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S1 Na onal mobility indicators during the pandemic

S1.1 Age-specific U.S. foot traffic

To characterise changes in human contact pa erns during the pandemic, Foursquare Labs Inc. provided
longitudinal U.S. foot traffic data across the 50U.S. states, the District of Columbia, andNewYork City [1].
The data are based on Foursquare’s US first-party panel that includes millions of opt-in, always-on ac ve
users. Visits are derived via Foursquare’s core loca on technology, Pilgrim [2], which leverages a variety
of mobile device signals to pinpoint the me, dura on, and loca on of panelists’ visits to loca ons such
as shops, malls, restaurants, concert venues, theaters, parks, beaches, or universi es. From operated
and partner apps, Foursquare Labs Inc. collect a variety of device signals against opted-in users. These
include intermi ent device GPS coordinate pings, WiFi signals, cell signal strength, device model, and
opera ng system version. Addi onally, a smaller set of labeled explicit check-ins are captured from a
por on of the user panel. Check-ins are explicit confirma ons that a user was at a given venue at a
given point of me. One example source of this is Foursquare’s Swarm app, where users can “check in”
to venues to keep a log of where their mobility history. These check-ins then serve as training labels for a
non-linear model that is used to predict visits among users with unlabeled visits in terms of probabili es
as to which venue users ul mately visited. For research and insights use cases, the probabili es are
processed further, projected and aggregated by state / metropolitan area, day, and age cohort. This
projec on accounts for changes in the number of individuals in the panel and the representa veness of
panelists according to their home state or metropolitan area, age band, and gender rela ve to latest US
Census data.

Daily projected visit volumes were available at state / metropolitan area-level from February 1, 2020
to October 29, 2020 for individuals for 6 age groups

ã ∈ Ã =
{
[18− 24], [25− 34], [35− 44], [45− 54], [55− 64], [65+]

}
. (S1)

Daily projected visit volumes were standardised to projected per capita visits Vm,t,ã of individuals in
state / metropolitan area m and age band ã on day t by dividing the visit volumes with the number of
individuals in state / metropolitan area m and age band ã. Per capita visits appeared low for the first
two days of the me series, and were excluded. Data updates were obtained from May 26 onwards.

Fig. S17 illustrates the pre-processed me series of projected per capita visits Vm,t,ã. Individuals in
New York City, New York, and Hawai were projected to have considerably more per capita visits than
other states and metropolitan areas. Across states and metropolitan areas, projected per capita visits
were highest for individuals aged 35− 44 years, both before and a er stay at home orders were issued.
Individuals aged 65 or older had lowest projected per capita visits across all states and metropolitan
areas.
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Figure S17: Projected per person foot traffic per day for the 50 US states, District of Columbia and New York
City. Data were obtained using Foursquare’s loca on technology Pilgrim that pinpoints the me, dura on, and
loca on of panelist’s visits. Projected per capita visits standardised visit volumes by the popula on size in each
loca on and age group.
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S1.2 Age-specific U.S. mobility trends

Age-specific mobility trends were derived from the U.S. foot traffic data described in Sec on S1.1. Our
aim was to quan fy changes in U.S. foot traffic during the pandemic rela ve to a baseline period for
individuals in the 5-year age bands (S21) in each of the U.S. states, the District of Columbia, and New
York City. The baseline period was defined from February 3 to February 9, 2020, which corresponded to
the first week of the me series of projected per capita visits. We first calculated average projected per
capita visits during the baseline week,

V base
m,ã =

∑
t∈{Feb 3−Feb 9}

Vm,t,ã (S2)

and then derived the mobility trends

Xm,t,ã = Vm,t,ã/V
base
m,ã (S3)

for each state / metropolitan aream and the age bands ã available through the U.S. foot traffic data.

S1.3 Quan ta ve Analysis

To characterise different effects during the ini al phase of the pandemic, the me when stay at home
orders were introduced, and later me periods, we derived two par cular me points for each state or
metropolitan area. The first me point characterises the start of substan al declines in mobility across
all age groups, and the second me point characterises the me a er which mobility trends begin to re-
bound. To determine the two me points we calculated the 15-days central moving average of projected
per capita visits in each loca on (state or metropolitan area)m,

Xm-avg
m,t =

1

30 + 1

1

Ã

15∑
s=−15

∑
ã

Xm,t+s,ã, (S4)

where Ã is the number of age groups in the mobility data specified in (S1), such that Ã = 6. The
first me point, which we refer to as the dip date, was determined as the first day when the 15-days
moving-average had fallen by over 10% compared to the one two weeks prior,

tdipm = min
{
t : Xm-avg

m,t /Xm-avg
m,t−14 < 0.9

}
. (S5)

The second me point, which we refer to as the rebound date, was determined as the day with the
smallest 15-days moving-average,

treboundm = argmin
t>tdipm

Xm-avg
m,t , (S6)

where tdipm < treboundm ,∀m. Using different me intervals in the central moving average calcula ons did
not alter the value of change points substan ally (not shown). Figure S1 shows the mobility trends (S3)
for every U.S. state, the District of Columbia, and New York City, along with the dip and rebound dates.
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We then assessed differences in the weekly, age-specific mobility trends when compared to the
baseline week in early February. Gamma regression models with log link, and loca on and age category
interac on terms were fi ed to the selected daily mobility trends. Nega ve regression coefficients with
a two-sided p-value below 0.05 were interpreted as age groups showing sta s cally significantly lower
mobility compared to the baseline week. Similarly, posi ve regression coefficients with a two-sided
p-value below 0.05 were interpreted as age groups showing sta s cally significantly higher mobility
compared to the baseline week, and regression coefficients with a two-sided p-value above 0.05 were
interpreted as age groups showing mobility trends that were not significantly different compared to the
baseline week. Fig. S18 summarises the results. Overall, rela ve to the baseline week, mobility trends
started to decline significantly in mid March, were not significantly lower than baseline levels for the
first states in early to mid May, and not significantly lower than baseline levels for most states by early
August.

Next, we compared the rela ve mobility trends between age groups over me, using the 35-44
age group for rela ve comparisons. Gamma regression models were fi ed to the trend data similarly
as described above. Fig. S19 summarises the results. Overall, individuals aged 18-24 had significantly
lower mobility trends when compared to individuals aged 35-44 across most states in the early phase
of the pandemic, between mid March and early June. No other age group showed similarly strong
rela ve declines inmobility. However these rela ve differencesweakened over me and sincemid June,
individuals aged 18-24 tended to have similarmobility trends as individuals aged 35-44. The only notable
excep on are younger individuals aged 18-24 (and also those aged 25-34) in Hawaii, who tended to
have significantly higher mobility trends than individuals aged 35-44 throughout the en re observa on
period. Overall, individuals aged 65+ also had significantly lower mobility trends than those aged 35-
44, although less consistently across states when compared to young individuals. In conclusion, the
Foursquare data suggest that, except for Hawaii, individuals aged 18-34 have lower or similar, but not
significantly higher mobility when compared to individuals aged 35-44. In addi on, individuals aged 18-
24 showed significancly lower mobility trends when compared to individuals aged 35-44 between mid
March and early June in most states.

S1.4 Comparison of Foursquare mobility trend data set to an independent U.S. mobility
trend data set

To substan ate the trends observed in the na onal Foursquare data set, we evaluated an independent
data set of age-stra fiedmobility indicators that was provided by Emodo. The Emodo data set quan fies
the propor on of individuals with at least one observed ping outside the user’s home loca on, out of
a panel of individuals whose GPS enabled devices emi ed at least one ping on the corresponding day.
The observed, age-specific, daily mobility indicators within the panel were projected to loca on-level
mobility indicators. The projec on accounts for changes in the number of individuals in the panel, and
the representa veness of panel members in their home area, age band, and gender rela ve to the latest
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Figure S18: Analysis of mobility trends rela ve to the baseline week. Gamma regression models with log link
were fi ed to the daily trends. For each calendar week, mobility trends were categorised as sta s cally signifi-
cantly lower when compared to the baseline week, not significantly different, and sta s cally higher.
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Figure S19: Analysis of mobility trends rela ve to trends among individuals aged 35 − 44. Gamma regression
models with log link were fi ed to the daily trends. For each calendar week and each age group, mobility trends
were categorised as sta s cally significantly lower when compared to the trends among individuals aged 35− 44

in the same week, not significantly different, and sta s cally higher.
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U.S. Census.
Daily projected mobility indicators V̆m,t,ă were available at state / metropolitan area-level m from

Feb 01 to Jul 26 for individuals between the age groups

ă ∈ Ă =
{
[18− 24], [25− 34], [35− 44], [45− 54], [55+]

}
. (S7)

To compare the data against the age-specific Foursquaremobility trends (S3), we derivedmobility trends
similarly as for the Foursquare data. We first calculated average mobility trends during the baseline
period,

V̆ base
m,ă =

∑
t∈{Feb 19−Mar 03}

V̆m,t,ă (S8)

and then derived the mobility trends

X̆m,t,ă = V̆m,t,ă/V̆
base
m,ă (S9)

for each loca on (states or metropolitan area)m and the age bands ă.
Ini al analysis indicated that the mobility trends (S9) were noisy for some loca ons. For this reason,

analysis was limited to loca on with an average of 20, 000 dis nct panelists per day per age band, and
the baseline period in (S8) was defined over 14 days. In total, data from 11 loca ons were used. Fig. S20
compares the age-specific mobility trends derived from the Foursquare data to those derived from the
Emodo data set. Overall, the trends observed in both data sets were very similar un l mid July. Since
mid July, the Emodo data suggest that mobility trends plateaued below baseline levels, whereas the
Foursquare data suggest that mobility con nued to increase in all age groups.

The primary aim of this analysis was to assess whether the Emodo data support the above obser-
va on that individuals aged 18 − 24 and 25 − 34 had mobility trends that are not significantly higher
than those seen for older individuals. We repeated the analyses presented in Sec on S1.2, with the
last observa on week set to the last complete week of observa ons in both data sets (September 20,
2020). Fig. S21 summarises the results. The Emodo data substan ate that individuals aged 18-24 and
25− 34 had lower or similar mobility levels than individuals aged 34-45, and not higher mobility levels
than individuals aged 34-45.
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Figure S20: Comparison ofmobility trends derivedwith Foursquare’s loca on technology and Emodo’s mobility
data. The comparison was restricted to iden cal age bands in the two data sets, a common range of observa on
days, and states and metropolitan areas with an average of at least 20, 000 panelists per day.
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Figure S21: Comparison of mobility trends in the Foursquare and Emodo data sets rela ve to the 35-44 refer-
ence age group. For each calendar week and each age group, mobility trends were categorised as sta s cally
significantly lower when compared to the trends among individuals aged 35 − 44 in the same week, not signif-
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S2 Age-specific COVID-19 a ributable mortality data

S2.1 Source of the unstra fied and age-specific COVID-19 deaths data

Daily COVID-19 death counts from February 01, 2020 un l October 30, 2020 regardless of age were ob-
tained from John Hopkins University (JHU) for all U.S. states and the District of Columbia [3], except New
York State. For New York City, daily COVID-19 deaths counts were obtained from the GitHub Repository
[4]. The overall death counts were used for sta s cal inference prior to when age-specific death counts
were reported for each loca on (state or metropolitan areas).

Age-specific COVID-19 cumula vedeath countswere retrieved for 43US states, theDistrict of Columbia
and New York City from city or state Department of Health (DoH) websites, data repositories or via data
requests to DoH. Table S8 lists our data sources for each loca on, the date since when age-specific mor-
tality data used in this study was recorded, and the frequency of data updates.

S2.2 Data collec on and processing of the age-specific COVID-19 deaths counts

The recorded death counts were processed to create a me series of daily deaths for every loca on.
Some dates had missing data, typically either because no updates were reported, because the web-
page failed or because the URL of the website had mutated. Missing daily death counts were imputed,
assuming a constant increase in daily deaths between two days with data. Some updates displayed a
decreasing cumula ve death from one day. To ensure that the me series wasmonotonically increasing,
we back adjust with the most recent count assumed to be the correct cumula ve count. Finally, certain
age bands declared by the Department of Health could not be directly associated with the age bands
used in the analysis, defined in (S21). In this case, the boundaries of these problema c age bands were
modified to reflect the closest age band from the analysis. Fig. S7 illustrates the age-specific COVID-19
mortality data that were retrieved. To assess the completeness of the age-specific death data, we com-
pared the me evolu on of the sum of the age-specific deaths that we retrieved to the me evolu on
of the overall number of COVID-19 deaths reported by JHU [3] and the New York City Github Reposi-
tory [4]. Fig. S22 confirms that the sum of the age-specific data that we retrieved closely matched the
overall death data.

