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The CMB: A Case Study

© Our underlying theories are statistical. How do we learn
about cosmology from CMB observations!?

= predictions of power spectra (and higher moments):
(quantum) noise

= expand to include polarization
- Inferences in cosmology

-+ Measuring the spectrum, C;
= temperature and polarization

-~ Measuring cosmological parameters

o Beyond the power spectrum

| In the notes,
= anisotropy [not small scales...] but probably

o sub-case study: topology won’t have time
1cIC!" non-Gaussianity
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Data analysis as
Radical Data Compression

-~ Radical Compression
= Trillions of bits of data
= Billions of measurements at 9 frequencies
= 50 million pixel map of whole sky
= 2 million harmonic modes measured
= 2500 C¢ variances
1 20000 detection of CMB anisotropy power

= Fit with just 6 parameters

o Baryon density, CDM density, angular scale of sound
horizon, reionization optical depth, slope and amplitude of

primordial P(k)
= Qbhz, Qchz, OMC, T, Ns, As
1cic! © With no significant evidence for a 7th
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Parameters & Cy

What we really want:

P(theory | data)
theory = the parameters of LCDM
or perhaps even an indication of which overall theory is correct

data = our CMB data and any other information (“priors”) we
might consider.

Data compression

P(theory | raw TOI data) P(theory | noisy CMB map)

~ P(theory | estimated C)

Also need error bars (and/or full covariance matrix)
Even then, this is only approximate

! U

effect of foreground removal on maps
C; dist’'n depends on more than just central value & covariance

ICIC
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Bayesian methods:
hierarchical models

-~ Timestream (d,) P(H | DP(D|HI)
= Map (T, ~ d,) P(H | DI) =
= Spectrum (C, ~ d) P(DID
= cosmology

Posterior o< Prior X LLikelihood

o without loss of information? (~Sufficient Statistics)

-+ P(Cosmology|d,N,;) = P(Cosmology | Map,,N

PP’)

~ P(Cosmology | DN,;,x,)
(Bond, AJ, Knox; WMAP)
- (assume that we can calculate P(Cosmology|D/N,:,X,) even
from non-Bayes estimators)

ICIC
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CMB Data Analysis:
mapmaking

© Model: data = signal + noise, as a function of time
dy = Atpr + ¢ <ntnt’> = Ny ~stationary

o Step |: mapmaking (estimate Tp)

= Gaussian noise = Gen’l least squares

J— T an7—1 —1 AT A7—1 =— T anr—1 =
T, =(ATN-1A)1ATN 14 (6T, 6T, ) = (ATNLA)

= If we stop here, uniform prior gives a Gaussian posterior for the map

with this mean and variance.

1 aside: Gaussian C¢ prior gives Wiener filter

= But it is also a sufficient statistic

= Algorithms:
5 Rely on simplicity/sparseness of Ay
o FFT methods to apply timestream (t) operations

1 Conjugate gradient least-squares soln (nb. doesn’t give corr’n matrix)
= Further simplifications for specific cases (|/f noise, observations in rings)

ICIC
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of the Cos

15.4 1
RA (hours)

MAXIMA

NB. pixelization on

sphere non-trivial.
CMB uses “HEALPix ™

ICIC
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CMB Data Analysis:
Spectrum estimation

o Step 2: Don’t need to go back to the timeline to estimate
the power spectrum, C.

= Model the sky as a correlated, statistically isotropic
Gaussian random field

T (x —T AT N %
( )— = T (x) — ZaﬁmYEm( ) <a£maﬁ’m’> — 52@’5mm’

1
spherical harmonic

20 + 1
Parametric version ‘ Z P e(CEp ZEP ) wavenumber €

of cov. mat. est’n.
diag in € basis

e £ (L|C) =

| T— ——

exp——TT @—l— N)~

|27T(@ N)|
= complicated and expensive function of
5 Many practical issues in calculating this explicitly.

