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S1 National mobility indicators during the pandemic

S$1.1 Age-specific U.S. foot traffic

To characterise changes in human contact patterns during the pandemic, Foursquare Labs Inc. provided
longitudinal U.S. foot traffic data across the 50 U.S. states, the District of Columbia, and New York City [1].
The data are based on Foursquare’s US first-party panel that includes millions of opt-in, always-on active
users. Visits are derived via Foursquare’s core location technology, Pilgrim [2], which leverages a variety
of mobile device signals to pinpoint the time, duration, and location of panelists’ visits to locations such
as shops, malls, restaurants, concert venues, theaters, parks, beaches, or universities. From operated
and partner apps, Foursquare Labs Inc. collect a variety of device signals against opted-in users. These
include intermittent device GPS coordinate pings, WiFi signals, cell signal strength, device model, and
operating system version. Additionally, a smaller set of labeled explicit check-ins are captured from a
portion of the user panel. Check-ins are explicit confirmations that a user was at a given venue at a
given point of time. One example source of this is Foursquare’s Swarm app, where users can “check in”
to venues to keep a log of where their mobility history. These check-ins then serve as training labels for a
non-linear model that is used to predict visits among users with unlabeled visits in terms of probabilities
as to which venue users ultimately visited. For research and insights use cases, the probabilities are
processed further, projected and aggregated by state / metropolitan area, day, and age cohort. This
projection accounts for changes in the number of individuals in the panel and the representativeness of
panelists according to their home state or metropolitan area, age band, and gender relative to latest US
Census data.

Daily projected visit volumes were available at state / metropolitan area-level from February 1, 2020
to October 29, 2020 for individuals for 6 age groups

icd= {[18 —24],[25 — 34], 35 — 44], [45 — 54], [55 — 64], [65+]}. (51)

Daily projected visit volumes were standardised to projected per capita visits V;,, ; 5 of individuals in
state / metropolitan area m and age band a on day ¢ by dividing the visit volumes with the number of
individuals in state / metropolitan area m and age band a. Per capita visits appeared low for the first
two days of the time series, and were excluded. Data updates were obtained from May 26 onwards.

Fig. S17 illustrates the pre-processed time series of projected per capita visits V;,, + 5. Individuals in
New York City, New York, and Hawai were projected to have considerably more per capita visits than
other states and metropolitan areas. Across states and metropolitan areas, projected per capita visits
were highest for individuals aged 35 — 44 years, both before and after stay at home orders were issued.
Individuals aged 65 or older had lowest projected per capita visits across all states and metropolitan
areas.
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Figure S17: Projected per person foot traffic per day for the 50 US states, District of Columbia and New York
City. Data were obtained using Foursquare’s location technology Pilgrim that pinpoints the time, duration, and
location of panelist’s visits. Projected per capita visits standardised visit volumes by the population size in each
location and age group.
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$1.2 Age-specific U.S. mobility trends

Age-specific mobility trends were derived from the U.S. foot traffic data described in Section S1.1. Our
aim was to quantify changes in U.S. foot traffic during the pandemic relative to a baseline period for
individuals in the 5-year age bands (S21) in each of the U.S. states, the District of Columbia, and New
York City. The baseline period was defined from February 3 to February 9, 2020, which corresponded to
the first week of the time series of projected per capita visits. We first calculated average projected per
capita visits during the baseline week,

Vo= ). Via (s2)
te{Feb 3—Feb 9}

and then derived the mobility trends
Xt = Vingal Vs (53)

for each state / metropolitan area m and the age bands & available through the U.S. foot traffic data.

$1.3 Quantitative Analysis

To characterise different effects during the initial phase of the pandemic, the time when stay at home
orders were introduced, and later time periods, we derived two particular time points for each state or
metropolitan area. The first time point characterises the start of substantial declines in mobility across
all age groups, and the second time point characterises the time after which mobility trends begin to re-
bound. To determine the two time points we calculated the 15-days central moving average of projected
per capita visits in each location (state or metropolitan area) m,

15
1 1
xm-ave _ = § E X 3 S4

m,t 3O+1As:715 . m,t+s,as ( )

where A is the number of age groups in the mobility data specified in (S1), such that A = 6. The
first time point, which we refer to as the dip date, was determined as the first day when the 15-days
moving-average had fallen by over 10% compared to the one two weeks prior,

taP = min{t : X778/ X8 < 0.9}, (S5)

The second time point, which we refer to as the rebound date, was determined as the day with the
smallest 15-days moving-average,

rebound
tm

= argmin, _ap X1 o8, (S6)

t>t m,t

where tdiP < ¢rebound vy - Using different time intervals in the central moving average calculations did
not alter the value of change points substantially (not shown). Figure S1 shows the mobility trends (S3)
for every U.S. state, the District of Columbia, and New York City, along with the dip and rebound dates.

DOI: https://doi.org/10.25561/82551 Page 5 of 73


https://doi.org/10.25561/82551

07 January 2021 Imperial College COVID-19 Response Team

We then assessed differences in the weekly, age-specific mobility trends when compared to the
baseline week in early February. Gamma regression models with log link, and location and age category
interaction terms were fitted to the selected daily mobility trends. Negative regression coefficients with
a two-sided p-value below 0.05 were interpreted as age groups showing statistically significantly lower
mobility compared to the baseline week. Similarly, positive regression coefficients with a two-sided
p-value below 0.05 were interpreted as age groups showing statistically significantly higher mobility
compared to the baseline week, and regression coefficients with a two-sided p-value above 0.05 were
interpreted as age groups showing mobility trends that were not significantly different compared to the
baseline week. Fig. 518 summarises the results. Overall, relative to the baseline week, mobility trends
started to decline significantly in mid March, were not significantly lower than baseline levels for the
first states in early to mid May, and not significantly lower than baseline levels for most states by early
August.

Next, we compared the relative mobility trends between age groups over time, using the 35-44
age group for relative comparisons. Gamma regression models were fitted to the trend data similarly
as described above. Fig. S19 summarises the results. Overall, individuals aged 18-24 had significantly
lower mobility trends when compared to individuals aged 35-44 across most states in the early phase
of the pandemic, between mid March and early June. No other age group showed similarly strong
relative declines in mobility. However these relative differences weakened over time and since mid June,
individuals aged 18-24 tended to have similar mobility trends as individuals aged 35-44. The only notable
exception are younger individuals aged 18-24 (and also those aged 25-34) in Hawaii, who tended to
have significantly higher mobility trends than individuals aged 35-44 throughout the entire observation
period. Overall, individuals aged 65+ also had significantly lower mobility trends than those aged 35-
44, although less consistently across states when compared to young individuals. In conclusion, the
Foursquare data suggest that, except for Hawaii, individuals aged 18-34 have lower or similar, but not
significantly higher mobility when compared to individuals aged 35-44. In addition, individuals aged 18-
24 showed significancly lower mobility trends when compared to individuals aged 35-44 between mid
March and early June in most states.

S$1.4 Comparison of Foursquare mobility trend data set to an independent U.S. mobility
trend data set

To substantiate the trends observed in the national Foursquare data set, we evaluated an independent
data set of age-stratified mobility indicators that was provided by Emodo. The Emodo data set quantifies
the proportion of individuals with at least one observed ping outside the user’s home location, out of
a panel of individuals whose GPS enabled devices emitted at least one ping on the corresponding day.
The observed, age-specific, daily mobility indicators within the panel were projected to location-level
mobility indicators. The projection accounts for changes in the number of individuals in the panel, and
the representativeness of panel members in their home area, age band, and gender relative to the latest

DOI: https://doi.org/10.25561/82551 Page 6 of 73


https://doi.org/10.25561/82551

07 January 2021 Imperial College COVID-19 Response Team

Florda
Georgia [
Hawan

laho
iiinois
Indiana

[
Kansas
Kentucky
Lousiana
Maryland
Massachiselts
Nichgan

pinhestia
ississippt
Hissoun
Montana
Nebrasia
New Hampshire

lew Jersey
New Mexics

b

Alabama
Alaska
Arizona
Arkansas
Calfornia

Sora
Befansre
Distictof Catmpia

Honda
o

idano
iiinois
Indiana
[
Kansas
Keniucky
Lousiana

Maryland
Massachisetls
Nichgan

:

Minnesbia
NiSiSSipp
Missoun
Moniana
Nebraska
ievada

New Hampshire
‘New Jersey
New Mexico
New York

New York Clty

|

North Carolina

j

Mobility trend
sitover vansasetine. [} nosig ateret o basetne [l s oner v baseine

Figure $18: Analysis of mobility trends relative to the baseline week. Gamma regression models with log link
were fitted to the daily trends. For each calendar week, mobility trends were categorised as statistically signifi-
cantly lower when compared to the baseline week, not significantly different, and statistically higher.
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Figure $19: Analysis of mobility trends relative to trends among individuals aged 35 — 44. Gamma regression
models with log link were fitted to the daily trends. For each calendar week and each age group, mobility trends
were categorised as statistically significantly lower when compared to the trends among individuals aged 35 — 44

in the same week, not significantly different, and statistically higher.
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U.S. Census.
Daily projected mobility indicators Vm7t7& were available at state / metropolitan area-level m from
Feb 01 to Jul 26 for individuals between the age groups

ie A= {[18 —24],[25 — 34], [35 — 44], [45 — 54, [55+]}. (57)

To compare the data against the age-specific Foursquare mobility trends (S3), we derived mobility trends
similarly as for the Foursquare data. We first calculated average mobility trends during the baseline
period,
vese = > Viea (s8)
te{Feb 19—Mar 03}

and then derived the mobility trends

9]

Xnta = Vita/Viest (59)

for each location (states or metropolitan area) m and the age bands a.