S2.3 Share of deaths and cases by common age strata across loca ons

For an ini al analysis of the me evolu on of death counts across loca ons, the data from different age
stra fica ons were used to predict death counts in the common age bands A defined in (S21) across
all loca ons using a latent Dirichlet-mul nomial model. Denote by Bmt the age bands specified in loca-
onm in month t by the DoH. To ensure that deaths by all age bands are mapped correctly, the latent

Dirichlet-mul nomial model uses internally the 1-year stra fica on

Ǎ =
{
0, 1, . . . , 104, 105

}
. (S10)
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We denote the COVID-19 a ributable deaths occurring in loca on m in calendar month t by yǍ,mt =

[ymtǎ]ǎ∈Ǎ. In otherwords, ymtǎ are the sumof the daily newCOVID-19 a ributable deaths that occurred
in loca onmwithin calendar month t among individuals in the 1-year age bands ǎ. The monthly deaths
yǍ,mt are not observed, and assumed to follow a distribu on specified by a combina on of several base
func ons that depend only on age. To simplify nota on, we suppress the loca on and me indices in the
following, with all variables and parameters being specific to one loca on and one month. We adopted
the parametric model

yǍ ∼ Dirichlet-mul nomial(N,κ×ψǍ), (S11a)

ψǍ = so max(ϑǍ), (S11b)

ϑǍ,ǎ = ω1 + ω2 ǎ+ ω3 ǎ
2 + ω4 log(ǎ), for all ǎ ∈ Ǎ, (S11c)

whereN =
∑

ǎ yǎ and the so max func on is

so max(z)ǎ =
exp(zǎ)∑
k∈Ǎ exp(zk)

. (S12)

Because of the self-normalising property of the so max func on, the vector ψ can be interpreted as
the unknown, expected propor ons of death counts that fall into the fine-resolu on age bands ǎ ∈
Ǎ. Thus, the above model describes the expected propor ons as a combina on of constant, linear,
square and logarithmic func ons on the untransformed scale. The model is straigh orward to fit to the
observed death counts in the repor ng strataB by the aggrega on property of the Dirichlet-mul nomial
distribu on. Denote the reported deaths by yB = [yb]b∈B. Then, the likelihood of the fine-resolu on
model is

yB ∼ Dirichlet-mul nomial(N,κ×ψB) (S13a)

ψB = so max(ϑB) (S13b)

ϑB,b =
∑
ǎ∈b

ϑǍ,ǎ for all b ∈ B. (S13c)

The Dirichlet-mul nomial allows for overdispersion in the fine-resolu on death counts. A priori, we
sought to allocate highest probabilitymass to the sub-model without overdispersion, whichwe obtained
with the re-parameterisa on

1 + ν =
N + κ

1 + κ
, (S14)

and adop ng the prior densi es

ωi ∼ N (0, 1), i = 1, . . . , 4, (S15a)

ν ∼ Exponen al(1). (S15b)

The fine resolu onmodelwas fi edwith Stan version 2.23, using 3HamiltonianMonte CarloMarkov
Chains of 10,000 itera ons and 1,000 warmup itera ons. All chains mixed well, had good convergence
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diagnos cs, no divergent transi ons, and the effec ve sample size for all parameters was above 500 in
all analyses.

The propor on of deaths in the common age stra fica on A and the corresponding death counts
were predicted from the fi ed fine-resolu on model. Specifically, denote the predicted propor ons
of deaths and deaths counts respec vely by φ⋆

a, d
⋆
a. Then, we sampled φ⋆

a, d
⋆
a according to their pos-

terior predic ve distribu ons. For samples (ψ, κ)|yB from the joint posterior distribu on of the fine-
resolu on model, we used again the aggrega on property of the Dirichlet-mul nomial distribu on,

ψA|yB = so max(ϑA) (S16)

ϑA,c|yB =
∑
ǎ∈a

ϑǍ,ǎ|yB for all d ∈ C, (S17)

and then predicted

φ⋆
A|yB ∼ Dirichlet(κ×ψA|yB), (S18)

d⋆a|yB ∼ Mul nomial(N,φ⋆
A|yB). (S19)

We back-calculated the monthly number of cases, c⋆a, by dividing the es mated number of deaths
by the infec on fatality rate in the corresponding age group,

c⋆a|d⋆a = d⋆a / πa, (S20)

where πa is the infec on fatality rate in age group a es mated in the meta-analysis by Levin and col-
leagues [5].

Figure S11 shows the monthly share of deaths for all age group and Figure S12 shows the monthly
share of cases over me among individuals aged 20 − 49. To evaluate if any the age-specific share
changed significantly over me, we computed for every month the share’s difference rela ve to the
first month with at least 30 cumula ve deaths. On Figure S11, we added a star (∗) next to the name of
loca ons for which there was a significant shi in the share of deaths among individuals age 80+. In
Figure S12, we added a star (∗) next to the name of loca ons for which there was a significant shi in
the share of cases among individuals age 20− 49.
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Table S8: Age-specific Mortality Data source, date of first availability and update frequency by loca on (state
and metropolitan area). The data are available in the GitHub repository [6].

Loca on Date record start Frequency of updates Source
Alabama May 03, 2020 Daily [7]
Alaska June 09, 2020 Daily [8]
Arizona May 13, 2020 Daily [9]
Arkansas - - -
California May 13, 2020 Daily [10]
Colorado March 23, 2020 Daily [11]
Connec cut April 05, 2020 Daily [12]
Delaware May 12, 2020 Daily [13]
District of Columbia April 13, 2020 Daily [14]
Florida March 27, 2020 Daily [15]
Georgia May 09, 2020 Daily [16]
Hawaii September 18, 2020 Weekly [17]
Idaho June 16, 2020 Daily [18]
Illinois May 14, 2020 Daily [19]
Indiana May 13, 2020 Daily [20]
Iowa May 13, 2020 Daily [21]
Kansas June 02, 2020 Mon, Wed and Fri. [22]
Kentucky May 13, 2020 Daily [23]
Louisiana May 12, 2020 Daily except Sat. [24]
Maine March 12, 2020 Daily [25]
Maryland May 14, 2020 Daily [26]
Massachuse s April 20, 2020 Daily [27]
Michigan March 21, 2020 Daily [28], [29]
Minnesota May 21, 2020 Weekly [30]
Mississippi September 30, 2020 Daily [31]
Missouri May 13, 2020 Daily [32]
Montana - - -
Nebraska - - -
Nevada June 07, 2020 Daily [33]
New Hampshire June 07, 2020 Daily [34]
New Jersey May 25, 2020 Daily [35]
New Mexico March 25, 2020 Daily [36]
New York - - -
New York City July 01, 2020 Daily [37], [4]
North Carolina May 20, 2020 Daily [38]
North Dakota May 14, 2020 Daily [39]
Ohio - - -
Oklahoma May 13, 2020 Daily [40]
Oregon June 05, 2020 Mon-Fri., some mes Sat. [41]
Pennsylvania June 07, 2020 Daily [42]
Rhode Island June 01, 2020 Weekly [43]
South Carolina May 14, 2020 Tue and Fri. [44]
South Dakota - - -
Tennessee April 09, 2020 Daily [45]
Texas July 28, 2020 Daily [46]
Utah June 17, 2020 Daily [47]
Vermont June 16, 2020 Daily [48]
Virginia April 21, 2020 Daily [49]
Washington June 08, 2020 Daily [50]
West Virginia - - -
Wisconsin March 15, 2020 Daily [51]
Wyoming September 22, 2020 Daily [52]
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Figure S22: Comparison of the Covid-19 overall death between the Department of Health death by age data
with the overall death from JHU [3], and the New York City Github repository (for NYC) [4].
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S3 Bayesian semi-mechanis c SARS-CoV-2 infec on model

Figure S23 summarises the main components of the age-specific contact and infec on model. Sec-
on S3.1 describes the infec on component of the model, and Sec on S3.2 describes the contact com-

ponent of the model. Sec on S3.3 describes how the model is fi ed against age-specific mortality data.
Sec on S3.4 specifies input parameters and prior distribu ons. Table S9 gives an overview of the model
parameters and associated prior distribu ons. Sec on S3.6 describes the generated quan es of the
contact and infec on model. Finally, Sec on S3.5 provides details on computa onal inference.

Figure S23: Overview of the age-specific contact and infec on model.
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Table S9: List of inputs and model parameters.

Name Es mated Prior Notes
Sec on
reference

Ini al number of infec ons yes log cm,t,[20−54] ∼ N (4.85, 0.42), infec ons seeded among individuals aged 20-54 Sec on S3.4.1
cm,t,a = 0, for a /∈ [20− 54], with log-normal prior with mean 138
where t = 1, . . . , 6.

Infec on parameters yes logR0,m ∼ N (0.98, 0.22) Based on [53] Sec on S3.4.1
with log-normal prior with mean, 2.5% and 97.5% quan les: 2.7, 1.8, and 3.9.

Suscep bility to infec on yes log ρS[0−14] ∼ N (−1.07, 0.222) Suscep bility was modelled rela ve to individuals aged 15-64, Sec on S3.4.1
log ρS[65+] ∼ N (0.38, 0.162) with lower suscep bility to infec on among individuals aged 0-14,

and higher suscep bility among individuals aged 65+.
Based on [54]

Discre zed genera on me distribu on no - Based on [55] Sec on S3.4.1
Baseline age-specific contact matrix no - Predicted based on loca ons’ age composi on and popula on Sec on S3.4.2
before mobility decreased density for weekdays and weekends
Schools closure age-specific contact matrix no - Used for individuals aged [0− 19] during school closure periods Sec on S3.4.2

Based on [54]
Mobility trend predictors no - Decomposed into 3 components to allow for varying effect sizes Sec on S3.4.2
Regression coefficients to describe yes βeased

m ∼ N (βeased, σ2
eased) Loca on-specific random effects to quan fy the effect of rapid Sec on S3.4.2

me-varying contact intensi es βeased ∼ N (0, 1) decreases in mobility between the dip date and the rebound date.
before the rebound date. σeased ∼ Exp(1.5) Effects are assumed to be constant across age groups.
Regression coefficients to describe yes βupswing

m,t,a = (βupswing-base + βupswing-age
m,a )× βupswing- me

m,t Random effects to capture unobserved behavioral factors Sec on S3.4.2
me-varying contact intensi es βupswing-base ∼ N (0, 1) a er the rebound date. Effects vary over me and age for each

a er the rebound date. βupswing- me
m,t = εm,⌊c(t)/2⌋ loca on. Time-varying effects are modelled with bi-weekly

εm,1 ∼ N[0,∞)(0, 0.025
2) AR(1) processes.

εm,v ∼ N[0,∞)(εm,v−1, σ
2
ε) for v > 1

logσε ∼ N (−1.2, 0.22)
βupswing-age
m,[20−49] ∼ Exp(βupswing-age

m,[20−49] )

βupswing-age
m,[20−49] ∼ Exp(0.1)

Reduc on in contact intensi es from/to yes ηchildren ∼ Uniform(0.1, 1.0) Vague prior density. Sec on S3.4.2
school children
Reduc on in contact intensi es among yes log γ ∼ N (0, 0.35) Prior centered on null hypothesis of no addi onal effect. Sec on S3.4.2
school children
Loca on and age-specific yes πm,a = πa × δm,a The prior distribu on on age-specific fatality ra os πa is based Sec on S3.4.3
infec on fatality ra os logπa ∼ N (µa, σ

2
a) on the meta-analysis of [5]. µa, σa are specified in

log δm,[20−49] ∼ Exp(δIFR[20−49]) Table S11. Loca on- and age-specific random effects
log δm,[50−69] ∼ Exp(δIFR[50−69]) allow for heterogeneity across loca ons.
log δm,[70+] ∼ Exp(δIFR[70+])

δIFR[20−49], δ
IFR
[50−69], δ

IFR
[70+] ∼ Exp(0.1)

Infec on-to-death distribu on no - As in [56] Sec on S3.4.3
Upper bound on a ack rate among school-aged children no - Upper bound was derived by mul plying reported a ack rates Sec on S3.4.3

in school se ngs with ξ = 6 in the central analysis. Parameter
choice was mo vated assuming that 50% of infected children and
teens are asymptoma c [57].

Overdispersion parameter yes ϕ ∼ N[0,∞)(0, 5) As in [56] Sec on S3.4.3
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In the model, SARS-CoV-2 spreads via person-to-person contacts. Person-to-person contacts are de-
scribed at the popula on level with the expected number of contacts made by one individual, referred
to as contact intensi es. Contact intensi es are age-specific. Contact intensi es vary across loca ons
(states andmetropolitan areas) according to each loca on’ age composi on and popula on density, and
change over me. Data from contact surveys before the pandemic are used to define baseline contact in-
tensi es. Data fromage-specific, cell phone derivedmobility trends are used to es mate changes in con-
tact intensi es during the epidemic in each loca on, among individuals aged 20+. Contact intensi es
involving individuals aged 0-19 are defined based on contact surveys conducted during the pandemic.
Infec on dynamics in each loca on are modelled through age-specific, discrete- me renewal equa ons
over me-varying contact intensi es. Natural disease parameters such as age-specific suscep bility to
infec on, the genera on me distribu on, and symptom onset and onset to death distribu ons are in-
formed by epidemiologic analyses of contact tracing data. Age-specific infec on fatality ra o es mates
are informed by large-scale sero-prevalance surveys. Disease heterogeneity is modelled with random
effects in space and me on contact intensi es and disease parameters. Themodel returns the expected
number of COVID-19 deaths over me in each loca on, which is fi ed against age-specific, COVID-19
mortality data. New data sources presented in this study are indicated in double-framed boxes.