© At low ¢, use sampling (usu. Gibbs), Newton-Raphson, Copula

-+ At high ¢, approximate by a function of estimated (ML) C¢ and errors &
|1CIE| some other information X¢
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Expected errors

Estimating the error (variance'’?) on a variance (Cy)

(0C¢ 0Cr) = {aem aem Aem Aem)~{Atm Aem)Aem Atm)
Wick’s theorem: {a*)=3{a?)?
CMB case: Knox 95, Hobson & Magueijo 96

need to account for (2¢€ +1)fsky measurements of each £

2 = 2 2 = =—— —2
(9C,) = QU+1D) [y, -
# of modes Sample

(cosmic) Noise variance

Variance

Bandpowers: bin in £ (weighted for specific C¢ shape) to reduce
ICIC errors and decrease covariance
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Planck errors

Angular scale
00°  18° 1° 0.2° 0.1° 0.07°

6000 |

5000 |

—— 4000 1

3000 |

Dg [,uK2

2000 |

1000

> 10 50 500 1000 1500 2000 2500
Multipole moment, /¢

Error band:cosmic variance estimate

error bars: cosmic + noise variance
IcIc!
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A toy model

Consider all-sky observations with uniform white noise

20==1 —
dp — Tp_l_np <Tpr/> — Spp’ — Z i CEBEPB(%? ; xp’)
14
(npny) = Nppr = 00y

Pixel-space likelihood

]
P(dylCe) = 270(S + N)|1/2

1
exp —§dT(S + N)d

Work in harmonic space dem =~ /dzip d(Zp)Yem (Zp)

White noise equiv to const. noise spectrum, Ny = No<G?
<n€mn€’m’> = 5%’ 5mm’ N

Likelihood separates

1 2+1  Cy
P(dem|Ce) = 1;[ 27(Cy + N2 7P <_ —C N)

= 1
with pseudo spectrum ¢, = do |?
= P P e ;' tm)
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Toy model

= 1 2w+1 G e —
P(dem!Ce)—H‘zﬁ Cr+ N1/ exp <— 5 Cg—l—N) — 2% 1+ 1 Z’ em|

Likelihood (as a function of Cy) maximized at Cr = Cf -N

—1
2
with curvature “ 27 — —( 2, )
S 2+ 1
d?1n P —r
cf. Gaussian — 3= - (") 21n P
. n

and Fisher information F = —< — >

€1, 301

— 1=2
- 1=15
1=150

Skew positive likelihood |
more Gaussian as {—o©

ICIC
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Bayesian methods:
MADCAP/MADspec

- (quasi-)Newton-Raphson iteration to 3 O(N?3) operations naively (matrix
Likelihood maximum manipulations), speedup to ~O(N?) for
2 Algorithm driven by matrix manipulation spectrum estimates (potentially large
(iterated quadratic): prefactor)
2 4 Fully parallelized (MPI, SCALAPACK)
6C,=1F; T\{(ddT C)(C fC ]J 0 do calculations in the natural basis
T

1 no explicit need for full N, matrix in

pixel basis (just noise spectrum or
autocorrelation)

_|
lTr[C_ —C_ J Fisher matrix
f

= Q eg, MAXIMA,
C S +N BOOMERANG MAXIMA—1 O

Boomerang—98 x

- Fisher = approx. Likelihood curvature

. . 5 . . XX’
2 full polarization: signal matrix S,

) [eK?]

- Arbitrary (precomputed) noise spectrum

Combined MAXIMA-1+B98+DMR ®

1)C,/(2m

Best fit — |
est Mt O =1 -- 1

i+

- Arbitrary linear filters

- Stompor et al; Jaffe et al; Slosar et al

|1CIE| Borrill, Cantalupo, Stor "
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Frequentist Monte Carlo methods

MASTER: quadratic pseudo-C, estimate (Hivon et al)
Aom = Z dpwpSlpYem (Zp)

p
A 1
C) = s pseudo-C;
ég ~ <ég> = Z CgMgg/Fng + Ny (Will discuss
0/ Bayesian sampling

for Cr later on)
where

N is noise bias
M is mode coupling depending on sky coverage
F is experimental filter

SPICE: transform of correlation function estimate
(Szapudi et al)

Issues: filters, weights, noise estimation/iteration, input maps
IcICc— optimal or naive?
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Hybrid Methods:
FASTER

Key insight: MASTER covariance formalism allows
calculation of diagonal part of pseudo-a,, covariance — use

for likelihood maximization
(nb. this has maximum entropy and so is conservative!)
Diagonal likelihood:

1
27(C, + N€>]”2

1

exXp — ‘df’"‘z
= <(§€ +N£>

P, |C,I)=

MC evaluation of means;
Newton-Raphson iteration towards maximum
Easy calculation of Likelihood shape parameters

B98, CRI: Contaldi et al

(related suggestions from Delabrouille et al)

ICIC
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WMAP (etc.):
Cross-correlations

-~ Take advantage of uncorrelated noise between
different detectors

0 <d;d§,> = <(S; + n;)(si, + n§)> = S;f,, + pi, =S

Monte Carlo method — without need for noise
bias removal

ICIC!
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Comparisons

e 328:| Ruhl et al 2003
6000 |- -
: i i —s— FASTER
- i —e— MADCAP
4000 |- . -
&
* : i § i §
000 =il 1y i i f i s
@ | t
=t :
;; 0|l-e-a .—T—.-‘-.—T-‘ o—o—T Q—%—@-i.g_i_i _—
o0 200 400 600 800 1000
o SR I Fyrl 2
of_uu_.ig*ﬂ 19 _g
—100 ;—l L L l L L 1 l 1 1 I I q [ L
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{
IcIc!

e000

L=

FASTER:| Contaldi et al 2004
i

.,""'
[T FASTER
" MASTER
"t (MC avgqg)
| PP Rk ]
\ ;:kﬁﬁ* }ﬁ'?H
N h'lr. E‘P “:I.
L B -
Lo ek, kBT b |
200 400 600 800 100 3

Thursday, 12 September 13



Timing and efficiency

-time
Joptimal/bayes: N 3

Jmonte carlo: NI

dprefactors: Nye, Nypy - - -

Space
JTOI: 50 GB/yr @200Hz
Jmaps: 384 Mb @ N,,.=2048

Jnoise matrix: N?/2 entries

~9 petabytes @
N..,.=2048

side

side

ICIC!

CPU[sec]

SPICE: Szapudi et al

10‘1 T III!IIIEI T 'IIFIIiEI I II.I'IIII I IIIIIIII‘I IR

1013 108
1012 a N3 a 102
i . 10
Lo N \ 1000

10°F =« N161 100

(o8 a 10

107 “ 1 i,
108 - A 0.1 s
- ; 0.01 3
i s ) 0.001 5
1000 r 0.0001

A y -5

100 S 10

10 “ . E 1079

1 L - ﬁ 1077

0.1 - S = 1072
0.00 Evvwd v v vvid vl 0l 107°

1000 104 108 108 107 108

N

resource management will become
an issue even for cheapest
methods
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Bayesian/Freguentist

Correspondence
Why do both methods seem to work!?
frequentist mean ~ likelihood maximum

frequentist variance ~ likelihood curvature

Correspondence is exact for
linear gaussian models (mapmaking)

variance estimation with no correlations and “iid” noise — simple
version of C, problem

e.g., all sky, uniform noise
likelihood only function of d, 2

breaks down in realistic case of correlations, finite sky, varying noise
“asymptotic limit”
~ high [ iff noise correlations not “too strong”

But we still want to bootstrap from point estimates to the
full likelihood function

ICIC
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Polarization

Formally the same problem:
d,=(i,qu),=d,, = d,
<dqdq’>=qu’+Sqq’

low S/N, large systematics

complicated correlations:
N,y pixel differences

Sqq,:Sijqq, : linearly dependent E/B leakage (= T/E/B correlation)
XX (X = in principle, don’t need extra separation
on all of C' (X T’E’B) step if full correlations/distributions is
e.g., Seljak, Zaldarriaga; Kamionkowski, known
Kosowsky, Stebbins; &c. in practice, E/B characteristics impose
specific correlation structure — easier to
“separate”

Wiener filter for map from C,.

ICIC
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Polarization

Formally the same problem:
d,=(i,qu),=d,, = d,
<dqdq’>=qu’+Sqq’

low S/N, large systematics

[uK

W(+1)C/2n

complicated correlations:
N,y pixel differences

Sqq,:Siiqq, : linearly dependent E/B leakage (= T/E/B correlation)
XX (X = in principle, don’t need extra separation
on all of C' (X T’E’B) step if full correlations/distributions is
e.g., Seljak, Zaldarriaga; Kamionkowski, known
Kosowsky, Stebbins; &c. in practice, E/B characteristics impose
specific correlation structure — easier to
“separate”

Wiener filter for map from C,.