Initial analysis indicated that the mobility trends (S9) were noisy for some locations. For this reason,
analysis was limited to location with an average of 20, 000 distinct panelists per day per age band, and
the baseline period in (58) was defined over 14 days. In total, data from 11 locations were used. Fig. 520
compares the age-specific mobility trends derived from the Foursquare data to those derived from the
Emodo data set. Overall, the trends observed in both data sets were very similar until mid July. Since
mid July, the Emodo data suggest that mobility trends plateaued below baseline levels, whereas the
Foursquare data suggest that mobility continued to increase in all age groups.

The primary aim of this analysis was to assess whether the Emodo data support the above obser-
vation that individuals aged 18 — 24 and 25 — 34 had mobility trends that are not significantly higher
than those seen for older individuals. We repeated the analyses presented in Section S1.2, with the
last observation week set to the last complete week of observations in both data sets (September 20,
2020). Fig. S21 summarises the results. The Emodo data substantiate that individuals aged 18-24 and
25 — 34 had lower or similar mobility levels than individuals aged 34-45, and not higher mobility levels
than individuals aged 34-45.
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Figure $20: Comparison of mobility trends derived with Foursquare’s location technology and Emodo’s mobility
data. The comparison was restricted to identical age bands in the two data sets, a common range of observation
days, and states and metropolitan areas with an average of at least 20, 000 panelists per day.
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Figure S21: Comparison of mobility trends in the Foursquare and Emodo data sets relative to the 35-44 refer-
ence age group. For each calendar week and each age group, mobility trends were categorised as statistically
significantly lower when compared to the trends among individuals aged 35 — 44 in the same week, not signif-
icantly different, and statistically higher. Results based on the Emodo data set are plotted above those for the
Foursquare data set. The comparison was restricted to identical age bands in the two data sets, a common range
of observation days, and states and metropolitan areas with an average of at least 20, 000 panelists per day.
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S2 Age-specific COVID-19 attributable mortality data

§2.1 Source of the unstratified and age-specific COVID-19 deaths data

Daily COVID-19 death counts from February 01, 2020 until October 30, 2020 regardless of age were ob-
tained from John Hopkins University (JHU) for all U.S. states and the District of Columbia [3], except New
York State. For New York City, daily COVID-19 deaths counts were obtained from the GitHub Repository
[4]. The overall death counts were used for statistical inference prior to when age-specific death counts
were reported for each location (state or metropolitan areas).

Age-specific COVID-19 cumulative death counts were retrieved for 43 US states, the District of Columbia
and New York City from city or state Department of Health (DoH) websites, data repositories or via data
requests to DoH. Table S8 lists our data sources for each location, the date since when age-specific mor-
tality data used in this study was recorded, and the frequency of data updates.

$2.2 Data collection and processing of the age-specific COVID-19 deaths counts

The recorded death counts were processed to create a time series of daily deaths for every location.
Some dates had missing data, typically either because no updates were reported, because the web-
page failed or because the URL of the website had mutated. Missing daily death counts were imputed,
assuming a constant increase in daily deaths between two days with data. Some updates displayed a
decreasing cumulative death from one day. To ensure that the time series was monotonically increasing,
we back adjust with the most recent count assumed to be the correct cumulative count. Finally, certain
age bands declared by the Department of Health could not be directly associated with the age bands
used in the analysis, defined in (S21). In this case, the boundaries of these problematic age bands were
modified to reflect the closest age band from the analysis. Fig. S7 illustrates the age-specific COVID-19
mortality data that were retrieved. To assess the completeness of the age-specific death data, we com-
pared the time evolution of the sum of the age-specific deaths that we retrieved to the time evolution
of the overall number of COVID-19 deaths reported by JHU [3] and the New York City Github Reposi-
tory [4]. Fig. S22 confirms that the sum of the age-specific data that we retrieved closely matched the
overall death data.

$2.3 Share of deaths and cases by common age strata across locations

For an initial analysis of the time evolution of death counts across locations, the data from different age
stratifications were used to predict death counts in the common age bands A defined in (S21) across
all locations using a latent Dirichlet-multinomial model. Denote by B,,,; the age bands specified in loca-
tion m in month ¢ by the DoH. To ensure that deaths by all age bands are mapped correctly, the latent
Dirichlet-multinomial model uses internally the 1-year stratification

A=10,1,...,104,105}. (510)
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We denote the COVID-19 attributable deaths occurring in location m in calendar month ¢ by Yimt =
[ymtd]aeA- In other words, 9,14 are the sum of the daily new COVID-19 attributable deaths that occurred
in location m within calendar month ¢ among individuals in the 1-year age bands @. The monthly deaths
Y iyt @re not observed, and assumed to follow a distribution specified by a combination of several base
functions that depend only on age. To simplify notation, we suppress the location and time indices in the
following, with all variables and parameters being specific to one location and one month. We adopted
the parametric model

y j ~ Dirichlet-multinomial(N, x x 1 4), (S11a)
¥ ; = softmax(d ), (S11b)
Vjs=witwrd+ws a® 4 wy log(a), foralla e A, (S11c)

where N = ). y5 and the softmax function is

exp(za)

- 512
> ke exp(zr) 12

softmax(z); =

Because of the self-normalising property of the softmax function, the vector v can be interpreted as
the unknown, expected proportions of death counts that fall into the fine-resolution age bands a €
A. Thus, the above model describes the expected proportions as a combination of constant, linear,
square and logarithmic functions on the untransformed scale. The model is straightforward to fit to the
observed death counts in the reporting strata BB by the aggregation property of the Dirichlet-multinomial
distribution. Denote the reported deaths by yz = [ys|se. Then, the likelihood of the fine-resolution

model is
y5 ~ Dirichlet-multinomial(N, x X ) (S13a)
g = softmax(9) (S13b)
UBp = Zﬂfi,a forallb € B. (513c¢)
ach

The Dirichlet-multinomial allows for overdispersion in the fine-resolution death counts. A priori, we
sought to allocate highest probability mass to the sub-model without overdispersion, which we obtained
with the re-parameterisation

N
|4y 8 (S14)
1+ &
and adopting the prior densities
wi ~N(0,1), i=1,....4, (S15a)
v ~ Exponential(1). (S15b)

The fine resolution model was fitted with Stan version 2.23, using 3 Hamiltonian Monte Carlo Markov
Chains of 10,000 iterations and 1,000 warmup iterations. All chains mixed well, had good convergence
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diagnostics, no divergent transitions, and the effective sample size for all parameters was above 500 in
all analyses.
The proportion of deaths in the common age stratification A and the corresponding death counts

were predicted from the fitted fine-resolution model. Specifically, denote the predicted proportions

*
a

*
a

of deaths and deaths counts respectively by ¢}, d;;. Then, we sampled 7, d; according to their pos-
terior predictive distributions. For samples (1, k)|yz from the joint posterior distribution of the fine-

resolution model, we used again the aggregation property of the Dirichlet-multinomial distribution,

P 4lys = softmax (¥ 4) (S16)
Yaclys =Y U ,lys foralldeC, (517)
aca
and then predicted
©lys ~ Dirichlet(k X 1 4]ys), (518)
d;|ys ~ Multinomial(N, ¢’ |yB). (S19)

We back-calculated the monthly number of cases, c;, by dividing the estimated number of deaths
by the infection fatality rate in the corresponding age group,

cyld; = d; [ 7, (520)

where 7, is the infection fatality rate in age group a estimated in the meta-analysis by Levin and col-
leagues [5].

Figure S11 shows the monthly share of deaths for all age group and Figure S12 shows the monthly
share of cases over time among individuals aged 20 — 49. To evaluate if any the age-specific share
changed significantly over time, we computed for every month the share’s difference relative to the
first month with at least 30 cumulative deaths. On Figure S11, we added a star (*) next to the name of
locations for which there was a significant shift in the share of deaths among individuals age 804. In
Figure S12, we added a star (*) next to the name of locations for which there was a significant shift in
the share of cases among individuals age 20 — 49.
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Table S8: Age-specific Mortality Data source, date of first availability and update frequency by location (state

and metropolitan area). The data are available in the GitHub repository [6].