S3.1 Infec on model

The me evolu on of SARS-CoV-2 infec ons is quan fied in terms of a discrete- me age-specific renewal
model. The discrete renewalmodel arises as the expected value of an age dependent branching process.
The model extends a previous version to age-specific disease dynamics [56]. In the renewal equa ons,
we model popula ons stra fied by the 5-year age bandsA, such that

a ∈ A =
{
[0− 4], [5− 9], . . . , [75− 79], [80− 84], [85+]

}
, (S21)

resul ng in A = 18 popula on strata. We denote the number of new infec ons, c, on day t, in age
band a, and loca on m as cm,t,a, with cm,t,a ≥ 0 for all t, m, a. Here infec ons are taken to be both
symptoma c and asymptoma c. We introduce a series of daily contact intensity matrices Cmt of di-
mension 18 × 18 in each loca on m. The me changing contact intensi es Cm,t were modelled in a
regression framework that uses as input pre-pandemic contact intensi es, which will be presented in
Sec on S3.4.2, as well as the age-specific mobility trends Xm,t,a that are described in the Supplemen-
tary materials. Entry Cm,t,a,a′ quan fies the expected number of contacts that one person in age group
a has with persons of another age a′ on day t in loca onm, which we refer to as contact intensity. We
further consider the probability ρa′ that a contact with an infec ous person leads to infec on of one
person in a′. We interpret ρa′ as a natural disease parameter that is region and me independent. We
model ρa′ as the product of a constant baseline parameter ρ0, and rela ve suscep bility parameters ρSa′
for a′ ∈ A through

ρa′ = ρ0 × ρSa′ = exp(log ρ0 + log ρSa′). (S22)
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To ensure a rela ve interpreta on of the suscep bility parameters, we set ρSa′ = 1 for some age bands.
Details are given in the Supplementary materials. This allows us to describe the me-varying reproduc-
on number on day t from one infec ous person in a in loca onm with

Rm,t,a =
∑
a′

sm,t,a′ ρa′ Cm,t,a,a′ , (S23)

where sm,t,a′ is the propor on of the popula on in loca onm and in age band a′ that remains suscep-
ble to SARS-CoV-2 infec on. It is given by

sm,t,a′ = 1−
∑t−1

s=1 cm,t,a′

Nm,a′
, (S24)

whereNm,a′ denotes the popula on count in age group a′ and loca onm. Extending the basic renewal
model, we obtain similarly

cm,t,a′ = sm,t,a′ρa′
∑
a

Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)

)
(S25)

where g is the discre zed genera on me distribu on as in [56]. This is because an individual of age a′

in countrym at me tmakes contacts with individuals of age a at rate Cm,t,a,a′ , and these are successful
with probability ρa′ if and only if 1) the individual in a′ is suscep ble, which is the case with probability
sm,t,a′ , and 2) the individual in a is s ll infec ous, which is the case with probability g(t− s).

S3.2 Time-varying contact pa erns

S3.2.1 Overview

Several studies have collected data on age-specific contact pa erns in various se ngs across the United
States prior to emergence of SARS-CoV-2 [58, 59, 60, 61]. However, li le data are available on how
contact pa erns changed during the pandemic. These considera ons prompted us to take a predic ve
approach. First, we used data from the Polymod study [62] to predict baseline contact matrices during
the early part of the pandemic for each loca on, which we denote by Cm. The pre-pandemic contact
matrices quan fy the expected number of contacts from one person in age band a with individuals in
age band a′ per day in loca on m, also known as contact intensi es. Popula ons were stra fied by
5-year age bands a ∈ A defined in (S21). Reflec ng differences in contact pa erns during weekdays
and on weekends, dis nct pre-pandemic contact matrices were generated for weekdays and weekends,
Cwdaym and Cwendm . For simplicity we suppress the weekday and weekend nota on in what follows, with all
equa ons being analogous. Our approach is similar to those reported in [63, 64]. Details are presented
in Sec on S3.2.2.

Second, we used the age-specific mobility trend data available for individuals aged 18+ to predict
me-varying contact intensi es among individuals abve age 20. Overall, me changing contact intensi-
es on day t in loca onm were modelled through

Cm,t,a,a′ = ηm,t,a Cm,a,a′ ηm,t,a′ , (S26)
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where a ∈ {[20− 25], . . . , [85+] } and a′ ∈ {[20− 25], . . . , [85+]}. The mul pliers ηm,t,a describe the
es mated effect of the age-specificmobility trendsXm,t,a on changes in pre-pandemic contact matrices
for each loca on. Since both the index person and the contacted individuals are changing their mobility
over me, the mul pliers are applied to the rows and columns of the contact intensity matrix. Details
are presented in Sec on S3.2.3.

Third, we used data from two contact surveys conducted a er nursery, kindergartens, and schools
closures to specify contact intensi es from and to individuals aged 0-19 during periods of school closure.
Details are presented in Sec on S3.2.4.

Fourth, a er state-wide school closures were no longermandated, we reverted to the pre-pandemic
contact intensi es for children and teens aged 0-19, and es mated the extent to which disease relevant
contacts fromand to children and teenswere reduced, and the extent towhich disease relevant contacts
between children and teens aged 0-19 were reduced. Details are presented in Sec on S3.2.4.

S3.2.2 Baseline contact intensity matrices prior to changes in mobility

Wefirst obtained es mates ofweekday andweekend contactmatrices for 8 European countries from the
Polymod contact survey [62]. Briefly, survey par cipants were recruited in such a way as to be broadly
representa ve of the whole popula on in terms of geographical spread, age, and sex. Par cipants were
asked to keep a diary of their contacts. The study included 7,290 par cipants recruited between May
12, 2005 and September 05, 2006. Contact intensi es were es mated for Belgium, Germany, Finland,
Italy, Luxembourg, the Netherlands, Poland, and the United Kingdom using the approach of [65], using
code at the Github repository [66]. We index each of the European countries with e. The posterior
median es mates of the number of individuals in age ǎ′ that were contacted per day by one individual
in age ǎ were extracted. Using the available methodology, popula ons were stra fied in 1-year age
bands. Figure S24 illustrates the es mated weekend and weekday contact intensity matrices for the 8

European countries.
To match the popula on stra fica on in the SARS-CoV-2 infec on model, the es mated contact

intensi es at 1-year resolu on were aggregated to 5-year resolu on using

Ce,a,a′ =
∑

ǎ∈a,ǎ′∈a′

Ne,ǎ(∑
ǎ∈aNe,ǎ

) Ce,ǎ,ǎ′ , (S27)

where Ne,ǎ denotes the number of individuals in 1-year age band ǎ in the corresponding European
country e. The es mated contact intensi es Ce,a,a′ were real-valued and posi ve.

Following [63, 64], we constructed a predic ve sta s cal model of contact intensi es based on pop-
ula on demographics including the total popula on size, the number of individuals in age band a′, the
propor on of individuals in age band a′, and popula on density. Regression models were fi ed based
on the 8 ∗ 18 ∗ 18 = 2, 592 es mates (S27) from the European-wide Polymod survey, separately for
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Figure S25: Predicted contact intensi es versus Polymod es mates. Median predic ons and 95% predic ve
intervals under model (S28) are shown in grey, and Polymod es mates are shown in blue.
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Figure S26: Difference in contact intensi es at weekends compared to weekdays. Loca ons ordered by popula-
on density.
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weekdays and weekends. The chosen sta s cal model was of the form

log Ce,a,a′ ∼ N (µe,a,a′ , σ
2) (S28a)

µe,a,a′ = θa,a′ + θ1
Ne,a′

Ne
+ θ2 log

Ne,a′

Ae
, (S28b)

where θa,a′ are pairwise age-specific baseline terms, Ne,a′ is the number of individuals in age band a′

in loca on e, and Ae is the land area of loca on e in square kilometres. The least squares es mates
of θ1 and θ2 were posi ve and highly significant for both weekday and weekend contact intensi es, so
that under model (S28) contact intensi es with individuals of age a′ increase as the propor on of the
popula on of age a′ increases, and as popula on density increases. The fits of model (S28) through
the training data are illustrated in Fig. S25. The leave-one-out cross-valida on mean absolute error
associated with model (S28) was 0.361 and 84.1% of the variance was explained.

Baseline contact matrices for the 50 U.S states, the District of Columbia and New York City were
then predicted using (S28). Fig. S4 shows the predicted baseline weekday contact matrices Cm for all
loca ons. The predicted contact matrices are consistent with key characteris cs of human contact pat-
terns, including high number of contacts between children and teenagers of same age, parent-child
interac ons, broader workforce interac ons, and child/parent-grandparent interac ons. Fig. S5 illus-
trates loca on-specific differences in predicted contact intensi es rela ve to the na onal average. In
loca ons with young popula ons such as Alaska, the District of Columbia, Texas or Utah, lower contact
intensi es are predicted with individuals in young age groups when compared to the na onal average.
Similarly, in loca onswith older popula ons such asMaine, higher contact intensi es are predictedwith
individuals in older age groups when compared to the na onal average. Fig. S6 illustrates that loca ons
with high popula on density such as the District of Columbia and New York City are predicted to have
higher contact intensi es compared to the na onal average. Fig. S26 compares predicted contact inten-
si es on weekdays to those predicted for weekends. Predicted contact intensi es were higher between
children and the elderly individuals on weekends compared to weekdays for all loca ons.

S3.2.3 Time-varying contact intensi es among individuals aged 20 and above

The me changing mul pliers ηm,t,a to the rows and columns of the pre-pandemic contact matrices
were obtained through a regression model using the age-specific mobility trends (S3) as predictors. We
matched the age stra fica on (S21) used in the model, with those from the original mobility trends
through

Xm,t,a = Xm,t,ã, if a ∈ ã, (S29)

where ã ∈ Ã are the broader age strata in which the mobility data were reported, [18 − 24], [25 −
34], [35− 44], [45− 54], [55− 64], [65+].

Tomodel heterogeneity in human behaviour and disease transmission a er the rebound me inmo-
bility trends, the mobility trends S29 were decomposed into three components. The three components
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are a baseline mobility trend denoted by Xbase
m,t,a, an eased mobility trend which we denote by Xeased

m,t,a,
and an upswing mul plier that we denote byXupswing

m,t,a . The decomposi on sa sfies the rela on

Xm,t,a = Xbase
m,t,a ×Xeased

m,t,a ×Xupswing
m,t,a (S30)

for allm, t, and a ∈ {[20− 24], . . . , [85+]}. This approach is mo vated by the general observa on that
since May/June 2020, when ini al lock-downs were li ed, changes in overall mobility are less strongly
correlated with changes in transmission risk [67, 68]. The above decomposi on allows us to decou-
ple the impact of mobility trends on changing contact intensi es and transmission risk in the model in
different stages of the COVID-19 epidemics.

Specifically, the base mobility trends, the eased mobility trends and mul pliers were defined as

Xbase
m,t,a =

Xm,t,a if t < tdipm ,

1 if t ≥ tdipm ,
(S31a)

Xeased
m,t,a =


1 if t < tdipm ,

Xm,t,a if tdipm ≤ t < treboundm ,

χwday
m,a if t ≥ treboundm and t is a weekday,

χwend
m,a if t ≥ treboundm and t is a weekend,

(S31b)

Xupswing
m,t,a =


1 if t < tdipm ,

1 if tdipm ≤ t < treboundm ,

Xm,t,a/χ
wday
m,a if t ≥ treboundm and t is a weekday,

Xm,t,a/χ
wend
m,a if t ≥ treboundm and t is a weekend,

(S31c)

where χwday
m,a is the average of the mobility trendXm,t,a over the 5 weekdays before treboundm , and χwend

m,a

is the average of the mobility trendXm,t,a over the 4 weekend days before treboundm . Fig. S27 illustrates
the decomposed mobility trends for four loca ons.

With the decomposed mobility trends, we modelled the mul pliers in (S26) that quan fy the me
evolu on in contact intensi es through

ηm,t,a = exp
(
logXbase

m,t,a + βeased
m logXeased

m,t,a + βupswing
m,t,a logXupswing

m,t,a

)
, (S32)

where βeased
m is a spa ally varying random effect across loca ons, and βupswing

m,t,a are structured random
effects that vary in space, me and by age. The purpose of the eased mobility regression coefficient
βeased
m was to capture the effect of permanent reduc ons in contact pa erns in the early phase of the

pandemic. We reasoned that in populous areas, the same per cent reduc on in venue check-ins may
translate into a larger reduc on in contact intensi es than in less populous areas, and so allowed for
different βeased

m across loca ons. In addi on, this choice was further mo vated by the observa on that
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Figure S27: Decomposi on of mobility trends, shown for 4 US loca ons. For each loca on, the change point in
overall mobility trends was determined using a 10-day moving average. Age-specific mobility trends were then
decomposed into eased mobility trends and mul pliers as shown. The ver cal dash lines indicate the change
points when mobility dipped and began to rebound.

mobility trends dipped to varying extent across loca ons and showed systema cally different trajecto-
ries a er rebound, which suggested that the mobility trends cannot be interpreted on the same scale
across states.