ICIC
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From C/, to cosmology

Step 3: Calculate & characterize posterior prob over some
space of cosmological models and imposed priors

For simplest [?] theories, Cris a deterministic function of the
cosmological parameters0={Ho, ns, Qm, QpE, ...}
P(6|DI) =] dCi P(O|) P(C(|01) P(Ce IDD) 1 e Forinee
= P(O|D) P(C 0] | DI)
= P(8|]) P(Ce[0] | C, o1, shape, 1)

So estd (¢ is [approximately] a sufficient statistic

Only approximate, so not really a separate step
P(0|d;) = P(0|T,) = P(0|Cy)
can explore the likelihood — or finally assign meaningful priors on 6

and calculate the posterior

ICIC MCMC, etc.
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The shape of the likelihood

function
= = 1 —T—7 ——
P(T|Cy) = |2W(S+N)’exp 2T (S+N) T
-~ Complicated function of C; - -
[through S(C/)] [ !
7 not a Gaussian in C;
- big effect at low ¢ : :
= ~Offset lognormal (BJK 00)
5 Gaussian in In(Cr +x¢) e ASTER: Conlt 1
1 Other approximations better at A 'y / \ / \

moderate £ ol g o e Mgy / N |
= e.g., Hamimeche & Lewis ;| ;/\\/f/ \D/ \
- include polarization o e
- treat T, Q, U on same footing // \

25

ICIC!
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Sampling from the posterior

Infeasible to directly explore P(0|data) for many
parameters O

e.g., even the 6-parameter base LCDM model would
require ~100°=10'? evaluations for 100 grid points in
each direction...

Instead, generate samples 0; from the distribution.
Easy to evaluate moments (means, variances)

(0) = % Z 0; or, more generally (f(0)) = % Z f(6;)

ICIC
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MCMC

Generate samples from posterior P(x)

Most methods require being able to generate
samples from some simpler distribution

e.g., Markov Chain Monte Carlo

Start with proposal distribution O(x"|x): probability of
proposing point x" if starting at point x
often O(x|y) = O(|x-y|) (Metropolis)
Metropolis Algorithm:
given point x(, generate x* from (X *\x(i))
accept x" as xUD with probability min[| ,P(x*)/P(x(i))];
otherwise X1 =x()

repeat...
ICIC
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prop Sig[u] = 0.2
prop Siglo] =02
acceptance = 27.6%
1= 0.0208 = 0.0988
o=0985 +0.074

(4 trace

g’

IcIc!

200 400 600 8OO 1000

iteration

prop Sig[u] =08
prop Siglc] =08
acceptance = 4.3%

p=-0.0193 + 0.0887

o=0974 £ 0.0513

200 400 600 BOD 1000

iteration
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prop Sig[u] = 0.1
prop Sig[o] = 0.1
acceptance = 54.%
p=-0.128 + 0497
o=12+0575

{4 trace

O 200 400 600 8OO 1000

iteration
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Monte Carlo methods for the CMB

71 Markov Chain Monte Carlo: A. Lewis’ CosmoMC

= coupled with fast deterministic calculation of power
spectrum as fn of cosmological parameters

" c.g. CMBFAS-I-, CAM B, 1.02 . , , , " I

80

CLASS

1} 78

{76
0.98|

= Other techniques

y . €¢

1 e.g., Skilling’s “nested =" 0.96)
sampling” which also allows
fast calc’n of model
likelihoods (“evidence”)

- {74

| F{72 L

70
0.94;

68

0.92
66

0.9 ‘ ' ‘ A | Mgy
0.02 0.021 0.022 0.023 0.024 0.025
2
Qb.Oh

ICIC!
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Aside: Gibbs Sampling

- Combine parametric models of foregrounds with power
spectrum estimation

= Jewell et al;Wandelt et al; Eriksen et al; Larson et al;

= draw [full-sky] map realization given C; and foreground parameter
(Wiener filter)