Location Date record start Frequency of updates Source
Alabama May 03, 2020 Daily [71
Alaska June 09, 2020 Daily [8]
Arizona May 13, 2020 Daily [9]
Arkansas - - -
California May 13, 2020 Daily [10]
Colorado March 23, 2020 Daily [11]
Connecticut April 05, 2020 Daily [12]
Delaware May 12, 2020 Daily [13]
District of Columbia April 13, 2020 Daily [14]
Florida March 27, 2020 Daily [15]
Georgia May 09, 2020 Daily [16]
Hawaii September 18, 2020 Weekly [17]
Idaho June 16, 2020 Daily [18]
Illinois May 14, 2020 Daily [19]
Indiana May 13, 2020 Daily [20]
lowa May 13, 2020 Daily [21]
Kansas June 02, 2020 Mon, Wed and Fri. [22]
Kentucky May 13, 2020 Daily [23]
Louisiana May 12, 2020 Daily except Sat. [24]
Maine March 12, 2020 Daily [25]
Maryland May 14, 2020 Daily [26]
Massachusetts April 20, 2020 Daily [27]
Michigan March 21, 2020 Daily [28], [29]
Minnesota May 21, 2020 Weekly [30]
Mississippi September 30, 2020 Daily [31]
Missouri May 13, 2020 Daily [32]
Montana - - -
Nebraska - - -
Nevada June 07, 2020 Daily [33]
New Hampshire June 07, 2020 Daily [34]
New Jersey May 25, 2020 Daily [35]
New Mexico March 25, 2020 Daily [36]
New York - - -
New York City July 01, 2020 Daily [37], [4]
North Carolina May 20, 2020 Daily [38]
North Dakota May 14, 2020 Daily [39]
Ohio - - -
Oklahoma May 13, 2020 Daily [40]
Oregon June 05, 2020 Mon-Fri., sometimes Sat. [41]
Pennsylvania June 07, 2020 Daily [42]
Rhode Island June 01, 2020 Weekly [43]
South Carolina May 14, 2020 Tue and Fri. [44]
South Dakota - - -
Tennessee April 09, 2020 Daily [45]
Texas July 28, 2020 Daily [46]
Utah June 17, 2020 Daily [47]
Vermont June 16, 2020 Daily [48]
Virginia April 21, 2020 Daily [49]
Washington June 08, 2020 Daily [50]
West Virginia - - -
Wisconsin March 15, 2020 Daily [51]
Wyoming September 22, 2020 Daily [52]
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Figure $22: Comparison of the Covid-19 overall death between the Department of Health death by age data
with the overall death from JHU [3], and the New York City Github repository (for NYC) [4].
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S3 Bayesian semi-mechanistic SARS-CoV-2 infection model

Figure S23 summarises the main components of the age-specific contact and infection model. Sec-
tion S3.1 describes the infection component of the model, and Section S3.2 describes the contact com-
ponent of the model. Section S3.3 describes how the model is fitted against age-specific mortality data.
Section S3.4 specifies input parameters and prior distributions. Table S9 gives an overview of the model
parameters and associated prior distributions. Section S3.6 describes the generated quantities of the
contact and infection model. Finally, Section S3.5 provides details on computational inference.

baseline POLYMOD
contacts contact survey
pre-pandemic
time varying
predictors
inferred ages 20+ age specific
LEER L ER ULl € ||cell phone derived
by 5 year age bands contacts mobility trends
over time during NPIs
ages 0-19

¢ contact surveys
per state during pandemic

(—\ per day

natural

disease informed by
tact tracing dat
A ARS-CO\ parameters i arge scale
> SARS-COV-2 — rg
infection dynamics seroprevalence
heterogeneity in human surveys

behaviour and disease

transmission modelled with per state
random effects in space, time, per day
and by age
per state
per day

Figure S23: Overview of the age-specific contact and infection model.
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Table S9: List of inputs and model parameters.

. . Section
Name Estimated Prior Notes
reference
Initial number of infections yes 108 €y t,[20-54) ~ N(4.85,0.4%), infections seeded among individuals aged 20-54 Section $3.4.1
Cmta =0, fora ¢ [20 — 54], with log-normal prior with mean 138
wheret =1,...,6.
Infection parameters yes log Ro,m ~ N(0.98, U.22) Based on [53] Section $3.4.1
with log-normal prior with mean, 2.5% and 97.5% quantiles: 2.7, 1.8, and 3.9.
Susceptibility to infection yes log Pio—14] ~ N(-1.07,0.22%) Susceptibility was modelled relative to individuals aged 15-64, Section S3.4.1
log p[é5+] ~ N(0.38, 0.162) with lower susceptibility to infection among individuals aged 0-14,
and higher susceptibility among individuals aged 65+
Based on [54]
Discretized generation time distribution no - Based on [55] Section S3.4.1
Baseline age-specific contact matrix no - Predicted based on locations” age composition and population Section $3.4.2
before mobility decreased density for weekdays and weekends
Schools closure age-specific contact matrix no - Used for individuals aged [0 — 19] during school closure periods Section $3.4.2
Based on [54]
Mobility trend predictors no - Decomposed into 3 components to allow for varying effect sizes Section S3.4.2
Regression coefficients to describe yes B~ N9 02 ) Location-specific random effects to quantify the effect of rapid Section $3.4.2
time-varying contact intensities B ~ N(0,1) decreases in mobility between the dip date and the rebound date.
before the rebound date. Oeased ~ Exp(1.5) Effects are assumed to be constant across age groups.
Regression coefficients to describe yes BIPNE — (Bupswingbase i gupswing-age) » 3uPSWIng T Random effects to capture unobserved behavioral factors Section $3.4.2
time-varying contact intensities ﬁ“‘”""?”g'b‘a‘e ~N(0,1) after the rebound date. Effects vary over time and age for each
after the rebound date. ﬁfn‘?)jw‘"g'"me = Em,e(t)/2) location. Time-varying effects are modelled with bi-weekly
em,1 ~ Njo,00) (0, 0.025%) AR(1) processes.
Emuw N/V[o.x)(fm,u—yﬂﬁ) forv>1
logo. ~ N(—1.2,0.2%)
B f20-19) ~ Exp(um”_[Ql)j4;] )
qupswing-age
B pomsg] ~ Exp(0.1)
Reduction in contact intensities from/to yes ndren - Uniform(0.1, 1.0) Vague prior density. Section $3.4.2
school children
Reduction in contact intensities among yes logy ~ N(0,0.35) Prior centered on null hypothesis of no additional effect. Section S3.4.2
school children
Location and age-specific yes Tm.a = Ta X Oma The prior distribution on age-specific fatality ratios 7, is based Section S3.4.3
infection fatality ratios log 7g ~ N (a, 02) on the meta-analysis of [5]. /i, 0 are specified in
108 8y, [20—49] ~ Exp(é'ggiqg]) Table S11. Location- and age-specific random effects
108 &, [50—69] ~ Exp(élgg%g}) allow for heterogeneity across locations.
108 b, [704] ~ EXP(fS';SH)
IFR SIFR IF]
0130 19): 9[50—69)2 O[704+) ~ EXP(0.1)
Infection-to-death distribution no - Asin [56] Section 53.4.3
Upper bound on attack rate among school-aged children | no - Upper bound was derived by multiplying reported attack rates Section S3.4.3
in school settings with £ = 6 in the central analysis. Parameter
choice was motivated assuming that 50% of infected children and
teens are asymptomatic [57].
Overdispersion parameter yes ¢~ -/\/[O,cc)(oa 5) As in [56] Section $3.4.3
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In the model, SARS-CoV-2 spreads via person-to-person contacts. Person-to-person contacts are de-
scribed at the population level with the expected number of contacts made by one individual, referred
to as contact intensities. Contact intensities are age-specific. Contact intensities vary across locations
(states and metropolitan areas) according to each location’ age composition and population density, and
change over time. Data from contact surveys before the pandemic are used to define baseline contact in-
tensities. Data from age-specific, cell phone derived mobility trends are used to estimate changesin con-
tact intensities during the epidemic in each location, among individuals aged 20+. Contact intensities
involving individuals aged 0-19 are defined based on contact surveys conducted during the pandemic.
Infection dynamics in each location are modelled through age-specific, discrete-time renewal equations
over time-varying contact intensities. Natural disease parameters such as age-specific susceptibility to
infection, the generation time distribution, and symptom onset and onset to death distributions are in-
formed by epidemiologic analyses of contact tracing data. Age-specific infection fatality ratio estimates
are informed by large-scale sero-prevalance surveys. Disease heterogeneity is modelled with random
effects in space and time on contact intensities and disease parameters. The model returns the expected
number of COVID-19 deaths over time in each location, which is fitted against age-specific, COVID-19
mortality data. New data sources presented in this study are indicated in double-framed boxes.

S3.1 Infection model

The time evolution of SARS-CoV-2 infections is quantified in terms of a discrete-time age-specific renewal
model. The discrete renewal model arises as the expected value of an age dependent branching process.
The model extends a previous version to age-specific disease dynamics [56]. In the renewal equations,
we model populations stratified by the 5-year age bands 4, such that

ae A= {[0 4, [5—9],...,[75 — 79],[80 — 84], [85—|—]}, (521)

resulting in A = 18 population strata. We denote the number of new infections, ¢, on day ¢, in age
band a, and location m as ¢y, ¢4, With ¢, 1o > 0 for all £, m, a. Here infections are taken to be both
symptomatic and asymptomatic. We introduce a series of daily contact intensity matrices C,,,; of di-
mension 18 x 18 in each location m. The time changing contact intensities C,, ; were modelled in a
regression framework that uses as input pre-pandemic contact intensities, which will be presented in
Section $3.4.2, as well as the age-specific mobility trends X, ; , that are described in the Supplemen-
tary materials. Entry C,, ; , o quantifies the expected number of contacts that one person in age group
a has with persons of another age a’ on day ¢ in location m, which we refer to as contact intensity. We
further consider the probability p,/ that a contact with an infectious person leads to infection of one
person in a’. We interpret p,/ as a natural disease parameter that is region and time independent. We
model p,s as the product of a constant baseline parameter pg, and relative susceptibility parameters pas,
for a’ € A through

par = po X p = exp(log po + log p3). (S22)
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To ensure a relative interpretation of the susceptibility parameters, we set pas, = 1 for some age bands.
Details are given in the Supplementary materials. This allows us to describe the time-varying reproduc-
tion number on day t from one infectious person in a in location m with

Rm,t,a = Z Sm,t,a’ Pa’ cm,t,a,a’v (523)

al

where s, ; o is the proportion of the population in location m and in age band a’ that remains suscep-
tible to SARS-CoV-2 infection. It is given by
t—1
Zs:l Cm,t,a’
Nm,a’ ’

where IV, o denotes the population count in age group a’ and location m. Extending the basic renewal

(S24)

Smyt,a = 1-

model, we obtain similarly

t—1
Cm,ta’ = Smyt,a Pa’ Z cm,t,a,a’ (Z Cm,s,a g(t - 5)) (525)
a

s=1
where g is the discretized generation time distribution as in [56]. This is because an individual of age a’
in country m at time ¢ makes contacts with individuals of age a at rate C,, ; , o/, and these are successful
with probability p,/ if and only if 1) the individual in ' is susceptible, which is the case with probability
Sm.t.a/» and 2) the individual in a is still infectious, which is the case with probability g(t — s).