The purpose of the upswing regression coefficients βupswing
m,t,a was to capture longer-term effects a er

the ini al reduc on in contact pa erns during the early phase of the pandemic. In general, because
of the lower correla on of mobility trends with transmission risk a er ini al lock-downs, behaviour
change and widely implemented non-pharmaceu cal interven ons [67, 68], we expected the upswing
coefficients to be significantly lower than the coefficients associated with the ini al declines. To model
the substan al role of further behavioral factors such as contact dura on, types of venues visited [69], or
mask use [67, 70], the upwsing coefficientswere allowed to vary in me independently for each loca on.
Finally, to inves gate the nature of resurgent epidemics and if resurgent epidemics are linked to changes
in contact intensi es and transmission risk from younger individuals, we further allowed the upswing
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coefficients to vary by age. With this specifica on, we were able to formulate age-specific changes in
transmission risk through differences in age-specific mobility trends (per cent change in venue check-
ins by age groups) and further unobserved factors (e.g. age differences in contact dura on, number of
contacts per venue check-in, types of venues visited, protec ve measures in venues, etc.). A par cular
feature of the contact-and-infec on model is that, when fi ed to age-specific mobility and age-specific
death data, all random effect regression parameters are iden fiable across all states.

To illustrate the effect of the regression coefficients, consider the case that βeased
m = βupswing

m,t,a = 0.
In this case, ηm,t,a = 1 and the contact intensi es on day t are the same as at baseline a er the dip
date. If instead βeased

m = βupswing
m,t,a = 1, the contact intensi es on day t from index persons scale with the

observed mobility trendXm,t,a. Finally, if βeased
m = 1 and βupswing

m,t,a = 0, the contact intensi es on day t
from index persons scale with the derived eased mobility trendXeased

m,t,a a er the dip date.

S3.2.4 Contact intensi es from and to children and teens aged 0-19 during periods of school closure
and a er re-opening

In the United States, closures of kindergartens, elementary schools, middle schools, and high schools
were ordered at least at one level from April 4, 2020 [71]. School closure mandates have been con nu-
ously revised over the summer and fall of 2020. We retrieved dates on school closures and re-openings
from the Oxford COVID-19 Government Response Tracker [71] and from Educa on Week, an indepen-
dent K-12 educa on news organisa on [72]. The data from Educa onWeek are specific to government
interven ons targe ng elementary, middle and high schools, and as suchwere preferred over the school
interven on index of the Oxford COVID-19 Government Response Tracker, which also subsumed open-
ing of colleges and universi es.

In the model, we calculated periods of school closures and re-opening as follows. School closure
dates were defined as the first week day on which state administra ons mandated or recommended
state-wide closures of elementary, middle, and high schools, and retrieved these dates from the Ox-
ford COVID-19 Government Response Tracker [71]. School re-opening dates were defined as the first
week day on which state administra ons no longer mandated state-wide closure of elementary, mid-
dle, and high schools, and we retrieved these dates from Educa on Week [72]. We denote the me
indices corresponding to state-wide school closures in loca on m by tschool-closem , and the me indices
corresponding to school re-opening in loca onm by tschool-reopenm . Educa on Week data only started on
August 19, 2020. If a school closure order was not in effect from the first day of the Educa on Week
data, we set tschool-reopenm to August 24, 2020. By October 29, 2020, only the District of Columbia con n-
ued to mandate state-wide school closures [72]. Fig. S28 shows the melines of schools status, across
the US, as specified in our analysis.

To specify contact intensi es from and to children and teens aged 0-19 during periods of school
closure, we used data from two contact surveys conducted a er kindergarten and school closures in
response to accelera ng COVID-19 epidemics in the UK and China [73, 54]. Fig. S29 compares the es -
mated contact intensi es from one individual aged 0-19 using the contact surveys in Wuhan and Shang-
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Figure S28: Timing of school closure periods in the model. School closure data were retrieved from [71] and
school re-opening data were retrieved from [72]. School closure dates were defined as the first week day onwhich
state administra ons mandated or recommended state-wide closures of elementary, middle, and high schools.
School re-opening dates were defined as the first week day on which state administra ons no longer mandated
state-wide closure of elementary, middle, and high schools.
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hai before and during lockdown. Fig. S30 compares the es mated contact intensi es to individuals aged
0-19. We plot the point es mates from the original report before lockdown to those during lockdown
[54] (top row) and the ra o of the contact intensi es during lockdown versus the corresponding contact
intensi es before lockdown (bo om row). During lockdown, the es mated, average number of daily
peer-to-peer contacts from one individual aged 0-19 to individuals in the same age group was 0.09, cor-
responding to a contact intensity ra o of 0.01 across both ci es. The total number of contacts from
one individual aged 0-19 during the outbreak was 2.3, corresponding to a contact intensity ra o of 0.14
across both ci es. The average number of contacts from one individual randomly chosen in the pop-
ula on to individuals in 0 − 19 was 0.29 during lockdown, associated with a contact intensity ra o of
0.24. The contact survey of Jarvis and colleagues [73] in the UK included individuals aged 18+, but in-
terviewed individuals were also asked to report contacts to children and teenagers aged 0-17. During
lockdown, the es mated, average number of daily peer-to-peer contacts from one individual older than
18 to children aged 0-17 was 0.78, corresponding to a contact intensity ra o of 0.25. In the model,
we set the average daily contact intensi es involving children and teens aged 0-19 during periods of
school closure to the average daily contact intensi es involving children and teens aged 0-19 that were
observed during lockdown in Wuhan and Shanghai. We denote the observed, average daily contact
intensi es in Wuhan and Shanghai by

Clckdwn−0−19
a,a′ , (S33)

where either a ∈ {[0 − 4], [5 − 9], [10 − 14], [15 − 19]} and a′ is one of the 5-year age bands of the
infec on-and-contactmodel, or a is one of the 5-year age bands and a′ ∈ {[0−4], [5−9], [10−14], [15−
19]}.

A er school closures were no longer mandated at state-level, children and teens aged 0-19 were
modelled to resume their typical contact intensi es on weekdays and weekends. Similarly as for the
contact intensi es between individuals aged 20+ in Equa on (S26), we modelled that these contact
intensi es could be reduced to lower levels through a mul plier ηchildren that acts on contac ng chil-
dren and teens, and on contacted children and teens. We further considered an addi onal mul plier
γ ac ng on contacts between children and teens. In the absence of any mobility data for children and
teens, these two parameters were es mated, and for this reason were also constant in me, across
loca ons, and between children and teen age bands. The two variables reflect a number of factors
mi ga ng disease spread, including temporary school closures in some school districts, impact of non-
pharmaceu cal interven ons in schools with in-school teaching, reducedmobility of children and teens,
or reduced infec ousness of SARS-Cov-2 from children and teens aged 0-19, and in prac ce we are un-
able to disentangle these factors. Specifically, a er school closures periods, contact intensi es were
specified through

Creopen-0-19m,t,a,a′ =


γηchildrenCm,a,a′η

children if a < 20, a′ < 20
ηchildrenCm,a,a′ηm,t,a′ if a < 20, a′ ≥ 20
ηm,t,a′Cm,a,a′η

children if a ≥ 20, a′ < 20
ηm,t,a′Cm,a,a′ηm,t,a′ if a ≥ 20, a′ ≥ 20

(S34)
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where a, a′ ∈ A, Cm,a,a′ denote the pre-pandemic contact intensi es, and ηm,t,a′ are the mul pli-
ers (S32).

In summary, for all me indices, the contact intensi es involving children and teens aged 0-19 were
modelled through

Cm,t,a,a′ =


Cm,a,a′ if t < tschool-closem

Clckdwn−0−19
a,a′ if t ∈ [tschool-closem , tschool-reopenm − 1]

Creopen-0-19m,t,a,a′ if t ≥ tschool-reopenm

(S35)

where a or a′ are one of [0 − 4], [5 − 9], [10 − 14], [15 − 19], Cm,a,a′ is the prepandemic contact
intensi es described in Sec on S3.2.2, Clckdwn−0−19

a,a′ are the average contact intensi es during lockdown
of [54] that described in (S33), and Creopen-0-19m,t,a,a′ are the contact intensi es since school re-opening that
are described in (S34).
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Figure S29: Es mated changes in contact intensi es fromone child or teen aged 0-19during lockdown, Shanghai
and Wuhan, China. Data from [54]. (A) Average number of contacts from one individual in 0-19 to individuals in
5-year age bands before (blue) and during (orange) lockdown. (B) Contact intensity ra o (grey).
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Figure S30: Es mated changes in contact intensi es to children and teens aged 0-19 during lockdown, Shanghai
and Wuhan, China. Data from [54]. (A) Average number of contacts from one individual in 5-year age bands to
children aged 0-19 before (blue) and during (orange) lockdown. (B) Contact intensity ra o (grey).
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S3.3 Likelihood

The contact-and-infec on model is fi ed to age-specific death counts for each loca on m, to overall
death counts for me periods in which age-specific death counts are not available, and to overall case
counts. To establish a link between the data and the expected number of cases cm,t,a (S25), we model
the probabilityHm,a(t−s) that a person in age band a dies from SARS-CoV-2 infec on before me t−s

a er infec on at me s in loca onm. We decompose the probability into the infec on fatality ra o in
loca onm, and age band a, πm,a, and the infec on-to-death distribu on h that describes when a death
occurs condi onal on non-survival. We decompose Hm,a(t − s) in this manner because es mates of
both terms are available from the literature [5, 56]. Our model is

Hm,a(t− s) = πm,a

∫ t−s

0
h(u)du, (S36)

where t− s is in con nuous me and h integrates to 1. Using (S36), we can express the probability that
a person in loca onm and age band a dies on day s a er SARS-CoV-2 infec on as

hm,s,a =

∫ s+0.5

s−0.5
πm,ah(u)du = πm,a

∫ s+0.5

s−0.5
h(u)du ∀s = 2, 3, . . . , (S37)

and hm,1,a = πm,a

∫ 1.5
0 h(u)du for s = 1. Using (S37), the expected number of COVID-19 deaths on day

t in age band a in loca onm is

dm,t,a =

t−1∑
s=1

cm,s,ahm,t−s,a, (S38)

where cm,s,a is the expected number of new cases on day s in age band a in loca onm, (S25).
We link the expected number of deaths under the contact-and-infec on model to the observed

number deaths through an over-dispersed count model. For each loca onm, the data consist of daily,
overall reported COVID-19 related deaths regardless of age un l day tage-startm . For each loca on, me
was re-scaled to 30 days prior to the first day when the cumula ve number of deaths was 10 or larger.
We denote the overall number of deaths on day t in loca onm by ym,t for t < tage-startm . Fromday tage-startm

onwards, COVID-19 related deaths are reported in loca on-specific age bands b ∈ Bm. We denote the
number of deaths on day t in loca on m in age band b ∈ Bm by ym,t,b for t ≥ tage-startm . To match the
loca on-specific death data, we aggregate the expected number of deaths under the self-renewalmodel
to

dm,t =
∑
a∈A

dm,t,a ∀t < tage-startm (S39)

dm,t,b =
∑
a∈b

dm,t,a ∀t ≥ tage-startm , ∀b ∈ Bm. (S40)
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The log likelihood of the observed deaths then consists of three parts,

ℓdeaths(y|ϕ) =
∑
m

[ ∑
tstartm ≤ t<tage-startm

log NegBin
(
ym,t

∣∣dm,t, ϕ
)
+ (S41a)

∑
t=tage-startm

∑
b∈Bm

log NegBin
( tage-startm∑

s=1

ym,s,b

∣∣ tage-startm∑
s=1

dm,s,b, ϕ
)
+ (S41b)

∑
tage-startm < t≤ tendm

∑
b∈Bm

log NegBin
(
ym,t,b

∣∣dm,t,b, ϕ
)]
, (S41c)

where tstartm is the first day on which at least 10 cumulated deaths were reported in loca onm, and tendm

corresponds to the last day with overall death, or death by age data, see Table S10.
To ensure that the inferred, expected number of actual cases are larger than the number of reported

cases in the following week, the contact-and-infec on model is also fi ed to the logarithm of weekly
reported case data in each loca on, zm,w. The case log likelihood was described in units of weeks to
circumvent day-of-week effects. Plots suggested that the reported case data are subject to noise. For
this reason we used a loess smoother through the reported data to predict the log weekly observed
cases ζm,w, which can be considered to follow a t-distribu on with mean parameter µobs-cases

m,w , standard
devia on σobs-cases

m , and degrees of freedom νobs-casesm , that are returned by the loess smoother. The log
likelihood of the observed case data was then specified through

ℓobs-cases(ζ) =
∑
m

∑
wstart

m ≤ w<wend
m

logPr(ζm,w < log cm,w−1), (S42)

where wstart
m denotes the week in which at least 10 cumulated deaths were reported in loca onm, and

wend
m denotes the week with the last day of death data.
To ensure that the inferred, expected number of actual cases among school-aged children are larger

than reported cases in schools and smaller than a mul ple of the reported cases, the contact-and-
infec on model is further fi ed to reported a ack rates among school-aged children and teens aged
5-18, um, during state-specific observa on periods, ta -start

m to ta -end
m . To calculate a ack rates among

school-aged children and teens, we first iden fied schools in loca on m that reported student case
counts K1-K12 during the en re observa on period and for which enrolment sizes could be retrieved
from the Common Core of Data America’s School database [74]. Then, a ack rates were calculated by
summing reported student cases across schools in the period ta -start

m to ta -end
m , and dividing the total

by the sum of student enrolment sizes in the same schools. In the model, expected a ack rates among
school-aged children were calculated through

am =
( ∑

ta -start
m ≤t≤ta -end

m

cm,t,[5−9] + cm,t,[10−14] +
4

5
cm,t,[15−19]

)/
(
Nm,[5−9] +Nm,[10−14] +

4

5
Nm,[15−19]

)
,

(S43)
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where cm,t,a are the new infec ons in loca onm on day t in age band a, and Nm,a are the number of
individuals in loca on m in age band a. The log likelihood of the reported a ack rates among school-
aged children and teens was then specified through

ℓschool-a -lower(u|a) =
∑
m

log Normal-cdf(am;um, um/10). (S44)

We further assumed that the expected a ack rates among school-aged children and teens should not
be higher than a mul ple ξ of the reported a ack rates um, and added the constraint

ℓschool-a -upper(u|a) =
∑
m

log Normal-ccdf(am; (ξum), (ξum)/10), (S45)

where ξ was varied between 2 and 10, and ξ = 6 was used in the central analysis; see Sec on S3.4.3.