= draw foreground realization given Cr and map

= draw C; realization given map (Wishart, Gamma dists)

656 LARSON ET AL. Vol. 656

= Output is sample maps and
samples of C;

= not always useful for subsequent
parameter estimation

= construct approx. likelihood by
averaging over samples

- Blackwell-Rao estimator
IcIc!
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The Planck likelihood

High ¢
Start with pseudo-Cy of each detector, with conservative masks

for cosmology, consider
100x100, 143x143,217x217, 143x217

Foregrounds:
Use 353 GHz as a dust template
Explicit power spectral templates for unresolved point sources, SZ, CIB

Instrument:;

relative calibration between 100, 143,217

beam errors

Use Gaussian approximation assuming a fiducial models gives the signal
covariances (Hamimeche & Lewis)

low ¢

Temperature: Planck 30-353 GHz
polarization: VWWMAP

needed to fix optical depth 1
ICIC
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Measuring the geometry of the
Universe

Observations of

—
-
o

T~ & | )
7/

distant supernova
22
£8 o8 \ + PRSRECTe
| - - < . _
5§ G j MB Observation
"6 (@)
£5 04 . _
=R WMAP Flat Universe
<o
e Q=+ 8,=1
0.0

0 0.2 0.4 0.6 0.8 1.0

Q. Amount of “matter”
(normal + dark)

IcIc!
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Measuring the geometry of the

Universe

1.0

0.8

0.6

0.4

0.2

0.0

Planck Collaboration: Cosmological parameters

\
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B \ _
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N\

| \ , —
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\
\
B N _
| | | | A
0.0 0.2 0.4 0.6 0.8 1.0

Qm

75

70

65

6OI

55

0.80

0.72

0.56

B tlensing+BAO

| |
+lensing 75

70

0.24

0.32

2,

Fig. 25. The Planck+WP-+highL data combination (samples; colour-coded by the value of Hj) partially breaks the geometric degen-
eracy between Q,, and Q5 due to the effect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

0.40 0.48

IcIc!
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Planck Params

0.992
72 B I. | | | ]
’ 0.984
0 1 14 o.976
68 | | . 0968
(=)
S
L 4 0960 ”
66 a
0.952
64 |- - 0.944
0.936
| | | |
0.26 0.30 0.34 0.38
O

Fig. 3. Constraints in the Q,—H, plane. Points show samples
from the Planck-only posterior, coloured by the corresponding
value of the spectral index ng. The contours (68% and 95%)
show the improved constraint from Planck+lensing+WP. The
degeneracy direction is significantly shortened by including WP,
but the well-constrained direction of constant Q4 (set by the
acoustic scale), i1s determined almost equally accurately from

Planck alone.

IcIc!
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Fig. 2. Comparison of the base ACDM model parameters for Planck+lensing only (colour-coded samples), and the 68% and 95%
constraint contours adding WMAP low-¢ polarization (WP; red contours), compared to WMAP-9 (Bennett et al. 2012; grey con-

tours).
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Hierarchical Models

So we have a hierarchical model

ask progressively more complicated questions of the data, with
(approximately) no dependence on the details of previous results

Timelines = maps = spectra = parameters

Each is a “nuisance parameter” for the next step w/
an uncontroversial prior defining that step
e.g8,{TpTp) = Spp(Ce)  P(Cel0) =3[Cr - C(B)]

But in the realistic case there may be other
nuisance parameters for which the priors are
relevant:

timeline systematics, foregrounds, &c.

ICIC
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Testing assumptions

~ We have been calculating the posterior

P(Quh?, Qch?, Omc, T, ns, As | Planck, 1)

~ Background information
= (testable) assumptions:

o LCDM in general
o gaussianity, isotropy

o by some measures, it obeys
these assumptions very we

200

- Ll

Py

b

r

L

0.011 0.013

Variance [ mK? |

-0.05

0.05

Skewness

-0.05

0.05

Kurtosis

ICIC

(‘I”

Very difficult to test these
assumptions absent a
specific alternative, 1n a
Bayesian way

C() [uK']

Co) [uK']
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Low power on large scales

1500
T

D, (K]
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SMICA
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—200

IcIc!
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Anomalies?

nb. there is also a
known asymmetry from
CMB dipole aberration.