$3.2 Time-varying contact patterns
$3.2.1 Overview

Several studies have collected data on age-specific contact patterns in various settings across the United
States prior to emergence of SARS-CoV-2 [58, 59, 60, 61]. However, little data are available on how
contact patterns changed during the pandemic. These considerations prompted us to take a predictive
approach. First, we used data from the Polymod study [62] to predict baseline contact matrices during
the early part of the pandemic for each location, which we denote by C,,. The pre-pandemic contact
matrices quantify the expected number of contacts from one person in age band a with individuals in
age band a’ per day in location m, also known as contact intensities. Populations were stratified by
5-year age bands a € A defined in (S21). Reflecting differences in contact patterns during weekdays
and on weekends, distinct pre-pandemic contact matrices were generated for weekdays and weekends,
Cmday and Cﬂf”d. For simplicity we suppress the weekday and weekend notation in what follows, with all
equations being analogous. Our approach is similar to those reported in [63, 64]. Details are presented
in Section S3.2.2.

Second, we used the age-specific mobility trend data available for individuals aged 18+ to predict
time-varying contact intensities among individuals abve age 20. Overall, time changing contact intensi-
ties on day t in location m were modelled through

Cm,t,a,a’ = Nm,t,a cm,a,a’ Tim,t,a’ (526)
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where a € {[20 — 25],...,[85+] }and @’ € {[20 — 25],..., [85+]}. The multipliers 7, ; , describe the
estimated effect of the age-specific mobility trends X, ; , on changes in pre-pandemic contact matrices
for each location. Since both the index person and the contacted individuals are changing their mobility
over time, the multipliers are applied to the rows and columns of the contact intensity matrix. Details
are presented in Section S3.2.3.

Third, we used data from two contact surveys conducted after nursery, kindergartens, and schools
closures to specify contact intensities from and to individuals aged 0-19 during periods of school closure.
Details are presented in Section $S3.2.4.

Fourth, after state-wide school closures were no longer mandated, we reverted to the pre-pandemic
contact intensities for children and teens aged 0-19, and estimated the extent to which disease relevant
contacts from and to children and teens were reduced, and the extent to which disease relevant contacts
between children and teens aged 0-19 were reduced. Details are presented in Section S3.2.4.

§3.2.2 Baseline contact intensity matrices prior to changes in mobility

We first obtained estimates of weekday and weekend contact matrices for 8 European countries from the
Polymod contact survey [62]. Briefly, survey participants were recruited in such a way as to be broadly
representative of the whole population in terms of geographical spread, age, and sex. Participants were
asked to keep a diary of their contacts. The study included 7,290 participants recruited between May
12, 2005 and September 05, 2006. Contact intensities were estimated for Belgium, Germany, Finland,
Italy, Luxembourg, the Netherlands, Poland, and the United Kingdom using the approach of [65], using
code at the Github repository [66]. We index each of the European countries with e. The posterior
median estimates of the number of individuals in age &' that were contacted per day by one individual
in age a were extracted. Using the available methodology, populations were stratified in 1-year age
bands. Figure S24 illustrates the estimated weekend and weekday contact intensity matrices for the 8
European countries.

To match the population stratification in the SARS-CoV-2 infection model, the estimated contact
intensities at 1-year resolution were aggregated to 5-year resolution using

Ne a
Cova = E —  _Coaw, 527
e,a,a (Zaea Ne@) e,d,a ( )

aca,a’€a’

where N, ; denotes the number of individuals in 1-year age band a in the corresponding European
country e. The estimated contact intensities C. , .- were real-valued and positive.

Following [63, 64], we constructed a predictive statistical model of contact intensities based on pop-
ulation demographics including the total population size, the number of individuals in age band d’, the
proportion of individuals in age band o/, and population density. Regression models were fitted based
on the 8 x 18 x 18 = 2,592 estimates (S27) from the European-wide Polymod survey, separately for
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Belgium Belgium Germany Germany
weekday weekend weekday weekend

Finland Finland United Kingdom United Kingdom
weekday weekend weekday weekend

Italy Italy Luxembourg Luxembourg
weekday weekend weekday weekend

Age of contact

/ /

Netherlands Netherlands Poland Poland
weekday weekend weekday weekend

Predicted contact intensities

Figure S24: Estimated contact intensities for the 8 Polymod countries by weekday and weekend.
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Figure S25: Predicted contact intensities versus Polymod estimates. Median predictions and 95% predictive
intervals under model (S28) are shown in grey, and Polymod estimates are shown in blue.
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Figure S26: Difference in contact intensities at weekends compared to weekdays. Locations ordered by popula-
tion density.
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weekdays and weekends. The chosen statistical model was of the form

log Ce,a,a’ ~ N(Me,a,aH 02) (528a)
Ne o N, o
He,a,a’ = sz,a’ + 04 ]f;: + 02 log AL:L, (528b)

where 0, . are pairwise age-specific baseline terms, NN, . is the number of individuals in age band a
in location e, and A, is the land area of location e in square kilometres. The least squares estimates
of 8, and 65 were positive and highly significant for both weekday and weekend contact intensities, so
that under model (S28) contact intensities with individuals of age a’ increase as the proportion of the
population of age a’ increases, and as population density increases. The fits of model (528) through
the training data are illustrated in Fig. S25. The leave-one-out cross-validation mean absolute error
associated with model (528) was 0.361 and 84.1% of the variance was explained.

Baseline contact matrices for the 50 U.S states, the District of Columbia and New York City were
then predicted using (528). Fig. S4 shows the predicted baseline weekday contact matrices C,,, for all
locations. The predicted contact matrices are consistent with key characteristics of human contact pat-
terns, including high number of contacts between children and teenagers of same age, parent-child
interactions, broader workforce interactions, and child/parent-grandparent interactions. Fig. S5 illus-
trates location-specific differences in predicted contact intensities relative to the national average. In
locations with young populations such as Alaska, the District of Columbia, Texas or Utah, lower contact
intensities are predicted with individuals in young age groups when compared to the national average.
Similarly, in locations with older populations such as Maine, higher contact intensities are predicted with
individuals in older age groups when compared to the national average. Fig. S6 illustrates that locations
with high population density such as the District of Columbia and New York City are predicted to have
higher contact intensities compared to the national average. Fig. 526 compares predicted contact inten-
sities on weekdays to those predicted for weekends. Predicted contact intensities were higher between
children and the elderly individuals on weekends compared to weekdays for all locations.

S$3.2.3 Time-varying contact intensities among individuals aged 20 and above

The time changing multipliers 7, ; , to the rows and columns of the pre-pandemic contact matrices
were obtained through a regression model using the age-specific mobility trends (S3) as predictors. We
matched the age stratification (S21) used in the model, with those from the original mobility trends
through

Xmta = Xma ifa€a, (529)

where @ € A are the broader age strata in which the mobility data were reported, [18 — 24],[25 —
34], [35 — 44], [45 — 54], [65 — 64], [65+].

To model heterogeneity in human behaviour and disease transmission after the rebound time in mo-
bility trends, the mobility trends $S29 were decomposed into three components. The three components
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are a baseline mobility trend denoted by Xﬁf‘fa, an eased mobility trend which we denote by Xﬁffg,

and an upswing multiplier that we denote by ngif{j”g. The decomposition satisfies the relation
Xt = X25F, x X2 X P0e (530)

forallm, t,and a € {[20 —24],...,[85+]}. This approach is motivated by the general observation that
since May/June 2020, when initial lock-downs were lifted, changes in overall mobility are less strongly
correlated with changes in transmission risk [67, 68]. The above decomposition allows us to decou-
ple the impact of mobility trends on changing contact intensities and transmission risk in the model in
different stages of the COVID-19 epidemics.

