \text{ or } p(x) = \int d\theta \, p(x|\theta)p(\theta)$$

Noting that p(x)=p(x|M) makes its role clearer. In *model selection* (from M and M'), $p(x|M)\neq p(x|M')$

Forward modelling $p(x|\theta)$

With noise properties we can predict the

Sampling
Distribution (the probability of obtaining a general set of data).

The Likelihood
refers to the
specific data we
have) - it isn't a
probability, strictly.

Note: this is just the expectation value of x; the distribution is needed

Case study: the mean

- Given a set of N independent samples $\{x_i\}$ from the same distribution, with gaussian dispersion σ , what is the mean of the distribution $\mu = \langle x \rangle$?
- Bayes: compute the posterior probability $p(\mu|\{x_i\})$
- Frequentist: devise an estimator $\hat{\mu}$ for μ . Ideally it should be unbiased, so $\langle \hat{\mu} \rangle = \mu$ and have as small an error as possible (minimum variance).
- These lead to apparently identical results (although they aren't), but the interpretation is very different

State your priors

- In easy cases, the effect of the prior is simple
- As experiment gathers more data, the likelihood tends to get narrower, and the influence of the prior diminishes
- Rule of thumb: if changing your prior[†] to another reasonable one changes the answers significantly, you need more data
- Reasonable priors? Noninformative* constant prior
- scale parameters in $\ \ \,$; uniform in log of parameter (Jeffreys' prior*) $\ \ \,$ $[0,\infty)$
- Beware: in more complicated, multidimensional cases, your prior may have subtle effects...
- † I mean the raw theoretical one, not modified by an experiment
- * Actually, it's better not to use these terms other people use them to mean different things just say what your prior is!

From Sivia & Skilling's Data Analysis book. IS THE COIN FAIR?

Model: independent throws of coin. Parameter θ = probability of H

The effect of priors

Priors = "It's likely to be nearly fair", "It's likely to be very unfair"

VSA CMB experiment (Slosar et al 2003)

 $10 \le age \le 20 Gyr$

Priors: $\Omega_{\Lambda} \ge 0$

There are no data in these plots – it is all coming from the prior!

$$p(\theta_1) = \int d\theta_{j\neq 1} \, p(x|\theta) \, p(\theta)$$

Age

0.5

Estimating the parameter(s)

- Commonly the mode is used (the peak of the posterior)
- Mode = Maximum Likelihood Estimator, if the priors are uniform
- The *posterior mean* may also be quoted, but beware
- Ranges containing x% of the posterior probability of the parameter are called *credibility intervals* (or *Bayesian confidence intervals*)

Errors

• If we assume uniform priors, then the posterior is proportional to the likelihood.

If further, we assume that the likelihood is single-moded (one peak at $heta_0$) , we can make a Taylor expansion of lnL:

$$\ln L(x;\theta) = \ln L(x;\theta_0) + \frac{1}{2}(\theta_{\alpha} - \theta_{0\alpha}) \frac{\partial^2 \ln L}{\partial \theta_{\alpha} \partial \theta_{\beta}} (\theta_{\beta} - \theta_{0\beta}) + \dots$$
$$L(x;\theta) = L_0 \exp \left[-\frac{1}{2}(\theta_{\alpha} - \theta_{0\alpha}) H_{\alpha\beta} (\theta_{\beta} - \theta_{0\beta}) + \dots \right]$$

where the Hessian matrix is defined by these equations. Comparing this with a gaussian, the *conditional error* (keeping all other parameters fixed) is

$$\sigma_{\alpha} = \frac{1}{\sqrt{H_{\alpha\alpha}}}$$

Marginalising over all other parameters gives the marginal error

$$\sigma_{\alpha} = \sqrt{(H^{-1})_{\alpha\alpha}}$$

How do I get error bars in several dimensions?

Read Numerical Recipes, Chapter 15.6

 $L \propto e^{-\frac{1}{2}\chi^2}$

	$\Delta \chi^2$ as a Function of Confidence Level and Degrees of Freedom							
		ν						
	p	1	/ 2	3	4	5	6	
Ī	68.3%	1.00	2.30	3.53	4.72	5.89	7.04	
	90%	2.71	4.61	6.25	7.78	9.24	10.6	
	95.4%	4.00	6.17	8.02	9.70	11.3	12.8	
	99%	6.63	9.21	11.3	13.3	15.1	16.8	
	99.73%	9.00	11.8	14.2	16.3	18.2	20.1	
	99.99%	15.1	18.4	21.1	23.5	25.7	27.8	

Beware! Assumes gaussian distribution

Say what your errors are! e.g. 1σ, 2 parameter

Multimodal posteriors etc

- Peak may not be gaussian
- Multimodal? Characterising it by a mode and an error is probably inadequate. May have to present the full posterior.
- Mean posterior may not be useful in this case – it could be very unlikely, if it is a valley between 2 peaks.

From CMBEasy MCMC

Non-gaussian likelihoods: number counts

• A radio source is observed with a telescope which can detect sources with fluxes above S_0 . The radio source has a flux $S_1 = 2S_0$.

What is the slope of the number counts? (Assume N(S)dS

 $\alpha S^{-\alpha} dS$

Possible answers:

Pretty steep (α >1.5)

Pretty shallow (α <1.5)

We can't tell from one point.

Fisher Matrices

- Useful for forecasting errors, and experimental design
- The likelihood depends on the data collected. Can we estimate the errors before we do the experiment?
- With some assumptions, yes, using the Fisher matrix

$$F_{\alpha\beta} = -\left\langle \frac{\partial^2 \ln L}{\partial \theta_{\alpha} \partial \theta_{\beta}} \right\rangle$$

For gaussian data, we need to know only:

- 1. The expectation value of the data, $\mu(\theta)$
- 2. The covariance matrix of the data, $C(\theta)$

Gaussian errors

 If the data have gaussian errors (which may be correlated) then we can compute the Fisher matrix easily:

$$F_{\alpha\beta} = \frac{1}{2} Tr[C^{-1}C_{,\alpha}C^{-1}C_{,\beta} + C^{-1}M_{\alpha\beta}],$$

e.g. Tegmark, Taylor, Heavens 1997

$$\mu_{\alpha} = \langle x_{\alpha} \rangle$$
 $C_{\alpha\beta} = \langle (x - \mu)_{\alpha} (x - \mu)_{\beta} \rangle$ $M_{\alpha\beta} = \mu_{,\alpha} \mu_{,\beta}^T + \mu_{,\alpha}^T \mu_{,\beta}$

Forecast marginal error on parameter α : $\sigma_{\alpha} = \sqrt{(F^{-1})_{\alpha\alpha}}$

 For independent experiments, the Fisher Matrices add (the inverse may pleasantly surprise you)

Combining datasets

Summary

Write down what you want to know. Typically:

$$p(\theta|xIM)$$

- What is θ ?
- What is !?
- What is M?

You might want p(M|xI)...Model Selection