Small (but statistically
significant) difference between
the power in the hemispheres

[1K?]
1000 2000 4000 5000

(0 +1)Cy/2m

Nefie!
0.07 0

o
N
o
o
o
o
o
-k
N
o
o
—
(o)}
o
o
N
o
o
o

ICIC! Overall low amplitude at large scales
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Large-scale anisotropy

Hemispherical differences: how can we arrange
anisotropy on the scale of the horizon?

initial conditions: anisotropic inflation?

the large-scale structure of spacetime

change the geometry: Bianchi
homogeneous + anisotropic spacetimes

change the topology

ICIC
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The shape of the Universe

-~ General relativity determines the curvature of the
Universe, but not its topology (holes and handles)

~ Most theories of quantum gravity (and quantum
cosmology) predict topological change on small
scales and at early times.

= Does this have cosmological implications!?

= E.G,, small universe = fewer large-scale modes
available = low power on large scales? &2

IcIc!
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Topology in a flat “universe”

7522, R Gty
LTETI (L ‘ Don't need to “embed” the square
NVAVAVAV N to have a connected topology.

“tiling the plane”
ICIC
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Topology in a flat “universe”

e ;
PATATATAN ‘ Don’t need to “embed” the square
NVAVAVAV N to have a connected topology.

“tiling the plane”

ICIC
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Topology in a flat “universe”

]
Lois

VATAIATTAN T

NONININS : ‘ s

INININAN | Don't need to embed” the square
NVAVAVAVY . to have a connected topology.

“tiling the plane”
ICIC
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Topology in a flat “universe”

ttttt

N
L‘\
) B ~ o -
_ < A S
515 ATAST 1) u

= u

ST o
LT ‘ Don't need to “embed” the square
NVAVAVAV N to have a connected topology.

“tiling the plane”
ICIC
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Topology + geometry

o Tile the 2-sphere with different
fundamental domains

= (Each of these has a 3-sphere analogy)

o Can also tile the hyperbolic universe:

= (Bond, Pogosyan, etc.)
|lc I El http://www.sciencenews.org/pages/sn_arc98/2 21 98/bobl.htm
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http://www.sciencenews.org/pages/sn_arc98/2_21_98/bob1.htm
http://www.sciencenews.org/pages/sn_arc98/2_21_98/bob1.htm

Multiply-connected Spherical
Topologies

Fundamental
Space Order Elements E.P.
group
. order 2 rotations
Quaternionic LT 8 bout 2 dicul
Dihedral about 2 perpendicular
axes
Binary symmetries of
Octahedral 24
Tetrahedral r. tetrahedron
Truncated Binary = symmetries of
Cube Octahedral r. octahedron
Bina symmetries of
Poincare = 120 y.
Icosahedral r. icosahedron

ICIC!
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Measuring Topology
with the CMB

@ @ Perfect correlation [of SW]
@ © “circles in the sky”

(O< > finite-lag correlation

Last Scattering Surface
IcIc!

Thursday, 12 September 13



Topology in the CMB

- Look for repeated patterns Reviews:
P P Levin,; Lachieze-Rey, Lehoucq,
o Generic & specific methods Luminet

0 matching patches (e.g, Levin et al )
= method of images (e.g., Bond et al) {\
= assumes infinitely thin LSS

= mostly open Universes

o Circles in the sky (Cornish, Spergel, Starkman)e g
= looks for LSS structure;ignores
different views of the same point
= nb. generic methods work as frequentist null

tests but need comparison w/ specific topologies to get statistics

= even Bayesians need to do exploratory statistics

= Cornish et al '04:“fewer than | in 100 random skies generate a
1CIC false match™ [??]: limit out to 24 Gpc
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Topology: methods

When topological scale = Horizon scale, induce

anisotropic correlations (and suppress power) on large
scales

Direct search for matched circles
sensitive to topology with parallel matched surfaces
Explicit Likelihood

calculate correlation matrix for specific topologies.
3d Gaussian with (6x0k) = (21)’0p(k+k')P(k) wl k restricted
to fundamental domain with boundary conditions

induced CMB correlations depend on topology (incl.
orientation)

ICIC
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Simulated Maps (), =-0.063)