Specifically, the base mobility trends, the eased mobility trends and multipliers were defined as

Xmta ift<tdP

b
= by
(1 if ¢ < P,
yeased _ Xmta if tg’ilp st< t;gbound’ (S31b)
7t7 - . .
e wday if ¢ > ¢1ebound and ¢ is a weekday,

d : bound .
Xma  ift > 52" and t is a weekend,

)

1 if t < tdiP,
) 1 if tdip <t< trebound7
xi\:\gng _ mo— m (S31c)

Xm,t,a/xg;{gv if t > trebound and ¢ is a weekday,

Xon,ta/ X0 ift > ¢18°°U" and ¢ is a weekend,

where Xy,;{gv is the average of the mobility trend X, ; , over the 5 weekdays before ¢/¢°°U"¢, and Xﬁ’fgd
is the average of the mobility trend X, ; , over the 4 weekend days before trebound Fig 527 illustrates
the decomposed mobility trends for four locations.

With the decomposed mobility trends, we modelled the multipliers in (S26) that quantify the time

evolution in contact intensities through

_ base eased eased upswing upswing
Nm,t.a = €Xp ( log Xm,t,a + By log Xm,t,a + Bm,t,a log Xm,t,a )? (S32)
upswing

where (53¢ is 3 spatially varying random effect across locations, and /3 are structured random

m,t,a
effects that vary in space, time and by age. The purpose of the eased mobility regression coefficient
55,?590' was to capture the effect of permanent reductions in contact patterns in the early phase of the
pandemic. We reasoned that in populous areas, the same per cent reduction in venue check-ins may
translate into a larger reduction in contact intensities than in less populous areas, and so allowed for

different ﬁf’,‘;‘se‘j across locations. In addition, this choice was further motivated by the observation that
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Figure S27: Decomposition of mobility trends, shown for 4 US locations. For each location, the change point in
overall mobility trends was determined using a 10-day moving average. Age-specific mobility trends were then
decomposed into eased mobility trends and multipliers as shown. The vertical dash lines indicate the change
points when mobility dipped and began to rebound.

mobility trends dipped to varying extent across locations and showed systematically different trajecto-
ries after rebound, which suggested that the mobility trends cannot be interpreted on the same scale

across states.
upswing
m,t,a

the initial reduction in contact patterns during the early phase of the pandemic. In general, because

The purpose of the upswing regression coefficients 3 was to capture longer-term effects after
of the lower correlation of mobility trends with transmission risk after initial lock-downs, behaviour
change and widely implemented non-pharmaceutical interventions [67, 68], we expected the upswing
coefficients to be significantly lower than the coefficients associated with the initial declines. To model
the substantial role of further behavioral factors such as contact duration, types of venues visited [69], or
mask use [67, 70], the upwsing coefficients were allowed to vary in time independently for each location.
Finally, to investigate the nature of resurgent epidemics and if resurgent epidemics are linked to changes
in contact intensities and transmission risk from younger individuals, we further allowed the upswing
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coefficients to vary by age. With this specification, we were able to formulate age-specific changes in
transmission risk through differences in age-specific mobility trends (per cent change in venue check-
ins by age groups) and further unobserved factors (e.g. age differences in contact duration, number of
contacts per venue check-in, types of venues visited, protective measures in venues, etc.). A particular
feature of the contact-and-infection model is that, when fitted to age-specific mobility and age-specific
death data, all random effect regression parameters are identifiable across all states.

To illustrate the effect of the regression coefficients, consider the case that 3&3s¢¢ = Bﬁfﬂing = 0.
In this case, 7,1, = 1 and the contact intensities on day ¢ are the same as at baseline after the dip
date. If instead 383%e4 = 5;§;ff;”g = 1, the contact intensities on day ¢ from index persons scale with the

observed mobility trend X, ;.. Finally, if 324 = 1 and ﬁ;fftffj”g = 0, the contact intensities on day ¢

from index persons scale with the derived eased mobility trend X;’ffg after the dip date.
$3.2.4 Contact intensities from and to children and teens aged 0-19 during periods of school closure
and after re-opening

In the United States, closures of kindergartens, elementary schools, middle schools, and high schools
were ordered at least at one level from April 4, 2020 [71]. School closure mandates have been continu-
ously revised over the summer and fall of 2020. We retrieved dates on school closures and re-openings
from the Oxford COVID-19 Government Response Tracker [71] and from Education Week, an indepen-
dent K-12 education news organisation [72]. The data from Education Week are specific to government
interventions targeting elementary, middle and high schools, and as such were preferred over the school
intervention index of the Oxford COVID-19 Government Response Tracker, which also subsumed open-
ing of colleges and universities.

In the model, we calculated periods of school closures and re-opening as follows. School closure
dates were defined as the first week day on which state administrations mandated or recommended
state-wide closures of elementary, middle, and high schools, and retrieved these dates from the Ox-
ford COVID-19 Government Response Tracker [71]. School re-opening dates were defined as the first
week day on which state administrations no longer mandated state-wide closure of elementary, mid-
dle, and high schools, and we retrieved these dates from Education Week [72]. We denote the time
indices corresponding to state-wide school closures in location m by tiﬁh°°"c'°se, and the time indices
corresponding to school re-opening in location m by ti,iho""r“pe”. Education Week data only started on
August 19, 2020. If a school closure order was not in effect from the first day of the Education Week
data, we set £55"0°TeoPen o Aygust 24, 2020. By October 29, 2020, only the District of Columbia contin-
ued to mandate state-wide school closures [72]. Fig. S28 shows the timelines of schools status, across
the US, as specified in our analysis.

To specify contact intensities from and to children and teens aged 0-19 during periods of school
closure, we used data from two contact surveys conducted after kindergarten and school closures in
response to accelerating COVID-19 epidemics in the UK and China [73, 54]. Fig. S29 compares the esti-
mated contact intensities from one individual aged 0-19 using the contact surveys in Wuhan and Shang-
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Figure S28: Timing of school closure periods in the model. School closure data were retrieved from [71] and
school re-opening data were retrieved from [72]. School closure dates were defined as the first week day on which
state administrations mandated or recommended state-wide closures of elementary, middle, and high schools.
School re-opening dates were defined as the first week day on which state administrations no longer mandated

state-wide closure of elementary, middle, and high schools.
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hai before and during lockdown. Fig. S30 compares the estimated contact intensities to individuals aged
0-19. We plot the point estimates from the original report before lockdown to those during lockdown
[54] (top row) and the ratio of the contact intensities during lockdown versus the corresponding contact
intensities before lockdown (bottom row). During lockdown, the estimated, average number of daily
peer-to-peer contacts from one individual aged 0-19 to individuals in the same age group was 0.09, cor-
responding to a contact intensity ratio of 0.01 across both cities. The total number of contacts from
one individual aged 0-19 during the outbreak was 2.3, corresponding to a contact intensity ratio of 0.14
across both cities. The average number of contacts from one individual randomly chosen in the pop-
ulation to individuals in 0 — 19 was 0.29 during lockdown, associated with a contact intensity ratio of
0.24. The contact survey of Jarvis and colleagues [73] in the UK included individuals aged 18+, but in-
terviewed individuals were also asked to report contacts to children and teenagers aged 0-17. During
lockdown, the estimated, average number of daily peer-to-peer contacts from one individual older than
18 to children aged 0-17 was 0.78, corresponding to a contact intensity ratio of 0.25. In the model,
we set the average daily contact intensities involving children and teens aged 0-19 during periods of
school closure to the average daily contact intensities involving children and teens aged 0-19 that were
observed during lockdown in Wuhan and Shanghai. We denote the observed, average daily contact
intensities in Wuhan and Shanghai by

Cihfon=0-19, (533)

where either a € {[0 — 4], [5 — 9], [10 — 14],[15 — 19]} and &’ is one of the 5-year age bands of the
infection-and-contact model, or a is one of the 5-year age bandsand o’ € {[0—4], [5—9], [L0—14], [15—
19]}.

After school closures were no longer mandated at state-level, children and teens aged 0-19 were
modelled to resume their typical contact intensities on weekdays and weekends. Similarly as for the
contact intensities between individuals aged 20+ in Equation (526), we modelled that these contact
intensities could be reduced to lower levels through a multiplier 74" that acts on contacting chil-
dren and teens, and on contacted children and teens. We further considered an additional multiplier
~ acting on contacts between children and teens. In the absence of any mobility data for children and
teens, these two parameters were estimated, and for this reason were also constant in time, across
locations, and between children and teen age bands. The two variables reflect a number of factors
mitigating disease spread, including temporary school closures in some school districts, impact of non-
pharmaceutical interventions in schools with in-school teaching, reduced mobility of children and teens,
or reduced infectiousness of SARS-Cov-2 from children and teens aged 0-19, and in practice we are un-
able to disentangle these factors. Specifically, after school closures periods, contact intensities were

specified through
,ynchildrencm aa/,’,,children ifa < 20.d" < 20
reopen-0-19 _ nchildrencm7a7a,nm’t7a, if a < 20, a > 20 (S34)
m.t,a.e’ nm,t,a’cm,a,a’ncmldren ifa >20,a" <20
nm,t,a’cm,a,a’nm,t,a’ ifa > 207 a > 20

DOI: https://doi.org/10.25561/82551 Page 30 of 73


https://doi.org/10.25561/82551

07 January 2021 Imperial College COVID-19 Response Team

where a,a’ € A, C.n,a,r denote the pre-pandemic contact intensities, and 7,, ; o are the multipli-
ers (S32).