S3.4 Inputs and prior distribu ons on model parameters

The contact-and infec on model has the following inputs, which we consider fixed, and model parame-
ters, which we consider unknown and es mate (see Table S9). The total number of es mated parame-
ters in the model is 31+ (NV +7)×M , whereM is the number of loca ons andNV is the number of
bi-weekly intervals, which for the central analysis amounted to 771 es mated parameters.

S3.4.1 Infec on dynamics

Ini al number of infec ons. For each loca on, the number of SARS-CoV-2 infec ons in the first 6 days
of the observa on period among individuals aged 20-54 are given the prior distribu on

log cm,t,[20−54] ∼ N (4.85, 0.42), t = 1, . . . , 6 (S46)

Recall that the observa on period starts 30 days prior to the first day when the cumula ve number of
deaths in loca onmwas 10 or larger. A priori we thus expect on average 125 infec ons to have occurred
in the first 6 days among individuals aged 20-54 years. The new infec ons are then equally distributed
across the corresponding age bands,

cm,t,a =

{
cm,t,[20−54]/7 if a ∈ A0

0 otherwise, (S47)

whereA0 = {[20− 24], [25− 59], [30− 34], [35− 39], [40− 44], [45− 49], [50− 54]} and t = 1, . . . , 6.

Infec on parameters. The infec on parameters described in (S22) comprise the baseline infec on
parameter in loca onm, ρ0m (real-valued), as well as rela ve suscep bility (S) parameters ρS (vector-
valued of length A).
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Table S10: Dates with overall and death by age data included in the likelihood. Our analysis include 40 loca ons
with death by age.

Loca on
Dates with
overall data

Dates with
death by age data

Number of age groups

Alabama March 29, 2020 - May 02, 2020 May 03, 2020 - October 29, 2020 6
Alaska - - -
Arizona March 27, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 5
Arkansas - - -
California March 17, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 4
Colorado March 25, 2020 - March 25, 2020 March 26, 2020 - October 29, 2020 9
Connec cut March 23, 2020 - April 04, 2020 April 05, 2020 - October 29, 2020 9
Delaware March 31, 2020 - May 11, 2020 May 12, 2020 - October 29, 2020 6
District of Columbia April 02, 2020 - April 12, 2020 April 13, 2020 - October 29, 2020 8
Florida March 20, 2020 - March 26, 2020 March 27, 2020 - October 29, 2020 10
Georgia March 19, 2020 - May 08, 2020 May 09, 2020 - October 29, 2020 18
Hawaii - - -
Idaho April 04, 2020 - June 15, 2020 June 16, 2020 - October 29, 2020 8
Illinois March 23, 2020 - May 13, 2020 May 14, 2020 - October 29, 2020 8
Indiana March 24, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 8
Iowa April 02, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 5
Kansas April 01, 2020 - June 01, 2020 June 02, 2020 - October 29, 2020 9
Kentucky March 30, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 9
Louisiana March 19, 2020 - May 11, 2020 May 12, 2020 - October 29, 2020 7
Maine - - -
Maryland March 29, 2020 - May 13, 2020 May 14, 2020 - October 29, 2020 9
Massachuse s March 24, 2020 - April 19, 2020 April 20, 2020 - October 29, 2020 8
Michigan March 23, 2020 - March 23, 2020 March 24, 2020 - October 29, 2020 8
Minnesota March 30, 2020 - May 20, 2020 May 21, 2020 - October 29, 2020 11
Mississippi March 28, 2020 - September 29, 2020 September 30, 2020 - October 29, 2020 7
Missouri March 28, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 8
Montana - - -
Nebraska - - -
Nevada March 26, 2020 - June 06, 2020 June 07, 2020 - October 29, 2020 8
New Hampshire April 08, 2020 - June 06, 2020 June 07, 2020 - October 29, 2020 9
New Jersey March 20, 2020 - May 24, 2020 May 25, 2020 - October 29, 2020 7
New Mexico April 03, 2020 - April 03, 2020 April 04, 2020 - October 29, 2020 8
New York - - -
New York City March 16, 2020 - June 30, 2020 July 01, 2020 - October 29, 2020 5
North Carolina March 31, 2020 - May 19, 2020 May 20, 2020 - October 29, 2020 6
North Dakota April 21, 2020 - May 13, 2020 May 14, 2020 - October 29, 2020 9
Ohio - - -
Oklahoma March 28, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 6
Oregon March 25, 2020 - June 04, 2020 June 05, 2020 - October 29, 2020 9
Pennsylvania March 25, 2020 - June 06, 2020 June 07, 2020 - October 29, 2020 8
Rhode Island April 01, 2020 - May 31, 2020 June 01, 2020 - October 29, 2020 9
South Carolina March 27, 2020 - May 13, 2020 May 14, 2020 - October 29, 2020 9
South Dakota - - -
Tennessee March 30, 2020 - April 08, 2020 April 09, 2020 - October 29, 2020 9
Texas March 24, 2020 - July 27, 2020 July 28, 2020 - October 29, 2020 11
Utah April 06, 2020 - June 16, 2020 June 17, 2020 - October 29, 2020 6
Vermont - - -
Virginia March 26, 2020 - April 20, 2020 April 21, 2020 - October 29, 2020 9
Washington March 04, 2020 - June 07, 2020 June 08, 2020 - October 29, 2020 5
West Virginia - - -
Wisconsin March 26, 2020 - March 26, 2020 March 27, 2020 - October 29, 2020 9
Wyoming - - -
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To place a prior density on ρ0,m, we consider prior es mates on the basic reproduc on number [75],
and specify the following prior distribu on on the basic reproduc on number R0,m in loca onm,

logR0,m ∼ N (0.98, 0.22), (S48a)

where the corresponding prior mean and 95% confidence intervals, 2.7 [1.6 − 3.9], are based on the
meta-analysis of [53]. To obtain ρ0,m, we re-scaleR0,m by the average number of contacts of one person
in loca onm at baseline,

ρ0,m = R0,m/C̄m (S49a)

C̄m =
∑
a

pm,a

∑
a′

Cwdaym,a,a′ , (S49b)

where Cwdaym is the baseline weekday contact matrix defined in S3.4.2 and pm,a is the propor on of the
popula on of loca onm in age band a.

To place prior densi es on the rela ve suscep bility parameters, we used available data fromcontact
tracing and tes ng in mainland China [54]. Based on the available data, we considered rela ve suscep-
bility parameters for the age bands [0 − 14], [15 − 64] and [65+], and specified the prior densi es

log ρS[0−14] ∼ N (−1.0702, 0.21702) (S50a)

log ρS[65+] ∼ N (0.3828, 0.16382), (S50b)

where the hyperparameters were obtained by fi ng a lognormal distribu on to the reported 95% con-
fidence intervals in [54] with the lognorm R package, version 0.1.6 [76].

The log suscep bility parameters for age band [15 − 64] were set to 0, so that ρS is interpreted
rela ve to infec on dynamics from/to individuals in age band [15− 64]. Considering the 18 age bands
of the COVID-19 transmission model, the age-specific rela ve suscep bility parameters were set to

log ρSa =


log ρS[0−14] if a ∈ [0− 14]

log ρS[15−64] if a ∈ [15− 64]

log ρS[65+] if a ∈ [65+].

, (S51)

Discre sed genera on me distribu on. The genera on me distribu on (S25) was kept fixed. Using
es mates of [55], we specified the con nuous- me version

gCT (s) = Gamma(6.5, 0.62). (S52)

Equa on (S52) was then discre sed to units of days,

g(s) =

∫ s+0.5

s−0.5
gCT (u) du ∀s = 2, 3, . . . (S53)

and g(1) =
∫ 1.5
0 gCT (u) du for s = 1. This input specifica on is the same as in the base model [56].
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S3.4.2 Time changing contact pa erns

Baseline age-specific contactmatrices The pre-pandemic contact intensitymatrices were constructed
as described in the Supplementary materials, and are illustrated in Figs. S4-S26.

Mobility trends (percent reduc on in venue visits by age). Changes in contact intensi es were de-
scribed through a random effects regression model with decomposed, age- and loca on-specific mo-
bility trends as covariates and addi onal loca on, age, and me-specific random effects. The mobility
trend data used in this study are described in Sec on S1.2, and capture percent changes in venue visits
of individuals in different age groups over me. The decomposi on into baselinemobility trendsXbase

m,t,a,
eased mobility trendsXeased

m,t,a and upswing mul pliersXupswing
m,t,a on day t in loca onm and age band a is

defined in (S31), and was used to reflect lower correla ons between mobility trends and transmission
risk a er ini al lock-downs.

Mobility trend regression coefficients and further randomeffects. Equa ons (S26) and (S32) describe
our model of changing contact intensi es,

Cm,t,a,a′ = ηm,t,a Cm,a,a′ ηm,t,a′

ηm,t,a = exp
(
logXbase

m,t,a + βeased
m logXeased

m,t,a + βupswing
m,t,a logXupswing

m,t,a

)
.

The purpose of the eased mobility regression coefficient βeased
m was to capture the effect of permanent

reduc ons in contact pa erns in the early phase of the pandemic. We reasoned that in populous areas,
the sameper cent reduc on in venue check-insmay translate into a larger reduc on in contact intensi es
than in less populous areas, and so allowed for different βeased

m across loca ons. In addi on, this choice
was further mo vated by the observa on that mobility trends dipped to varying extent across loca ons
and showed systema cally different trajectories a er rebound, which suggested that themobility trends
cannot be interpreted on the same scale across states. Specifically, we specified the spa al random
effect through,

βeased
m ∼ N (βeased, σ2

eased)

βeased ∼ N (0, 1)

σeased ∼ Exponen al(1.5).

(S54)

The upswing random effects βupswing
m,t,a are intended to capture further disease-relevant, unobserved be-

havioral factors such as contact dura on, types of venues visited, or mask use [67, 70]. In addi on, the
random effects were specified to inves gate the nature of resurgent epidemics and if resurgent epi-
demics are linked to changes in contact intensi es and transmission risk from younger individuals. A
par cular feature of the contact-and-infec on model is that, when fi ed to age-specific mobility and
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age-specific death data, all random effect regression parameters are iden fiable across states. Specifi-
cally, we specified the upswing random effects through

βupswing
m,t,a = (βupswing-base + βupswing-age

m,a )× βupswing- me
m,t . (S55)

In (S55), βupswing-base acts as a baseline effect of mobility increases since the rebound me on contact
intensi es,

βupswing-base ∼ N (0, 1), (S56)

which a priori we expected to be lower than the average effect associated with ini al reduc ons in
mobility trends, βeased. The me-specific random effects βupswing- me

m,t are, independently for each loca-
on, specified as a bi-weekly AR(1) process centered at zero. This allows the mobility trends (percent

reduc on in venue check-ins for each age group) to have different effects on contact intensi es and
transmission risk over consecu ve two week intervals in each loca on, and as such can be interpreted
as unobserved factors that modulate how changes in venue check-ins translate into transmission risk
over me. Specifically,

βupswing- me
m,t = εm,⌊c(m,t)/2⌋,

εm,1 ∼ N[0,∞)(0, 0.025
2),

εm,v ∼ N[0,∞)(εm,v−1, σ
2
ε) for v > 1,

logσε ∼ N (−1.2, 0.22),

(S57)

whereN[a,b) denotes a truncated normal distribu on between a and b and c(t) is a func on that maps
the me indices in loca on m to calendar weeks. The random effects were constrained to posi ve
values in order to escape strong correla ons with βupswing-base in the joint posterior density and facilitate
mixing. The variance parameter σε was a priori given a mean of 0.3 to favour smooth me trends in
βupswing- me
m,t over spontaneous changes. The age-specific random effects βupswing-age

m,a )were added to the
model to test for the presence of age-specific unobserved factors among individuals aged 20-49 with a
net posi ve effect on disease relevant contact intensi es and transmission risk. Together with the me
effects βupswing- me

m,t , the age-specific unobserved factors among individuals aged 20-49 can in principle
have occurred within any two week interval a er mobility trends started to rebound. We allowed for
heterogeneity in the age-specific effects among individuals aged 20-49 across loca ons through

βupswing-age
m,[20−49] ∼ Exp(βupswing-age

[20−49] )

βupswing-age
[20−49] ∼ Exp(0.1),

(S58)

and then specified

βupswing-age
m,a =

{
βupswing-age
m,[20−49] if a ∈ [20− 49]

0 otherwise.
(S59)

More general versions of this model with age-specific random effects for individuals aged 20-49, 50-74,
and 75+ were also considered, however the posterior distribu ons of the age-specific random effects
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associated with individuals aged 50-74 and 75+ were close to zero and le out from the final model
for computa onal tractability. More general versions of this model with age-specific random effects for
individuals aged 20-34 and 35-49 resulted in strong correla ons between the two parameters, indica ng
that we are unable to separate effects a ributable to both age groups based on the current data.