Quaternionic/bi-dehedral Octahedral/bi-tetrahedral
-_




Lowest multipoles

Quaternionic Octahedral Truncated cube Poincaré WMAP

LS N 0 ‘('))

= LA 0-.
/\' ‘\\" \. \/ “"')
e=4 -‘ (.6 )\) - ; .1;‘ /, ‘b
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|_CI(TI =
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Bayesian topology

1 1 _
P(a|C) = TETSIE exp <—§aTC' 1a>

o Full correlation matrix:
o C ={amacm’) = Ceomm = C(cosmology, topology)

= f kA (k, An)Ay (k, An)P(k) —
D Ay, M)A (ki AP r) Y (B)Y,, (B)
O d — Uftm

= (Noise irrelevant on scales of interest)
= Suppressed power = stronger correlations

ICIC!
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Pixel correlations

1 Octahedral: Cpp’=<%<%)%(i°pf)> = ) CotrmmBeBeYom(ip)Yom (i)

« h=0.64,Q, =-0.017 =

Rows of the correlation matrix:

1CIC!

R L L)
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Pixel correlations

- Poincare: Cpp':<%<f’3p>%@p'>> = M;m/ Cotrmms BeBo Yem (p) Yorm: ()
= h=0.52, Q, =-0.063 =

Rows of the correlation matrix:

TP Ty )

IcIc!
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Topology from Planck

o “Matched circles” in a simulated Universe:

= Alas, not found... we can limit the size of the
“fundamental cube” to be greater than the size of

the surface we observe with the CMB:
= side L=26 Gpc

ICIC
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Topology: results

7 No strong evidence for topology on the scale of

the last-scattering surface
Likelihoods __ Circles-in-the-sky

T
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Bianchi Models

Homogeneous, anisotropic spaces

Vll: global shear and rotation
parameter / relates vorticity m; to shear G;j, Qo

(ﬁ) (1+h)1/2(1+9h)1/21—Qtot\/(012)2+(013)2
H O_ 6h Qtot H 0 0

H
Focusing induces specific pattern
of temperature anisotropy on large

scales
@ €
Full likelihood calculation
. o o . .
(Gaussian added to deterministic 0
template) 5 ,
consistent cosmology very low
likelihood P, '

ICIC
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Bianchi Models

Flat-decoupled

Bianchi Parameter SMICA SEVEM
MAP Mean MAP Mean
Qi 0.38 0.32+0.12 0.35 0.31 +£0.15
Q,B\ 0.20 0.31 £0.20 0.22 0.30 = 0.20
X 0.63 0.67 £0.16 0.66 0.62+0.23
(w/H) 8.8x 10719  (7.1+£1.9)x1071° 94x107'° (59+24)x1071°
a 38.8° 51.3° +£47.9° 40.5° 77.4° + 80.3°
B 28.2° 33.7° £ 19.7° 28.4° 45.6° £ 32.7°
0% 309.2° 292.2° +£51.9° 317.0° 271.5° £ 80.7°
Open-coupled
Bianchi Parameter SMICA SEVEM
MAP Mean MAP Mean
Q 0.05 0.07 £0.05 0.09 0.08 +0.04
QB 0.41 0.33 +£0.07 0.41 0.32 +0.07
Qﬁ 0.55 0.60 = 0.07 0.50 0.59 +£0.07
X 0.46 044 +£0.24 0.38 0.39 +£0.22
(w/H) 5910710 4.0+£24)x1071% 93x1071" (45+2.8)x1071°
a 57.4° 122.5° £ 96.0° 264.1° 188.6° +98.7°
B 54.1° 70.8° £ 35.5° 79.6° 81.1° £ 31.7°
0% 202.6° 193.5° + 77.4° 90.6° 160.4° +91.1°

Flat-coupled:

wo/Hy < 8.1 x 1071

(95%)

IcIc!
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(b) Open-coupled-Bianchi model.
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-+ The Bianchi Vil uncoupled “model” accounts for
much of the hemispherical asymmetry

J/

-60.0 I I +50.,0

ICIC
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Non-gaussianity

Another way to go beyond (and check) the simple
assumptions

In general, can’t write down “the” distribution for a parameter with some

specific set of higher-order moments. (cf. yesterday’s discussion of Gaussian as
MaxEnt)

Use frequentist estimators...