In summary, for all time indices, the contact intensities involving children and teens aged 0-19 were
modelled through

cmk%[a, ift < 7qusjhool—close
cm,t,a,a’ _ Clac’a/ wn—0—19 ift € [t;clhool—close’ tiﬁhool—reopen _ 1] (535)
reopen-0-19 . _
m,za,a’ if t > 7f.<;7c1hool reopen

where a or o’ are one of [0 — 4], [5 — 9], [10 — 14], [15 — 19], €y, 4. is the prepandemic contact
intensities described in Section S3.2.2, Cfﬁi‘,i“m_o_lg
of [54] that described in (S33), and C;if’zzz?'lg are the contact intensities since school re-opening that
are described in (S34).

are the average contact intensities during lockdown
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Figure $29: Estimated changes in contact intensities from one child or teen aged 0-19 during lockdown, Shanghai
and Wuhan, China. Data from [54]. (A) Average number of contacts from one individual in 0-19 to individuals in
5-year age bands before (blue) and during (orange) lockdown. (B) Contact intensity ratio (grey).
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Figure S30: Estimated changes in contact intensities to children and teens aged 0-19 during lockdown, Shanghai
and Wuhan, China. Data from [54]. (A) Average number of contacts from one individual in 5-year age bands to
children aged 0-19 before (blue) and during (orange) lockdown. (B) Contact intensity ratio (grey).
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S3.3 Likelihood

The contact-and-infection model is fitted to age-specific death counts for each location m, to overall
death counts for time periods in which age-specific death counts are not available, and to overall case
counts. To establish a link between the data and the expected number of cases ¢, ¢ , (S25), we model
the probability H,, . (t — s) that a person in age band a dies from SARS-CoV-2 infection before time ¢ — s
after infection at time s in location m. We decompose the probability into the infection fatality ratio in
location m, and age band a, 7, 4, and the infection-to-death distribution h that describes when a death
occurs conditional on non-survival. We decompose H,, ,(t — s) in this manner because estimates of
both terms are available from the literature [5, 56]. Our model is

t—s
Hpot—s) = ﬂ'm’a/ h(u)du, (S36)
0

where ¢ — s is in continuous time and h integrates to 1. Using (S36), we can express the probability that
a person in location m and age band a dies on day s after SARS-CoV-2 infection as

540.5 54+0.5

hmsa = / Tm,ah(u)du = Wm,a/ h(u)du Vs=2,3,..., (S37)
s—0.5 s—0.5

and hyp 1,0 = Tm.a f01'5 h(u)du for s = 1. Using (S37), the expected number of COVID-19 deaths on day

t in age band a in location m is
t—1

dm,t,a = Z Cm,s,ahm,tfs,aa (S38)
s=1

where ¢, ;. is the expected number of new cases on day s in age band a in location m, (S25).

We link the expected number of deaths under the contact-and-infection model to the observed
number deaths through an over-dispersed count model. For each location m, the data consist of daily,
overall reported COVID-19 related deaths regardless of age until day ¢28¢%"™_ For each location, time
was re-scaled to 30 days prior to the first day when the cumulative number of deaths was 10 or larger.
We denote the overall number of deaths on day ¢ in location m by y,,,  for ¢ < 28¢5 From day ¢28estart
onwards, COVID-19 related deaths are reported in location-specific age bands b € B,,,. We denote the
number of deaths on day ¢ in location m in age band b € By, by Y, 1 for t > 2852 To match the
location-specific death data, we aggregate the expected number of deaths under the self-renewal model

to
Ayt = Z A V< i8St (S39)

acA
Ao =Y dmpa V> 15 Vb e B, (S40)

a€b
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The log likelihood of the observed deaths then consists of three parts,

9eaths (1 ) = Z [ Z log NegBin (Yum,¢|dm.t, @)+ (S41a)
m fstart < t<t?ﬂgle—start

age-start tage-start
m m

t
> > logNegBin( > Ymusp| > dmsp¢)+  (S41b)
s=1

t:tigbe-start bEBm s=1

> > log NegBin (Y t.6|dim, .5, ¢)} : (S41c)

tgrgle»start <t< tsrr{d beBm

where 5% is the first day on which at least 10 cumulated deaths were reported in location m, and ¢
corresponds to the last day with overall death, or death by age data, see Table S10.

To ensure that the inferred, expected number of actual cases are larger than the number of reported
cases in the following week, the contact-and-infection model is also fitted to the logarithm of weekly
reported case data in each location, z,, .,. The case log likelihood was described in units of weeks to
circumvent day-of-week effects. Plots suggested that the reported case data are subject to noise. For

this reason we used a loess smoother through the reported data to predict the log weekly observed

obs-cases

cases (.., Which can be considered to follow a ¢-distribution with mean parameter P standard

obs-cases

o , and degrees of freedom uﬁfs'cases, that are returned by the loess smoother. The log

deviation o
likelihood of the observed case data was then specified through

EObS‘CaSES(C) — Z Z log Pr(Cm,w < log cm7w_1), (542)

mqstart < qp<qend

where w;tf"t denotes the week in which at least 10 cumulated deaths were reported in location m, and
we"? denotes the week with the last day of death data.

To ensure that the inferred, expected number of actual cases among school-aged children are larger
than reported cases in schools and smaller than a multiple of the reported cases, the contact-and-
infection model is further fitted to reported attack rates among school-aged children and teens aged
5-18, u,,, during state-specific observation periods, ¢3St to ¢3%end g calculate attack rates among
school-aged children and teens, we first identified schools in location m that reported student case
counts K1-K12 during the entire observation period and for which enrolment sizes could be retrieved
from the Common Core of Data America’s School database [74]. Then, attack rates were calculated by
summing reported student cases across schools in the period 2% g ¢3%end 3nd dividing the total
by the sum of student enrolment sizes in the same schools. In the model, expected attack rates among
school-aged children were calculated through

4
am :( Z Cmit,[5—9] T Cm,t,[10-14] T ng,t,[15—19})/

t%t-startgtgt%tlt-end (543)

4
(Nm,[s—g} + Ny 10-14) + gNm,[15—19]>,
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where ¢, 1 o are the new infections in location m on day ¢ in age band a, and [V, , are the number of
individuals in location m in age band a. The log likelihood of the reported attack rates among school-
aged children and teens was then specified through

gschool-att—lower(u’a) _ Z log Normal-cdf(an; tm, tm /10). (S44)

m

We further assumed that the expected attack rates among school-aged children and teens should not
be higher than a multiple £ of the reported attack rates u,,, and added the constraint

(5ehooratuPRer (3] ) =} " log Normal-ccdf(am; (Sttm), (§tm)/10), (545)
m
where £ was varied between 2 and 10, and £ = 6 was used in the central analysis; see Section S3.4.3.

$3.4 Inputs and prior distributions on model parameters

The contact-and infection model has the following inputs, which we consider fixed, and model parame-
ters, which we consider unknown and estimate (see Table S9). The total number of estimated parame-
ters in the model is 31 + (Ny + 7) x M, where M is the number of locations and Ny is the number of
bi-weekly intervals, which for the central analysis amounted to 771 estimated parameters.

S$3.4.1 Infection dynamics

Initial number of infections. For each location, the number of SARS-CoV-2 infections in the first 6 days
of the observation period among individuals aged 20-54 are given the prior distribution

|08 ¢ 1. 20-54] ~ N(4.85,0.4%), t=1,...,6 (46)

Recall that the observation period starts 30 days prior to the first day when the cumulative number of
deaths in location m was 10 or larger. A priori we thus expect on average 125 infections to have occurred
in the first 6 days among individuals aged 20-54 years. The new infections are then equally distributed
across the corresponding age bands,

_ ) cmufpo—54/7 ifa€ Ao
Cmit.a = { 0 otherwise, (547)

where Ay = {[20 — 24], [25 — 59], [30 — 34], [35 — 39], [40 — 44], [45 — 49], [50 — 54]} and t = 1,.. . ,6.

Infection parameters. The infection parameters described in (522) comprise the baseline infection
parameter in location m, po,., (real-valued), as well as relative susceptibility (S) parameters p° (vector-
valued of length A).
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Table S10: Dates with overall and death by age data included in the likelihood. Our analysis include 40 locations

with death by age.