Reduc on in contacts from and to school-aged children a er school re-opening. The parameter
ηschool in (S34) reduces the number of contacts from and to school aged children from pre-pandemic
levels, and was associated with the prior density

ηschool ∼ Uniform(0.1, 1.0). (S60)

The parameter γ in (S34) captures addi onal reduc ons in disease-relevant contacts between children
and teens was associated with the prior density

log γ ∼ N (0, 0.35). (S61)

S3.4.3 Likelihood

Loca on and age-specific infec on fatality ra o. The contact-and-infec on model back-calculates
past infec ons in age groups from observed deaths in age groups via the age specific infec on fatal-
ity ra o as described in Equa ons (S37-S38),

dm,t,a =
t−1∑
s=1

cm,s,ahm,t−s,a (S62)

hm,1,a = πm,a

∫ 1.5

0
h(u)du (S63)

hm,s,a = πm,a

∫ s+0.5

s−0.5
h(u)du ∀s = 2, 3, . . . , (S64)

where dm,t,a is the expected number of COVID-19 deaths on day t in age band a in loca onm, cm,s,a is
the expected number of new cases on day s in age band a in loca onm, h is the discre sed infec on-
to-death distribu on that describes when a death occurs condi onal on non-survival, and πm,a is the
infec on fatality ra o in loca on m and age band a. Our specifica on of the age-specific infec on fa-
tality ra o relies on a recent meta-analysis across 113meta-regression observa ons of infec on fatality
ra os [5], and further allows for devia ons across US loca ons in terms of loca on and age-specific
random effects. Specifically, we decompose the age-specific infec on fatality ra o into

πm,a = exp(logπIFR-meta
a + log δIFRm,a), (S65)

where πIFR-meta
a are the es mates taken from the meta-analysis of [5], and log δIFRm,a are loca on-specific

random effects to account for departures from the meta-regression es mate on a subset of age classes.
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Table S11: Hyperparameters of the prior density on age-specific infec on fatality ra os, equa on (S66).

[0− 4] [5− 9] [10− 14] [15− 19] [20− 24] [25− 29]
µa −11.8588167 −11.2527085 −10.6468661 −10.041283 −9.4359533 −8.830871
σa 0.1657816 0.1513949 0.1374366 0.1240003 0.11122 0.0992908

[30− 34] [35− 39] [40− 44] [45− 49] [50− 54] [55− 59]
µa −8.2260307 −7.6214275 −7.0170568 −6.4129146 −5.8089986 −5.2053077
σa 0.0884956 0.0792359 0.0720426 0.0675226 0.0661851 0.068205

[60− 64] [65− 69] [70− 74] [75− 79] [80− 84] [85+]
µa −4.6018431 −3.9986079 −3.3956061 −2.7928423 −2.1903216 −1.2062531
σa 0.0733224 0.0809885 0.0906026 0.1016588 0.1137825 0.1364627

To construct a prior distribu on for log πIFR-meta
a , we took the numerical es mates of the 95% credible

intervals associated with the posterior predic ve infec on fatality ra os in [5], and fi ed log-normal
distribu ons using the lognorm R package, version 0.1.6, [76]. The resul ng hyper-parameters of the
prior densi es

logπIFR-meta
a ∼ N (µIFR-meta

a , σIFR-meta
a

2
), (S66)

for the 18 increasing age bands in this study are reported in Table S11. For each loca on, the model
allows for poten ally larger infec on fatality ra os compared to the overall meta-analysis es mate in
terms of 3 age bands,

log δIFRm,[20−49] ∼ Exp(δIFR[20−49]), (S67a)

log δIFRm,[50−69] ∼ Exp(δIFR[50−69]), (S67b)

log δIFRm,[70+] ∼ Exp(δIFR[70+]), (S67c)

δIFR[20−49], δ
IFR
[50−69], δ

IFR
[70+] ∼ Exp(0.1). (S67d)

The random-effect parameters were restricted to capture posi ve departures from the meta-analysis
es mates in order reduce correla ons in the joint posterior distribu on between the random effects
and other model parameters, and facilitate computa onal inference. Then, the age-specific random
effects log δIFRm,a for each of the 18 age bands of the contact-and-infec on model were set to

log δIFRm,a =


log δIFRm,[20−49] if a ∈ [20− 49]

log δIFRm,[50−69] if a ∈ [50− 69]

log δIFRm,[70+] if a ∈ [70+]
0 otherwise.

(S68)

Infec on-to-death distribu on. The infec on-to-death distribu on h in (S36) was kept fixed. Follow-
ing [77, 78], we first specified the infec on-to-onset-of-symptoms distribu on and the onset-to-death,
and modelled the infec on-to-death distribu on as the sum of both components through

h(s) = Gamma(s; 5.1, 0.86) + Gamma(s; 17.8, 0.45), (S69)

where s is in con nuous me. This input specifica on is the same as in the base model [56].
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Overdispersion parameter. The prior distribu on on the overdispersion parameter ϕ in the Nega ve
Binomial observa on model (S41) was given by the prior density

ϕ ∼ N[0,∞)(0, 5). (S70)

Upper bound on a ack rates among school-aged children and teens. The upper bound ξ on a ack
rates among school-aged children and teens in Equa on (S45) was kept fixed in analyses, however differ-
ent upper bounds between ξ = 2 to ξ = 10were explored. The lower value ξ = 2wasbasedonprevious
findings that 50% of infected children and teens may be asymptoma c [57], so that approximately every
second infec on among children and teens might be detectable through tes ng of individuals showing
symptoms. The upper bound ξ = 10 was mo vated by the fact that es mated popula on-level ra os
of reported versus actual cases were typically below 10 [79]. For the central analysis, we considered the
popula on-level ra os of reported cases versus the posterior median of actual cases across loca ons
in the model, which was typically between 3-6 since June 2020. On this basis we chose ξ = 6, and
interpret it as a likely overes mate and likely upper bound on the actual a ack rate among school-aged
children and teens.

S3.5 Computa onal inference

The Bayesian hierarchical model was fit with CmdStan release 2.23.0 (22 April 2020), using an adap ve
Hamiltonian Monte Carlo (HMC) sampler [80]. 8 HMC chains were run in parallel for 2, 000 itera ons,
of which the first 1, 500 itera ons were specified as warm-up. Calcula ons for each HMC chain were
distributed over 1 processor per U.S loca on (state or metropolitan area) with CmdStan’s reduce_sum
func onality. Posterior convergence was assessed using the Rhat sta s cs and by diagnosing divergent
transi ons of the sampler. There are 4,000 itera ons a er burn-in across 8 chains, and 10 parameters
with the lowest effec ve sample sizes were assessed. Those effec ve sample sizes of are from 212 to
499, and Rhats are from 1.009 to 1.0321. There were 4092 divergent transi ons, and that the average
posterior step size was around 0.003. The pair plot of parameters for New York City is in Fig. S31.
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Figure S31: Pair plots of the joint posterior distribu on of the model parameters for New York City.
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S3.6 Generated quan es

Age stra fica on for repor ng purposes. In the manuscript results are reported using the following
8 age bands

d ∈ D =
{
[0− 9], [10− 19], [20− 34], [35− 49], [50− 64], [65− 79], [80+]

}
. (S71)

Posterior samples were recorded in the 18 age bands used in the model ([0−4], [5−9], . . . , [85+]) and
then aggregated to the stra fica onD using

Rm,t,d =
∑
a∈d

c∗m,t,a∑
k∈d c

∗
m,t,k

Rm,t,a,

cm,t,d =
∑
a∈d

cm,t,a,

dm,t,d =
∑
a∈d

dm,t,a,

(S72)

where c∗m,t,a is the number of infec ous individuals in loca onm and me t that is in age band a defined
in (S75),Rm,t,a is defined in (S23), cm,t,a is defined in (S25) and dm,t,a is defined in (S8).

Es mated cumulated COVID-19 a ack rates by age and over me. We calculate the percentage of
the popula on inm and in age band d that has been infected up to day t through

Am,t,d =

∑t
s=1 cm,s,d

Nm,d
, (S73)

where Nm,d is the number of individuals in loca on m and age band d, and cm,s,d is defined in (S72).
We also refer to (S73) as the age-specific cumula ve a ack rate. Similarly, we calculate the percentage
of the popula on inm that has been infected up to day t through

Am,t =

∑
d

∑t
s=1 cm,s,d∑
dNm,d

=
∑
d

Nm,d

Nm
Am,t,d, (S74)

where Nm is the number of individuals in loca on m. We also refer to (S74) as the cumula ve a ack
rate.

Es mated number of infec ous individuals by age and over me. The effec ve number of infec ous
individuals c∗ in loca onm and age band d on day t is calculated byweighing how infec ous a previously
infected individual is on day t,

c∗m,t,d =
t−1∑
s=1

cm,s,d g(t− s), (S75)

DOI: https://doi.org/10.25561/82551 Page 45 of 73

https://doi.org/10.25561/82551


07 January 2021 Imperial College COVID-19 Response Team

where g appears in (S25). Similarly, the effec ve number of infec ous individuals c∗ in loca on m on
day t is calculated by

c∗m,t =
∑
d

t−1∑
s=1

cm,s,d g(t− s) =

t−1∑
s=1

cm,s g(t− s). (S76)

Es mated me-varying reproduc on number of COVID-19 over me. The overall me-varying repro-
duc on number on day t in loca onm is given by

Rm,t = cm,t/c
∗
m,t (S77)

where cm,t is the number of new cases on day t in loca on m, and c∗m,t is the number of infec ous
individuals on day t in loca onm [81]. Using the iden ty∑

a

Rm,t,ac
∗
m,t,a =

∑
a

∑
a′

sm,t,a′ρa′Cm,t,a,a′c
∗
m,t,a

=
∑
a′

∑
a

sm,t,a′ρa′Cm,t,a,a′c
∗
m,t,a

=
∑
a′

cm,t,a′

= cm,t,

(S78)

Equa on (S77) can be re-arranged to

Rm,t =
∑
a

c∗m,t,a/c
∗
m,tRm,t,a, (S79)

whereRm,t,a is defined in (S23).

Es mated age-specific SARS-CoV-2 transmission flows. Following on from Equa on (S25), the trans-
mission flows from age group a to age group a′ at me t in loca onm are,

Fm,t,a,a′ = sm,t,a′ ρa′ Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)

)
, (S80)

where sm,t,a′ is defined in (S24), ρa,a′ is defined in (S22), and Cm,t,a,a′ is defined in (S26). In terms of the
age bands reported in the main text, the transmission flows by aggregated age groups are

Fm,t,d,d′ =
∑

a∈d,a′∈d′
Fm,t,a,a′ . (S81)
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Es mated contribu on of age groups to SARS-CoV-2 transmission. Following on from Equa on (S80),
the age-specific contribu on of infec ons from age band a in loca onm on day t is

Sm,t,a =

(∑
a′

Fm,t,a,a′

)/(∑
a

∑
a′

Fm,t,a,a′

)
. (S82)

The age-specific contribu on of infec ons are propor ons, such that
∑

a Sm,t,a = 1 for all a. In terms
of the age bands reported in the main text, the aggregated contribu on of infec ons in age band d in
loca onm on day t are equal to

Sm,t,d =

(∑
d′

Fm,t,d,d′

)/(∑
d

∑
d′

Fm,t,d,d′

)
. (S83)

Na onal averages. Several quan es are reported at the na onal level by age,

Rt,d =
∑
m

c∗m,t,d∑
l c

∗
l,t,d

Rm,t,d, (S84)

ct,d =
∑
m

cm,t,d, (S85)

dt,d =
∑
m

dm,t,d, (S86)

where c∗m,t,d is the number of infec ous individuals at me t in loca on m and age band d, defined
in (S75), and Rm,t,d, cm,t,d and dm,t,a are defined in (S72). Finally, for repor ng at the na onal level
regardless of age, we calculated

Rt =
∑
m

∑
d∈D

c∗m,t,d∑
l

∑
k∈D c∗l,t,k

Rm,t,d, (S87)

ct =
∑
d

ct,d, (S88)

dt =
∑
d

dt,d. (S89)

S3.7 Counterfactual scenarios

Time period of counterfactual scenarios. Counterfactual scenarios on the likely epidemic outcomes
were inves gated retrospec vely, star ng at a day in the past and considering counterfactual simula ons
un l the last observa on day, October 29, 2020. This strategy allowed us to inves gate what would have
happened if one of the model parameters had been different, while keeping all other model parameters
at their best fit values that best reproduce epidemic trajectories as of October 29, 2020. We focused
on the impact of alterna ve, counterfactual school re-opening scenarios between August 24, 2020 and
October 29, 2020, which corresponds to the last day with death data in the analysis.
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Counterfactual school closure scenario. In this counterfactual scenario, we assumed that kindergartens,
and elementary, middle and high schools would have remained closed between August 24, 2020 and
October 29, 2020 in all states and metropolitan areas evaluated. This scenario was implemented via
Equa on (S35), by se ng the school re-opening me index tschool-reopenm to past the last observa on day
in all states, October 30, 2020. Output quan es were then generated from the model with all other
parameters sampled from their inferred joint posterior distribu on.