In the absence of a specific model, want to determine
phenomenological parameters describing departure from an
isotropic multivariate gaussian distribution.
e.g., moments — but not unique (there is no distribution that has
mean, variance, skewness, but no higher moments)

for (suitably defined) small non-gaussianity, third-order moments should
dominate

full determination of 3-pt function is computationally infeasible (and we lack
sufficient S/N)

parameterize non-gaussianity

ICIC

Thursday, 12 September 13



non-Gaussianity: faL
Heuristically ¢ = ¢¢g + fNL(¢%‘ — <¢%}>)

for a Gaussian ¢¢ (e.g., multi-field inflation)
This is the (spatially) local model for non-Gaussianity

Induces specific 3-d correlations

(9p9d) ~ 3fnL ((Padadada) — (dada)(Ppada)) + O(far)
~ 6fNL{Dcdc) (Pada) + O(far)

and hence 2-d correlations in the CMB

Corresponds to Fourier bispectrum B(ki, k2, k3) which
peaks in squeezed case k| <k;=k3

modulate small-scale structure by large-scale modes
cf. galaxy bias

More generally, consider other shapes (e.g., equilateral)

1CIC motivated by specific theories
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Estimating non-Gaussianity

- 616263 — 616263 —2
<a€1m1 a€2m2a€2m2> e gm1m2m3b€1€2€3 — gmlmgmg £1£2£3B€1€2£3

Expect to be able to estimate the third moment by
taking some weights average over cubic products

of data

(cf. quadratic estimators of power spectra)

“optimal” (min-var) weights computationally infeasible
(Heavens 1998) — average over all triples of data

ignoring off-diagonal covariance gives somewhat more tractable
case (Creminelli et al. 2006).

further simplify for “separable” shapes (Komatsu et al=KSW)
and linear combinations thereof (Fergusson & Shellard)

generalize to Sr=skew-(Y, retains shape information in one £
direction (Heavens & Munshi)

ICIC
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Non-Gaussianity from Planck

~ Planck detects (non-Primordial) non-Gaussianity...

Independent ISW-lensing subtracted
KSW Binned Modal KSW Binned Modal

SMICA
Local ................ 9.8 +5.8 9.2+5.9 T T T 2.7 +£5.8 TR 1.6 £ 6.0
Equilateral ............ -37 +75 20+ 73 A e e —42 + 75 =25 £ 73 —20 £ 77
Orthogonal ............ —46 + 39 -39 + 41 -36+41  ..... -25+39 —17 + 41 —14 + 42

NILC
e s 11.6 £ 5.8 10.5 £5.8 94+59 ..... 45+5.8 3.6 5.8 2.7+6.0
Equilateral ............ —41 £ 76 —31 £+ 73 =N T —48 + 76 —-38 £ 73 —20 £ 78
Orthogonal ............ =74 + 40 —62 + 41 -60+40  ..... —53 £ 40 —41 £ 41 —37 £ 43

SEVEM
Lecal ————— 10.5 +5.9 10.1 £ 6.2 94+60 ..... 34+59 32+6.2 2.6 £6.0
Equilateral ............ -32+76 2173 ) i 1 e i A -36 + 76 -25+73 —13 £ 78
Orthogonal ............ —34 + 40 —30 + 42 S e —14 + 40 -9 +42 -2 +42

C-R

i e 124 £ 6.0 11.3+5.9 T 6.4 +6.0 S 5.1+5.9
Equilateral ............ —60 + 79 -52 + 74 e et ' e -62 + 79 -55+74 —32 + 78
Orthogonal ............ =76 + 42 —60 + 42 —63-+-42——s —57 £ 42 —41 + 42 —42 + 42

ICIC
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Non-Gaussianity from Planck
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The CMB: A Case Study

Hierarchical Bayesian formalism

raw-data = Maps — spectra — parameters

radical data compression
need to keep track of likelihood function details

Checking assumptions

“anomalies’’?

No obvious solution by changing the large-scale structure of
spacetime (topology, Bianchi)

non-Gaussianity
lensing, point sources, correlations detected in Planck
no evidence yet for primordial non-Gaussianity

ICIC
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