SUPPLEMENT - Report 43: Quantifying the impact of vaccine hesitancy in prolonging the need for Non-Pharmaceutical Interventions to control the COVID-19 pandemic

Daniela Olivera Mesa, Alexandra B Hogan, Oliver J Watson, Giovanni D Charles, Katharina Hauck, Azra C. Ghani, Peter Winskill¹

WHO Collaborating Centre for Infectious Disease Modelling, MRC Centre for Global Infectious Disease Analysis, Jameel Institute (J-IDEA), Imperial College London

¹Correspondence: Peter Winskill, p.winskill@imperial.ac.uk

SUGGESTED CITATION

D Olivera Mesa, AB Hogan, OJ Watson et al. Quantifying the impact of vaccine hesitancy in prolonging the need for Non-Pharmaceutical Interventions to control the COVID-19 pandemic - SUPPLEMENT. Imperial College London (24-03-2021), doi: https://doi.org/10.25561/87096.

() () This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives BY NO NO 4.0 International License.

Table S1: Parameter Descriptions and Values:

Parameter	Symbol	Value	Description	
Epidemiological Parameters				
Transmission	β	-	Calculated from R ₀	
parameter				
Basic reproduction	R ₀	3.0	Estimated from European data consistent with a doubling	
number			time of 3.5 days ¹ .	
Mean Latent Period	1	4.6 days	Estimated at 5.1 day ²⁻⁴ . The last 0.5 days are incorporated	
	~		in the infectious periods to capture pre-symptomatic	
	u		infectivity	
Mean Duration of Mild	1	2.1 days	Incorporates 0.5 days of infectiousness prior to	
Infection	~ ~		symptoms. In combination with mean duration of severe	
	<i>Y</i> ₁		illness this gives a mean serial interval of 6.75 days ⁵ .	
Mean Duration of	1	4.5 days	Mean onset-to-admission of 4 days ⁶ . Values in the wider	
Severe Infection Prior			literature range from 1.2 days to 12 days ^{2-4,7,8} . Includes	
to Hospitalisation	12		0.5 days of infectiousness prior to symptom onset.	
Mean Duration of	1	9 days	Median of values identified in ⁷⁻¹¹	
Hospitalisation for non-	γ_{31}			
critical cases if survive	10,1			
Mean Duration of	1	9 days	Median of values identified in ⁷⁻¹¹	
Hospitalisation for non-	$\gamma_{3.0}$			
critical cases if die	-,-	14.0 days	Manual densities in ICU - 542.2 days from a study source 42	
Mean Duration in ICU if	1	14.8 days	Mean duration in ICU of 13.3 days from a study across 42	
survive	$\gamma_{4,1}$		countries ¹² . Ratio of duration in critical care if die:	
	,		duration in critical care if survive of 0.75 and 60.1%	
Moon Duration in ICI Lif	1	11.1 days	Moon duration in ICU of 12.2 days from a study across 42	
dia	<u> </u>	II.I days	countries ¹² Patie of duration in critical care if die:	
ule	$\gamma_{4,0}$		duration in critical care if survive of 0.75 and 60.1%	
			probability of survival in $ICI I^{13}$	
Mean Duration in		3 4 days	Working assumption	
Recovery after ICU	_ _	5.1 days		
	γ_5			
Mean duration of	1	365 days	Assumed value based on published data of protection to	
naturally acquired	_ _		reinfection. Protection is reported to last at least 8	
immunity	ρ		months ¹⁴⁻¹⁶	
, Infection fatality ratio	$\mu(a)$	-	Age-dependent ¹⁷	
(IFR)	<i>p(u)</i>			
Hospitalisation rate	<i>φ</i> (<i>a</i>)	-	Age-dependent ¹⁸ .	
Vaccination parameters	φ («)			
Vaccine efficacy against	u_{i}	94%: 63%	We assumed infection-blocking efficacy is the same as	
infection	Unf (u)		reported vaccine efficacy against clinical disease. Values	
			were selected to cover the range of approved vaccines	
			efficacies reported to date ^{19,20}	
Vaccine efficacy against	$v_{dic}(a)$	60%	Estimate based on reported vaccine effectiveness data in	
disease	vais (a)		the UK which suggests ~86% efficacy against	
			hospitalisation/death compared to ~65% against mild	
			disease for a single dose of the Pfizer vaccine ^{21,22} . The	
			assumed value of 60% generates 98% efficacy against	
			hospitalisation/death for the high efficacy vaccines and	
			85% for the moderate efficacy vaccine, with both	
			representing two dose schedules.	

Vaccine duration of	$1/\varphi$	Lifelong	Assumption. No data currently available but estimates
protection			from MERS vaccines suggest durability of at least 1 year ²³ .
Age-dependent rate of	$\kappa(a)$	-	Population-dependent: set such that number of people
vaccination			vaccinated per day in each age group achieves target
			coverage by the end of the vaccination period
Mean time to develop	1/ω	7 days	Based on immunogenicity data from Phase II trials in
vaccine-acquired			which antibody titres plateau ~7 days post dose 2 23-27
immunity following			
second dose			
Vaccine schedule		21 days	2 doses modelled 21 days apart ^{19,20,28,29} . Efficacy follows
			2nd dose (so only modelling final dose of any vaccine
			schedule)
Age-targeting of		Individuals over 15	Vaccination is targeted prioritising elderly age groups
vaccination		years old are	
		targeted	

Figure S1 - COVID-19 dynamics for different reproductive number profiles. Profiles were estimated for each vaccine hesitancy scenario in order to achieve herd immunity (R_{eff} =1) and control the pandemic. **a)** Daily projected deaths per million for a high vaccine efficacy. **b)** Daily projected deaths per million for a moderate vaccine efficacy. Black line shows an ideal scenario without vaccine hesitancy and 98% of individuals above 15 years old, are vaccinated. Orange shows an optimistic scenario with low vaccine hesitancy, purple shows a neutral scenario and blue line shows a pessimistic scenario with high vaccine hesitancy. In each scenario, vaccination coverage per age group varies according to vaccine hesitancy.