Counterfactual school re-opening scenario. In this counterfactual scenario, we assumed that schools
reopened on August 24, 2020 in all loca ons, and that therewould not have been a reduc on in disease-
relevant contacts from and to school-aged children. This scenario was implemented via Equa on (S35),
by se ng the school re-opening me index tschool-reopenm to August 24, 2020 in all states, and by set-
ng ηchildren = 1 and γ = 1. Output quan es were then generated from the model with all other

parameters sampled from their inferred joint posterior distribu on.

Age stra fica on for school re-opening scenarios. To quan fy the impact of the school re-opening
scenarios, we used the age bands

d̃ ∈ D̃ =
{
[0− 9], [10− 18], [19− 34], [35− 49], [50− 64], [65− 79], [80+]

}
. (S90)

We introduce the superscript x to denote the various counterfactual scenarios. Then, in the counter-
factual scenarios, me-varying reproduc on numbers were calculated through

Rx
m,t,d̃

=



c∗m,t,[10−14]R
x
m,t,[10−14] +

4
5c

∗
m,t,[15−19]R

x
m,t,[15−19]

c∗m,t,[10−14] +
4
5c

∗
m,t,[15−19]

if d̃ = [10− 18]

1
5c

∗
m,t,[15−19]R

x
m,t,[15−19] +

∑
a∈{[20−24],[25−29],[30−34]} c

∗
m,t,aR

x
m,t,a

1
5c

∗
m,t,[15−19] +

∑
k∈{[20−24],[25−29],[30−34]} c

∗
m,t,k

if d̃ = [19− 34]∑
a∈d̃

c∗m,t,a∑
k∈d c

∗
m,t,k

Rx
m,t,a if d̃ < 10 or d̃ > 34.

(S91)

The number of daily new cases were calculated through

cx
m,t,d̃

=



cxm,t,[10−14] +
4

5
cxm,t,[15−19] if d̃ = [10− 18]

1

5
cxm,t,[15−19] +

∑
a∈{[20−24],[25−29],[30−34]}

cxm,t,a if d̃ = [19− 34]∑
a∈d̃

cxm,t,a if d̃ < 10 or d̃ > 34.

(S92)
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The number of daily deaths were calculated through

dx
m,t,d̃

=



dxm,t,[10−14] +
4

5
dxm,t,[15−19] if d̃ = [10− 18]

1

5
dxm,t,[15−19] +

∑
a∈{[20−24],[25−29],[30−34]}

dxm,t,a if d̃ = [19− 34]∑
a∈d̃

dxm,t,a if d̃ < 10 or, d̃ > 34.

(S93)

The transmission flows of age group d̃ on day t in loca onm and scenario x were calculated through

F x
m,t,d̃

=


9

10
F x
m,t,[10−19] if d̃ = [10− 18]

1

10
F x
m,t,[10−19] + F x

m,t,[20−34] if d̃ = [19− 34]

F x
m,t,d if d̃ < 10 or d̃ > 34.

(S94)

Based on Equa ons (S91-S94), the excess cumula ve number of cases in the observed data versus the
counterfactual con nued school closure scenario during the me period of the counterfactual was cal-
culated as

cexcess
m,d̃

=
( tendm∑

t=tschool-reopenm

cobserved
m,t,d̃

)
−
( tendm∑

t=tschool-reopenm

cclosure
m,t,d̃

)
. (S95)

The percent increase in cumulated cases in the observed data versus the con nued school closure sce-
nario during the me period of the counterfactual was calculated as

cpc-increase
m,d̃

=
( tendm∑

t=tschool-reopenm

cobserved
m,t,d̃

)/( tendm∑
t=tschool-reopenm

cclosure
m,t,d̃

)
− 1. (S96)

Predicted excess deaths and percent increases in deaths were calculated analogously. Comparisons
between the counterfactual school re-opening scenario as if non-pharmaceu cal interven ons would
have had no effect and/or children and teens are as infec ous as adults versus the observed data were
also done analogously.
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S4 Comparison ofmodel outputs to es mated contact intensi es during the
pandemic

The SARS-CoV-2 transmission model presented in Sec on S3.1 makes detailed predic ons on the me
evolu on of age-specific contact pa erns during the pandemic. As a form of external model valida on,
we here compare the model predic ons against data from contact survey studies.

In the US, the Berkeley Interpersonal Contact Study (BICS) was designed to measure the effects of
social distancing on contact pa erns during the pandemic, and began in spring 2020 [82]. Their study
included adults aged 18+ and wave 0 was conducted between March 22 to April 08, 2020. In this wave,
approximately half the study par cipants were from five ci es (New York, San Francisco Bay Area, At-
lanta, Phoenix, Boston) with the rest from around the rest of the US. In their ini al analyses, the study
authors found that individuals had a mean of 2.7 conversa onal contacts with similar IQR when com-
pared to the study of Jarvis et al. [73] in the UK: 85% of respondents reported four or fewer contacts.
Despite wide confidence intervals, these figures indicate substan al reduc ons in the overall number
of contacts in the early phase of the pandemic, and early a er lockdown or stay at home orders were
issued.

We compared the es mates from the two contact surveys to the average number of contacts at the
midpoint of the wave 0 period of the BICS study, March 28, 2020 (Table S12). Tomatch the study sample
of the BICS study, we report es mates for two metropolitan areas included in the model analysis (New
York City and District of Columbia), and an overall es mate for the US obtained by averaging across
all states evaluated, New York City, and the District of Columbia. Overall, the COVID-19 contact and
infec on model es mates similar strong reduc ons in the number of daily contacts, with a probability
of one that overall, the average number of daily contacts by individuals of all ages was at most four.

Table S12: Es mated number of contacts on March 28, 2020 (midpoint of BICS wave0 study). Posterior median
and 95% credible intervals in brackets. We include a weighted average across the US and two ci es which were
included in the BICS study.

Number of daily contacts [95% credible intervals] Posterior probability of at most 4 daily contacts
District of Columbia 2.69 [1.92 - 3.74] 100%
New York City 2.23 [1.8 - 2.72] 100%
United States 2.87 [2.75 - 2.99] 100%

We also compared the age breakdown of daily number of conversa onal contacts from the BICS
study with our model es mates for New York City, District of Columbia and a na onal average. Fig. S32
indicates good agreement between the es mates of the BICS study and model fits.
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Figure S32: Es mated daily number of contacts per age band onMarch 28, 2020 (midpoint of BICSwave0 study).

S5 Comparison of model outputs to seroprevalence es mates

To further assess model fit, we reviewed data from several large-scale COVID-19 seroprevalence surveys
in the US, and qualita vely compared the sero-prevalence es mates from the an body surveys to the
es mates under the contact and infec on model at loca on.

We included 32 COVID-19 an body surveys from across the US in this comparison (Table S13). 31
studies were conducted by the U.S. Centers for Disease Control & Preven on (CDC) in 7 loca ons, Con-
nec cut, Florida, Louisiana,Minnesota,Missouri, New York City, Utah, andWashington. Mul ple rounds
of seroprevalence surveys were done in each loca on, except Louisiana where one seroprevalence sur-
vey was performed. The surveys included individuals who had blood specimens tested for reasons un-
related to COVID-19 [79], and thus the study samples may not be representa ve of the underlying pop-
ula ons. For instance, the CDC compared the predicted number of total infec ons obtained under the
COVID-19 sero-prevalence es mates to the number of reported cases, and found that in most loca ons,
approximately one in ten cases were reported. However for the study in Connec cut, the ra o was
one in six, and for the study in Missouri, the ra o was one in 24, sugges ng that the study samples in
these loca ons may not be representa ve. The final survey included in the comparison was also from
New York City [83], and included par cipants recruited through flyers at the entrances of grocery stores.
Individuals who are less likely to visit grocery stores may have lower infec on risk (e.g. because of self-
isola on) or higher infec on risk (e.g. quaran ne a er infec on), and es mates from this study may
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also be subject to unknown biases.

Table S13: Characteris cs of large-scale an body studies used for the comparison. All dates are for the year
2020. Data were retrieved from the CDC dashboard [84].

Study Round Period Number of par cipants

Connec cut
1 Apr 26 - May 3 1431
2 May 21 - May 26 1800
3 Jun 15 - Jun 17 1798
4 Jul 7 - Jul 6 1802
5 Jul 27 - Jul 27 1799

Louisiana 1 Apr 1 - Apr 8 1184

Minnesota
1 Apr 30 - May 12 860
2 May 25 - Jun 7 1323
3 Jun 15 - Jun 27 1667
4 Jul 6 - Jul 18 1677
5 Jul 27 - Aug 8 1588

Missouri
1 Apr 20 - Apr 26 1882
2 May 25 - May 30 1831
3 Jun 15 - Jun 20 1850
4 Jul 5 - Jul 9 1914
5 Jul 27 - Jul 30 1931

New York City Metro Area
1 Mar 23 - Apr 1 2482
2 Apr 6 - Apr 16 1618
3 Apr 27 - May 6 1116
4 Jun 15 - Jun 21 1581
5 Jul 7 - Jul 11 1602
6 Jul 27 - Jul 30 1547

Philadelphia Metro Area
1 Apr 13 - Apr 25 824
2 May 26 - May 30 1743
3 Jun 14 - Jun 20 1694
4 Jul 6 - Jul 11 1751
5 Jul 27 - Aug 8 1730

San Francisco Bay Area
1 Apr 23 - Apr 27 1224
2 May 19 - May 27 1539
3 Jul 20 - Jul 23 1223

South Florida
1 Apr 6 - Apr 10 1742
2 Apr 20 - Apr 24 1280
3 Jun 19 - Jun 17 1790
4 Jul 20 - Jul 23 1721

Utah
1 Apr 20 - May 3 1132
2 May 25 - Jun 5 1940
3 Jun 25 - Jun 27 1976
4 Jul 6 - Jul 15 1824
5 Jul 27 - Aug 6 1906

Western Washington Region
1 Mar 23 - Apr 1 3264
2 Apr 27 - May 11 1719
3 Jun 15 - Jun 20 1803
4 Jul 6 - Jul 7 1797
5 Jul 27 - Jul 31 1718

In all studies, IgMand IgG enzyme-linked immunosorbent assays (ELISA)were used to test for COVID-
19 an bodies. Common limita ons of these tests are that infected individuals with an bodies may test
nega ve (false nega ves), uninfected individuals without an bodies may test posi ve (false posi ves),
that infected individuals may not yet have developed an bodies (an body eclipse phase), and that in-
fected individuals may have already lost an bodies (sero-reversion). The above studies adjusted sero-
prevalence es mates for false posi ve and false nega ve rates, however re-analyses of manufacturer
sensi vity and specificity figures suggest that these numbersmay have to be consideredwith cau on [5].
To account for the an body eclipse phase, we calculated as part of the infec on model the number of
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expected infected individuals with an bodies. Specifically, COVID-19 symptoms are es mated to de-
velop on average 6 days a er infec on (es mated range 2 to 14 days) [85] and individuals are es mated
to develop IgG an bodies on average 14 days a er symptom onset (es mated range 7 to 21 days) [86,
87]. Based on these es mates, we specified the infec on-to-onset-of-symptoms distribu on and the
onset-to-an body distribu on as the sum of both components through

k(s) = Gamma(s; 5.1, 0.86) + Normal(s; 14, 3.57) (S97)

where s is in con nuous me. We then express the probability that a person in loca onm and age band
a develops an bodies on day s a er SARS-CoV-2 infec on as

ks =

∫ s+0.5

s−0.5
k(u)du =

∫ s+0.5

s−0.5
k(u)du ∀s = 2, 3, . . . , (S98)

and ks =
∫ 1.5
0 k(u)du for s = 1. Using (S98), the expected number of infected individuals that develop

COVID-19 an bodies on day t in age band a in loca onm is

bm,t,a =

t−1∑
s=1

cm,s,a kt−s, (S99)

where cm,s,a is the expected number of new cases on day s in age band a in loca on m, (S25). In the
model seroreversion was not considered, and the expected propor on of individuals with COVID-19
an bodies on day t in loca onm was calculated as

sm,t =
(∑

a

t∑
s=1

bm,s,a

)
/Nm, (S100)

where Nm is the number of individuals in loca on m. The day of comparison was set to the last day
of the study period. For the New York City study [83], the Utah study, the second round of the Florida
and Minnesota studies, and the fourth round of the Washington study, individuals up to age 18 were
excluded from calcula on of the sero-prevalence es mate (S100), because of small sample sizes in the
surveys.