Location

Dates with
overall data

Dates with
death by age data

Number of age groups

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of Columbia
Florida
Georgia
Hawaii

Idaho

lllinois
Indiana

lowa

Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada

New Hampshire
New Jersey
New Mexico
New York
New York City
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas

Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming

March 29, 2020 - May 02, 2020
March 27, 2020 - May 12, 2020

March 17, 2020 - May 12, 2020
March 25, 2020 - March 25, 2020
March 23, 2020 - April 04, 2020
March 31, 2020 - May 11, 2020
April 02, 2020 - April 12, 2020
March 20, 2020 - March 26, 2020
March 19, 2020 - May 08, 2020
April 04, 2020 - June 15, 2020
March 23, 2020 - May 13, 2020
March 24, 2020 - May 12, 2020
April 02, 2020 - May 12, 2020
April 01, 2020 - June 01, 2020
March 30, 2020 - May 12, 2020
March 19, 2020 - May 11, 2020

March 29, 2020 - May 13, 2020
March 24, 2020 - April 19, 2020
March 23, 2020 - March 23, 2020
March 30, 2020 - May 20, 2020

March 28, 2020 - September 29, 2020 September 30, 2020 - October 29, 2020

March 28, 2020 - May 12, 2020

March 26, 2020 - June 06, 2020
April 08, 2020 - June 06, 2020
March 20, 2020 - May 24, 2020
April 03, 2020 - April 03, 2020

March 16, 2020 - June 30, 2020
March 31, 2020 - May 19, 2020
April 21, 2020 - May 13, 2020

March 28, 2020 - May 12, 2020
March 25, 2020 - June 04, 2020
March 25, 2020 - June 06, 2020
April 01, 2020 - May 31, 2020

March 27, 2020 - May 13, 2020

March 30, 2020 - April 08, 2020
March 24, 2020 - July 27, 2020
April 06, 2020 - June 16, 2020

March 26, 2020 - April 20, 2020
March 04, 2020 - June 07, 2020

March 26, 2020 - March 26, 2020

May 03, 2020 - October 29, 2020
May 13, 2020 - October 29, 2020

May 13, 2020 - October 29, 2020
March 26, 2020 - October 29, 2020
April 05, 2020 - October 29, 2020
May 12, 2020 - October 29, 2020
April 13, 2020 - October 29, 2020
March 27, 2020 - October 29, 2020
May 09, 2020 - October 29, 2020

June 16, 2020 - October 29, 2020
May 14, 2020 - October 29, 2020
May 13, 2020 - October 29, 2020
May 13, 2020 - October 29, 2020
June 02, 2020 - October 29, 2020
May 13, 2020 - October 29, 2020
May 12, 2020 - October 29, 2020

May 14, 2020 - October 29, 2020
April 20, 2020 - October 29, 2020
March 24, 2020 - October 29, 2020
May 21, 2020 - October 29, 2020

May 13, 2020 - October 29, 2020

June 07, 2020 - October 29, 2020
June 07, 2020 - October 29, 2020
May 25, 2020 - October 29, 2020
April 04, 2020 - October 29, 2020

July 01, 2020 - October 29, 2020
May 20, 2020 - October 29, 2020
May 14, 2020 - October 29, 2020

May 13, 2020 - October 29, 2020
June 05, 2020 - October 29, 2020
June 07, 2020 - October 29, 2020
June 01, 2020 - October 29, 2020
May 14, 2020 - October 29, 2020

April 09, 2020 - October 29, 2020
July 28, 2020 - October 29, 2020
June 17, 2020 - October 29, 2020

April 21, 2020 - October 29, 2020
June 08, 2020 - October 29, 2020

March 27, 2020 - October 29, 2020

1N 000 NOOUNR®E® T N0 Ul O
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To place a prior density on pg ., We consider prior estimates on the basic reproduction number [75],
and specify the following prior distribution on the basic reproduction number Ry ,, in location m,

log Ro.m ~ N(0.98,0.22), (S48a)

where the corresponding prior mean and 95% confidence intervals, 2.7 [1.6 — 3.9], are based on the
meta-analysis of [53]. To obtain pg ,,, we re-scale Ry ,,, by the average number of contacts of one person
in location m at baseline,

Pom = RO,m/Cm (S49a)
Con =Y Pma P Co . (49b)
a a/

where Cmday is the baseline weekday contact matrix defined in $3.4.2 and p,,, , is the proportion of the
population of location m in age band a.

To place prior densities on the relative susceptibility parameters, we used available data from contact
tracing and testing in mainland China [54]. Based on the available data, we considered relative suscep-
tibility parameters for the age bands [0 — 14], [15 — 64] and [65+], and specified the prior densities

log p‘[%_M] ~ N (=1.0702,0.2170%) (S50a)
log pf65 1~ N(0.3828,0.16387), (S50b)

where the hyperparameters were obtained by fitting a lognormal distribution to the reported 95% con-
fidence intervals in [54] with the lognorm R package, version 0.1.6 [76].

The log susceptibility parameters for age band [15 — 64] were set to 0, so that pS is interpreted
relative to infection dynamics from/to individuals in age band [15 — 64]. Considering the 18 age bands
of the COVID-19 transmission model, the age-specific relative susceptibility parameters were set to

log pﬁ)_m ifa € [0 — 14]
log pf = { logpfis ¢y ifac[15—-64] (S51)

log pf%5+] if a € [65+].

Discretised generation time distribution. The generation time distribution (S25) was kept fixed. Using
estimates of [55], we specified the continuous-time version

g“T(s) = Gamma(6.5,0.62). (S52)

Equation (S52) was then discretised to units of days,

540.5
g(s) = / ¢“Tu)du Vs=2,3,... (S53)
s—0.5

and g(1) = f01‘5 g°T (u) du for s = 1. This input specification is the same as in the base model [56].
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$3.4.2 Time changing contact patterns

Baseline age-specific contact matrices The pre-pandemic contact intensity matrices were constructed
as described in the Supplementary materials, and are illustrated in Figs. S4-S26.

Mobility trends (percent reduction in venue visits by age). Changes in contact intensities were de-
scribed through a random effects regression model with decomposed, age- and location-specific mo-
bility trends as covariates and additional location, age, and time-specific random effects. The mobility
trend data used in this study are described in Section S1.2, and capture percent changes in venue visits

of individuals in different age groups over time. The decomposition into baseline mobility trends X,?fﬁfa,
Xupswing

. d
eased mobility trends X358 mita

mot.q and upswing multipliers

on day t in location m and age band a is
defined in (S31), and was used to reflect lower correlations between mobility trends and transmission

risk after initial lock-downs.

Mobility trend regression coefficients and further random effects. Equations (526) and (S32) describe
our model of changing contact intensities,

cm,t,a,a’ = TNm,t.a cm,a,a’ Nim,t,a’
_ base eased eased upswing upswing
Nm,t,a = exp ( IOg Xm,t,a + 5m IOg Xm,t,a + Bm,t,a |08 Xm,t,a )

The purpose of the eased mobility regression coefficient ﬁf,‘;‘sed was to capture the effect of permanent
reductions in contact patterns in the early phase of the pandemic. We reasoned that in populous areas,
the same per cent reduction in venue check-ins may translate into a larger reduction in contact intensities
than in less populous areas, and so allowed for different 353 across locations. In addition, this choice
was further motivated by the observation that mobility trends dipped to varying extent across locations
and showed systematically different trajectories after rebound, which suggested that the mobility trends
cannot be interpreted on the same scale across states. Specifically, we specified the spatial random
effect through,

eased eased _2
/Bm ~ N(ﬁ ) Jeased)
5eased ~ _/\/'((), 1) (S54)
Oeased ~ Exponential(1.5).

upswing
m,t.a

The upswing random effects 3 are intended to capture further disease-relevant, unobserved be-
havioral factors such as contact duration, types of venues visited, or mask use [67, 70]. In addition, the
random effects were specified to investigate the nature of resurgent epidemics and if resurgent epi-
demics are linked to changes in contact intensities and transmission risk from younger individuals. A

particular feature of the contact-and-infection model is that, when fitted to age-specific mobility and
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age-specific death data, all random effect regression parameters are identifiable across states. Specifi-
cally, we specified the upswing random effects through

Bgf;\:\/@ing — (/Bupswing-base + Bgﬂﬁsawing-age) % B;Jrfj;wing-time. (555)

In (S55), BUPswing-base acts 35 a baseline effect of mobility increases since the rebound time on contact
intensities,
ﬁupswing—base ~ N(O, 1)’ (556)

which a priori we expected to be lower than the average effect associated with initial reductions in

mobility trends, 32259, The time-specific random effects S1Ps"ingtime

.t are, independently for each loca-

tion, specified as a bi-weekly AR(1) process centered at zero. This allows the mobility trends (percent
reduction in venue check-ins for each age group) to have different effects on contact intensities and
transmission risk over consecutive two week intervals in each location, and as such can be interpreted
as unobserved factors that modulate how changes in venue check-ins translate into transmission risk
over time. Specifically,

upswing-time __
Bt = Em,|c(m,t)/2]

Em,1 ~ Njo,00)(0,0.025%),
Emup ~ J\/'[07OO)(em,v,1, 02) forv > 1,
log o, ~ N(—1.2,0.2%),

(S57)

where N, ;) denotes a truncated normal distribution between a and b and c(t) is a function that maps
the time indices in location m to calendar weeks. The random effects were constrained to positive
values in order to escape strong correlations with 3UPSWine-base jn the joint posterior density and facilitate

mixing. The variance parameter o, was a priori given a mean of 0.3 to favour smooth time trends in
Bupswing—time

it over spontaneous changes. The age-specific random effects B,‘;f’jl"‘””g'age) were added to the

model to test for the presence of age-specific unobserved factors among individuals aged 20-49 with a
net positive effect on disease relevant contact intensities and transmission risk. Together with the time
effects B;jf;w'"g‘"me, the age-specific unobserved factors among individuals aged 20-49 can in principle

have occurred within any two week interval after mobility trends started to rebound. We allowed for
heterogeneity in the age-specific effects among individuals aged 20-49 across locations through

upswing-age upswing-age
B 120-19] Exp(6[20_49] )

upswing-age (558)
5[20—49] ~ Exp(0.1),
and then specified ‘
upswing-age
upswing-age __ Bm’[20_49] ifa € [20 — 49] 59
e { 0 otherwise. (559)

More general versions of this model with age-specific random effects for individuals aged 20-49, 50-74,
and 754 were also considered, however the posterior distributions of the age-specific random effects
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associated with individuals aged 50-74 and 75+ were close to zero and left out from the final model
for computational tractability. More general versions of this model with age-specific random effects for
individuals aged 20-34 and 35-49 resulted in strong correlations between the two parameters, indicating
that we are unable to separate effects attributable to both age groups based on the current data.