Figure S2 - Reproductive number profile for country specific simulations. Profiles, before vaccination begins, are taken from model fittings to country-specific data (<u>https://mrc-ide.github.io/global-lmic-reports/</u>). After vaccination starts, NPIs are lifted based on an ideal vaccination coverage over time. Reproductive number is set to increase in ten steps from the value at the beginning of vaccination to an average initial reproductive number. Continuous lines show profiles for a high efficacy vaccine. Dotted lines show profiles for a moderate efficacy vaccine.

Figure S3 - Projected deaths per age group for each country. **a)** Total deaths for a vaccine with high efficacy. **b)** Total deaths for a vaccine for moderate efficacy. Values are shown for the vaccinated and unvaccinated populations. Two scenarios are presented: An ideal scenario, where 98% of the population older than 15 years old is vaccinated, and a vaccine hesitancy scenario, where coverage for people over 15 years old is based on vaccine acceptance in each country. Total deaths are estimated over a two-year period since vaccination starts.

References

- 1. Walker, P.G.T., *et al.* The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. *Science* **369**, 413-422 (2020).
- 2. Linton, N.M., *et al.* Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. *J Clin Med* **9**, 538 (2020).
- 3. Li, Q., *et al.* Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. *New England Journal of Medicine* **382**, 1199-1207 (2020).
- 4. Lauer, S.A., *et al.* The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. *Ann Intern Med* **172**, 577-582 (2020).
- 5. Bi, Q., *et al.* Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. *The Lancet Infectious Diseases* **20**, 911-919 (2020).
- 6. Docherty, A.B., *et al.* Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. *BMJ* **369**, m1985 (2020).
- 7. Hawryluk, I., et al. Inference of COVID-19 epidemiological distributions from Brazilian hospital data. J. R. Soc. Interface **17**(2020).
- 8. South African COVID-19 Modelling Consortium X. Estimating cases for COVID-19 in South Africa. Short term Projections June 2020. (2020).
- 9. Sreevalsan-Nair, J., Vangimalla, R.R. & Ghogale, P.R. Analysis and Estimation of Length of In-Hospital Stay Using Demographic Data of COVID-19 Recovered Patients in Singapore. *medRxiv*, 2020.2004.2017.20069724 (2020).
- 10. Haw, N.J.L., Uy, J., Sy, K.T.L. & Abrigo, M.R.M. Epidemiological profile and transmission dynamics of COVID-19 in the Philippines. *Epidemiol Infect* **148**, e204-e204 (2020).
- 11. Oliveira, E., *et al.* ICU Outcomes and Survival in Patients with Severe COVID-19 in the Largest Health Care System in Central Florida. *medRxiv*, 2020.2008.2025.20181909 (2020).
- 12. Pritchard, M., et al. ISARIC Clinical Data Report 4 October 2020. medRxiv, 2020.2007.2017.20155218 (2020).
- 13. Intensive Care National Audit And Research Centre (ICNARC). ICNARC report on COVID-19 in cri⊖cal care:England, Wales and Northern Ireland (2020).
- 14. Hall, V., *et al.* Do antibody positive healthcare workers have lower SARS-CoV-2 infection rates than antibody negative healthcare workers? Large multi-centre prospective cohort study (the SIREN study), England: June to November 2020. *medRxiv*, 2021.2001.2013.21249642 (2021).
- 15. Dan, J.M., *et al.* Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. *Science* **371**, eabf4063 (2021).
- 16. To, K.K., *et al.* COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* (2020).
- 17. Brazeau, N.F., *et al.* Report 34: COVID-19 Infection Fatality Ratio: Estimates from Seroprevalence. in *COVID-19 reports* (Imperial College London, 2020).
- 18. Salje, H., *et al.* Estimating the burden of SARS-CoV-2 in France. *Science* **369**, 208-211 (2020).
- 19. Polack, F.P., *et al.* Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *New England Journal of Medicine* **383**, 2603-2615 (2020).
- 20. Voysey, M., *et al.* Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. *The Lancet* **397**, 99-111 (2021).
- 21. Public Health England. PHE monitoring of the early impact and effectiveness of COVID-19 vaccination in England. 1-15 (Public Health England 2021).

- 22. Bernal, J.L., *et al.* Early effectiveness of COVID-19 vaccination with BNT162b2 mRNA vaccine and ChAdOx1 adenovirus vector vaccine on symptomatic disease, hospitalisations and mortality in older adults in England. *medRxiv*, 2021.2003.2001.21252652 (2021).
- 23. Folegatti, P.M., *et al.* Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. *The Lancet Infectious Diseases* **20**, 816-826 (2020).
- 24. Jackson, L.A., *et al.* An mRNA Vaccine against SARS-CoV-2 Preliminary Report. *N Engl J Med* **383**, 1920-1931 (2020).
- 25. Zhu, F.C., *et al.* Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. *Lancet (London, England)* **395**, 1845-1854 (2020).
- 26. Mulligan, M.J., et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. *Nature* **586**, 589-593 (2020).
- 27. Sahin, U., *et al.* COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. *Nature* **586**, 594-599 (2020).
- 28. Baden, L.R., *et al.* Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *New England Journal of Medicine* **384**, 403-416 (2020).
- 29. Logunov, D.Y., *et al.* Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. *The Lancet*.