Fig. S33 compares the expected propor on of individuals with COVID-19 an bodies (S100) to study
es mates. For Connec cut, themodel es mates higher seroprevalence levels than the CDC study. How-
ever under the es mates of the CDC study, the ra o of expected to observed cases was unusually low at
6:1 or lower across the study rounds, sugges ng that seroprevalence was likely underes mated in that
study by a factor of two. An alterna ve explana on is that themodel does not account for sustained spa-
al importa on of SARS-Cov-2 infec ons such as from New York City, and may have overes mated local

transmission dynamics. For Florida, survey samples were collected in South Florida, which experienced
higher numbers of reported cases and contributed dispropor onately towards total deaths within the
state. This suggests that survey es mates likely overstated seroprevalence compared to the state as a
whole, and the implica ons on our comparison are unclear. For the round 1 study in Missouri, we note
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Figure S33: Comparison between es mates of COVID-19 seroprevalence under the contact and infec onmodel
with those from large-scale an body studies. Shown are posterior medians and 95% credible intervals for model
output, and es mates as reported from the an body studies, for the dates reported by the studies.

the ra o of expected to observed cases was unusually high at 23:1, sugges ng that seroprevalence was
likely overes mated in the study by a factor of two. In contrast, low ra os of 3:1 of expected to observed
cases in the third and fourth round suggest underes ma on of seroprevalence in these rounds. For the
New York metropolitan area, the catchment area increased from round 1 to round 2 to include Long Is-
land, sugges ng that the survey es mates could understate seroprevalence compared to New York City
in early May. The survey es mates decreased from rounds 2 to 4. Seroreversion was not considered in
the model, and so a poorer fit to actual seroprevalence data at later me points is expected. For Utah,
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the round 2 point es mate is significantly lower than that of round 1, though the 2:1 ra o of expected to
observed cases in rounds 2 to 4, may indicate underes ma on by a factor of 5. For Washington, survey
samples were collected in the Western region, which also experienced higher case and death numbers
than the Eastern part ofWashington state, sugges ng that survey es mates could have overstated state-
level seroprevalence. The second New York City study [83] found considerably higher seroprevalence
es mates at a me point before the first CDC study in New York City. Our model es mates appear to be
more in line with the sero-prevalence es mates of the CDC studies in New York City. In the context of
these poten al caveats, we find that the model fits are qualita vely in good agreement with available
seroprevalence data. The corresponding cumula ve a ack rates es mates are presented in Table S6.
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S6 Sensi vity analyses

S6.1 Alterna ve assump ons on age-specific infec on fatality ra os

The contact-and-infec on model is sensi ve to the underlying infec on fatality rates (IFR), as any model
that infers disease dynamics fromCOVID-19 a ributable deaths [56, 88]. The central analysis uses an IFR
prior that is centered on the version 7 meta-analysis es mates of Levin and colleagues [89]. The contact
and infec onmodel is sensi ve to the assumed IFR prior, as anymodel that infers disease dynamics from
COVID-19 a ributable deaths [56]. In sensi vity analyses, we considered an alterna ve IFR prior density
centered on the version 5 meta-analysis es mates of Levin and colleagues [89], which were lower for
younger age bands and higher for older age bands (Figure S34).

Figure S34: Comparison of age-specific IFR es mates used in the central analysis and the sensi vity analysis.
Mean and 95% uncertainty ranges of age-specific IFR es mates from version 5 and version 7 of the meta-analysis
of [89]. Version 7 was used in the central analysis, and version 5 in the sensi vity analysis..

Figure S35 compares the cumula ve a ack rates in each loca on that were es mated under the
central model, and the alterna vemodel that uses the version 5meta-analysis IFR es mates. In the sen-
si vity analysis, es mated cumula ve a ack rates were in some loca ons considerably higher among
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individuals aged < 70 than in the central analysis. Figure S36 compares the seroprevalence es mates
under both models to the es mates of the seroprevalence studies described in Sec on S5. The sero-
prevalence es mates in the central analysis showed smaller differences rela ve to the es mates of the
CDC seroprevalence studies, when compared to the es mates in the sensi vity analysis.

Figure S37 compares es mates of age-specific reproduc on numbers and the contribu on of age
groups to onward spread under the central model, and the alterna ve model that uses the version 5
meta-analysis IFR es mates. Both models made very similar inferences on age-specific disease spread.
This suggests that the es mated scale of COVID-19 epidemics depends on the assumed IFR, resul ng in
>5% differences in es mated cumula ve a ack rates for less than a one order of magnitude change in
IFR es mates among young age groups. However differences in the es mated scale of the epidemics
had no significant impact on es mated reproduc on numbers, and the es mated contribu on of age
groups to SARS-Cov-2 infec on.
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Figure S35: Age-specific cumula ve a ack rate es mates under the central model and under the alterna ve
model using an IFR prior density centered at alterna ve meta-analysis es mates. Dots and error bars indicate
the posterior median es mate and 95% credible intervals in cumula ve a ack rates as of August 23, 2020. Central
model is in purple and alterna ve model is in black.
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Figure S36: Comparison of seroprevalence es mates from the central model and the alterna vemodel using an
IFR prior density centered at alterna vemeta-analysis es mates. Shown are posteriormedians and 95% credible
intervals for themodel es mates on themidpoint of the observa on periods of the seroprevalence studies, against
es mates from the seroprevalence surveys (see Sec on S5).
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Figure S37: Age-specific weekly reproduc on numbers and contribu on of age groups to onward spread under
the central model and under the alterna ve model using an IFR prior density centered at alterna ve meta-
analysis es mates. (Top) Es mated weekly age-specific reproduc on numbers for the week August 17, 2020 -
August 23, 2020 under the central model (purple) and the alterna ve model (black). Dots and error bars indicate
the posterior median es mate and 95% credible intervals. (Bo om) Es mated cumula ve contribu on of age
groups to onward spread as of August 17, 2020.
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S6.2 Alterna ve assump ons on contact intensi es from and to children aged 0-19 during
periods of school closure

The cell-phone derived popula on-level mobility data used in this study were only available for individ-
uals aged 18+. We rely on limited data from two contact surveys performed in the United Kingdom and
China [73, 54] to characterise contact pa erns from and to younger individuals during the pandemic (as
described in Sec on S3.2). In the central analysis, the 4 × 4 + (18 − 4) × 4 + 4 × (18 − 4) = 128

contact intensi es from or to children and teens aged 0-19 were set to the corresponding, average of
the age-specific contact intensi es during lockdown that were observed across loca on in [54]; see also
Equa on (S35). In sensi vity analyses, we explored the impact of lower or higher contact intensi es
from or to children and teens aged 0-19 during periods of school closures. We approached this by re-
formula ng (S35) to the following form,

Cm,t,a,a′ =


Cm,a,a′ if t < tschool-closem

τClckdwn−0−19
a,a′ if t ∈ [tschool-closem , tschool-reopenm − 1]

Creopen-0-19m,a,a′ if t ≥ tschool-reopenm

(S101)

where a ∈ {[0−4], [5−9], [10−14], [15−19]} or a′ is one of the 5-year age bands of the infec on-and-
contact model, tschool-closem is the me index corresponding to schools closure in loca onm, tschool-openm is
the me index corresponding to schools re-opening in loca on m, Cm,a,a′ are the baseline pre-COVID-
19 contact intensi es described in loca on m in Sec on S3.2.2, Clckdwn−0−19 are the average contact
intensi es derived from [54], and τ is a new scaling factor thatwe introduce for the purpose of sensi vity
analyses.

To gauge a range of τ values, we first calculated the contact intensity ra os between the city-level
contact matrices in [54] with the contact intensi es Clckdwn−0−19 that were used in the central analysis.
The maximum contact intensity ra o was 2.00 and the minimumwas 0.15. Using data from the UK post
lockdown contact survey of Jarvis and colleagues [73], we also computed the mean contact intensi es
from individuals aged 18+ with children aged 0 − 4 and children and teens age 5 − 17. We repeated
calcula ons for the average post-lock down contact matrix Clckdwn−0−19 of Jarvis and colleagues [73].
The minimum andmaximum ra o in the corresponding contact intensi es were 1.79 and 2.22. We thus
performed two sensi vity analyses using τ = 0.5 and 2, subject to the constraint that the resul ng
contact intensi es during lockdown were not larger than those prepandemic contact intensi es Cm,a,a′ .
Figure S38 compares the resul ng contact intensi es from and to children and teens during periods of
school closure.

Then, we re-fi ed the contact-and-infec on model. Figure S39 compares es mates of age-specific
reproduc on numbers, and the contribu on of age groups to onward spread under the central and
alterna ve models. The alterna ve model assump ons lead to considerable differences in es mated,
age-specific reproduc on numbers. For children aged 0−9, the es mated reproduc on numbers ranged
from 0.30 [0.29, 0.32] to 0.83 [0.79, 0.88] as τ increased from 0.5 to 2 in the week August 17, 2020 -
August 23, 2020. For teens aged 10-19, the es mated reproduc on numbers ranged from 0.37 [0.35,
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Figure S38: Comparison of contact intensi es fromand to children aged 0-19 during periods of school closures in
the central and sensi vity analyses. Shown are contact intensi es from and to children and teens during periods
of school closure (on May 06, 2020) in California for different values of τ in Equa on (S101). The value τ = 1

corresponds to the central analysis. Parts of the me varying contact matrices that are not affected by this change
in model assump ons are shown in grey.

0.39] to 1.28 [1.21, 1.36] as τ increased from 0.5 to 2. These differences also had a no ceable impact
on the es mated contribu on of children and teens to SARS-CoV-2 transmission. The es mated cu-
mula ve contribu on to onward spread from children aged 0-9 as of August 17, 2020 increased from
1.78% [1.38%-2.19%] to 3.08% [2.38%-3.93%] as τ increased from 0.5 to 2. For teens aged 10-19, the
es mated cumula ve contribu on to onward spread increased from 2.24% [1.88%-2.62%] to 10.89%
[9.64%-12.37%] as τ increased from 0.5 to 2. Conversely, for young adults aged 20-34, the es mated
cumula ve contribu on to onward spread decreased for all other age groups as τ increased from 0.5

to 2. This analyses indicate that reproduc on numbers from teens aged 10-19 can in principle rise well
above 1, and that teens can contribute substan ally to onward infec on, if their disease relevant contact
intensi es are assumed to be twice as high as in the central analysis. However when poten al reduc-
ons in disease relevant contacts are es mated based on case and death data a er school reopening,

we find substan al posi ve effects, which render the τ = 2 scenario unlikely.
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Figure S39: Age-specific weekly reproduc on numbers and contribu on of age groups to onward spread under
the central model and under the alterna ve models using different assump on on contact intensi es from
and to children and teens aged 0-19 during periods of school closure. (A) Es mated age-specific reproduc on
numbers for the week August 17, 2020 to August 23, 2020 under the central model (purple) and the alterna ve
models; see (S101). (B) Es mated cumula ve contribu on of age groups to onward spread as of August 17, 2020
under the central model (purple) and the alterna ve models. The value τ = 1 corresponds to the central model.
Dots and error bars indicate the posterior median es mate and 95% credible intervals.
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S6.3 Alterna ve assump ons on the rela ve suscep bility parameters

An important feature of SARS-CoV-2 transmission is that suscep bility to SARS-CoV-2 infec on increases
with age [90, 91]. In the central analysis, the rela ve suscep bility parameters in (S51) are informed by
the contact tracing study of Zhang and colleagues [54]. In the sensi vity analysis, we considered instead
an alterna ve prior density on the rela ve suscep bility parameters based on themeta-analysis of Viner
and colleagues [90]. We approached this by reformula ng (S51) to the following form

log ρS[0−9] ∼ N (−0.6833129, 0.2424312) (S102a)

log ρS[10−19] ∼ N (−0.353706, 0.22450812) (S102b)

log ρS[65+] ∼ N (0.3828, 0.16382), (S102c)

where the hyperparameters were obtained by fi ng a lognormal distribu on to the reported 95% confi-
dence intervals in [90] with the lognorm R package, version 0.1.6 [76]. The log suscep bility parameters
for the age band [20− 64]were set to 0, so that ρS can be interpreted as the rela ve risk of SARS-CoV-2
infec on among individuals aged 0-9, 10-19, 65+ rela ve to individuals aged 20−64. Considering the 18
age bands of the contact-and-infec on model, the age-specific rela ve suscep bility parameters were
set to

log ρSa =


log ρS[0−9] if a ∈ [0− 9]

log ρS[10−19] if a ∈ [10− 19]

log ρS[20−64] if a ∈ [20− 64]

log ρS[65+] if a ∈ [65+].

(S103)

in the sensi vity analysis. Thus, in the sensi vity analysis, the rela ve risk of SARS-Cov-2 infec on among
children and teens was higher than in the central analysis.

Figure S40 compares es mates of age-specific reproduc on numbers, and the contribu on of age
groups to onward spread under the centralmodel to those under the alterna vemodel that uses rela ve
suscep bility es mates of Viner et al. [90]. Both models made very similar inferences on age-specific
disease spread. Figure S41 compares the cumula ve a ack rates es mated under the central model to
those under the alterna ve model. Both models displayed similar es mates on age-specific SARS-CoV-2
burden.
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Figure S40: Age-specific weekly reproduc on numbers and contribu on of age groups to onward spread under
the central model and under the alterna vemodel that uses rela ve suscep bility es mates of Viner et al. [90]
(Top) Es matedweekly age-specific reproduc on numbers for theweek August 17, 2020 to August 23, 2020 under
the central model (purple) and the alterna ve model (black). (Bo om) Es mated cumula ve contribu on of age
groups to onward spread as of August 17, 2020. Dots and error bars indicate posterior median es mates and 95%
credible intervals.
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Figure S41: Age-specific cumula ve a ack rate es mates under the central model and under the alterna ve
model that uses rela ve suscep bility es mates of Viner et al. [90]. Central model is in purple and alterna ve
model is in black. Dots and error bars indicate posteriormedian es mates and 95% credible intervals of cumulated
a ack rates as of August 23, 2020.
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