Reduction in contacts from and to school-aged children after school re-opening. The parameter

n°h°°l in (534) reduces the number of contacts from and to school aged children from pre-pandemic

levels, and was associated with the prior density
n*hel ~ Uniform(0.1, 1.0). (S60)

The parameter «y in (S34) captures additional reductions in disease-relevant contacts between children
and teens was associated with the prior density

logy ~ N(0,0.35). (S61)

S3.4.3 Likelihood

Location and age-specific infection fatality ratio. The contact-and-infection model back-calculates
past infections in age groups from observed deaths in age groups via the age specific infection fatal-
ity ratio as described in Equations (S37-538),

t—1
dm,t,zz = Z Cm,s,ahm,t—s,a (562)
s=1
1.5
hmia = ﬂ'mﬂ/ h(u)du (S63)
0
s+0.5
hms.a = 7Tm7a/ h(u)du Vs=2,3,..., (S64)
s—0.5

where d,, ; , is the expected number of COVID-19 deaths on day ¢ in age band a in location m, ¢, s q is
the expected number of new cases on day s in age band a in location m, h is the discretised infection-
to-death distribution that describes when a death occurs conditional on non-survival, and 7,  is the
infection fatality ratio in location m and age band a. Our specification of the age-specific infection fa-
tality ratio relies on a recent meta-analysis across 113 meta-regression observations of infection fatality
ratios [5], and further allows for deviations across US locations in terms of location and age-specific
random effects. Specifically, we decompose the age-specific infection fatality ratio into

Tm,a = exp(logmy ™ + log 6,7F,), (S65)
where "™ are the estimates taken from the meta-analysis of [5], and log 4,7, are location-specific

random effects to account for departures from the meta-regression estimate on a subset of age classes.
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Table S11: Hyperparameters of the prior density on age-specific infection fatality ratios, equation (S66).

[0 — 4] [5—9] [10 — 14] [15 — 19] [20 — 24] 25 — 29]

e | —11.8588167 —11.2527085 —10.6468661 —10.041283 —9.4359533  —8.830871
Oq 0.1657816 0.1513949 0.1374366 0.1240003 0.11122 0.0992908
[30 — 34] [35 — 39] [40 — 44] [45 — 49] [50 — 54] [55 — 59]

La —8.2260307  —7.6214275 —7.0170568 —6.4129146 —5.8089986 —5.2053077
g 0.0884956 0.0792359 0.0720426 0.0675226 0.0661851 0.068205
[60 — 64] [65 — 69] [70 — 74] [75 — 79] [80 — &4] [85+]

La —4.6018431 —3.9986079 —3.3956061 —2.7928423 —2.1903216 —1.2062531
Oq 0.0733224 0.0809885 0.0906026 0.1016588 0.1137825 0.1364627

IFR-meta

To construct a prior distribution for log 7

a

, we took the numerical estimates of the 95% credible

intervals associated with the posterior predictive infection fatality ratios in [5], and fitted log-normal
distributions using the lognorm R package, version 0.1.6, [76]. The resulting hyper-parameters of the
prior densities

IFR-meta IFR-meta IFR-meta2
log 7, ~ N (pg Nop ),

(566)
for the 18 increasing age bands in this study are reported in Table S11. For each location, the model
allows for potentially larger infection fatality ratios compared to the overall meta-analysis estimate in

terms of 3 age bands,

log 8, 20_ag) ~ EXP(O150_49))s (S67a)
log 52?[50—69] ~ EXP(5I[EB—69})> (S67Db)
log 55{{[7%} ~ EXP(5E%+])7 (S67¢)
5{55—49]» 5;25—69]’ 5%4—] ~ Exp(0.1). (S67d)

The random-effect parameters were restricted to capture positive departures from the meta-analysis
estimates in order reduce correlations in the joint posterior distribution between the random effects
and other model parameters, and facilitate computational inference. Then, the age-specific random
effects log 5'72% for each of the 18 age bands of the contact-and-infection model were set to

log 0, R _4gy if @ € [20 — 49

IFR : _
log IR — log 5%[50_69] !f a € [50 — 69] (s68)
’ log 0,70,y ifa € [70+4]
0 otherwise.

Infection-to-death distribution. The infection-to-death distribution A in (S36) was kept fixed. Follow-
ing [77, 78], we first specified the infection-to-onset-of-symptoms distribution and the onset-to-death,

and modelled the infection-to-death distribution as the sum of both components through
h(s) = Gamma(s;5.1,0.86) + Gamma(s; 17.8,0.45), (S69)

where s is in continuous time. This input specification is the same as in the base model [56].
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Overdispersion parameter. The prior distribution on the overdispersion parameter ¢ in the Negative
Binomial observation model (541) was given by the prior density

¢ ~ No,00)(0,5). (S70)

Upper bound on attack rates among school-aged children and teens. The upper bound & on attack
rates among school-aged children and teens in Equation (545) was kept fixed in analyses, however differ-
ent upper bounds between ¢ = 2to £ = 10 were explored. The lower value £ = 2 was based on previous
findings that 50% of infected children and teens may be asymptomatic [57], so that approximately every
second infection among children and teens might be detectable through testing of individuals showing
symptoms. The upper bound £ = 10 was motivated by the fact that estimated population-level ratios
of reported versus actual cases were typically below 10 [79]. For the central analysis, we considered the
population-level ratios of reported cases versus the posterior median of actual cases across locations
in the model, which was typically between 3-6 since June 2020. On this basis we chose £ = 6, and
interpret it as a likely overestimate and likely upper bound on the actual attack rate among school-aged
children and teens.

$3.5 Computational inference

The Bayesian hierarchical model was fit with CmdStan release 2.23.0 (22 April 2020), using an adaptive
Hamiltonian Monte Carlo (HMC) sampler [80]. 8 HMC chains were run in parallel for 2, 000 iterations,
of which the first 1, 500 iterations were specified as warm-up. Calculations for each HMC chain were
distributed over 1 processor per U.S location (state or metropolitan area) with CmdStan’s reduce_sum
functionality. Posterior convergence was assessed using the Rhat statistics and by diagnosing divergent
transitions of the sampler. There are 4,000 iterations after burn-in across 8 chains, and 10 parameters
with the lowest effective sample sizes were assessed. Those effective sample sizes of are from 212 to
499, and Rhats are from 1.009 to 1.0321. There were 4092 divergent transitions, and that the average
posterior step size was around 0.003. The pair plot of parameters for New York City is in Fig. S31.

DOI: https://doi.org/10.25561/82551 Page 43 of 73


https://doi.org/10.25561/82551

07 January 2021 Imperial College COVID-19 Response Team

hhhhh

L R
*
-
*
E
B
g T
-

-

Figure S31: Pair plots of the joint posterior distribution of the model parameters for New York City.
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$3.6 Generated quantities

Age stratification for reporting purposes. In the manuscript results are reported using the following
8 age bands

deD= {[0 —9],[10 — 19], [20 — 34], [35 — 49], [50 — 64], [65 — 79], [80+]}. (571)

Posterior samples were recorded in the 18 age bands used in the model ([0 —4], [5—9], ..., [85+]) and
then aggregated to the stratification D using

C*
m,t,a
Rm,t,d = E Zi*Rm,t,a,
acd ked Cm,t,k’

Cm,t,d = Z Cm.t,ar (572)
acd
dm,t,d = Z dm,t,a»
a€d
where ¢y, ; , is the number of infectious individuals in location m and time ¢ that is in age band a defined

in (§75), Ry,.t,q is defined in (S23), ¢, ¢ ¢ is defined in (S25) and d,, 14 is defined in (S8).

Estimated cumulated COVID-19 attack rates by age and over time. We calculate the percentage of
the population in m and in age band d that has been infected up to day ¢ through

Zizl Cm,s,d

) (573)
Nm,d

Am,t,d =
where N, 4 is the number of individuals in location m and age band d, and ¢;, s 4 is defined in (S72).
We also refer to (S73) as the age-specific cumulative attack rate. Similarly, we calculate the percentage
of the population in m that has been infected up to day ¢ through

A _ Zd 22:1 Cm,s,d __ NmudA d
7t - - 7t7
m Zd Nm’d ~ Nm m Y

(S74)

where N, is the number of individuals in location m. We also refer to (574) as the cumulative attack
rate.

Estimated number of infectious individuals by age and over time. The effective number of infectious
individuals ¢* in location m and age band d on day ¢ is calculated by weighing how infectious a previously
infected individual is on day ¢,

t—1
Chtd =D Cmsd 9(t — 5), (575)
s=1
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where g appears in (525). Similarly, the effective number of infectious individuals ¢* in location m on
day t is calculated by

t—1 t—1
Crnt = Z Z Cmsd 9t —s) = Z Cm,s gt —s). (S76)
s=1

d s=1

Estimated time-varying reproduction number of COVID-19 over time. The overall time-varying repro-
duction number on day t in location m is given by

Rmﬂg == Cm,t/c;kn’t (577)

where ¢y, ¢ is the number of new cases on day ¢ in location m, and ¢, , is the number of infectious
individuals on day t in location m [81]. Using the identity

* _ *
§ :Rm,tyacm,t,a - E : § :Sm,t7a'pa/cm7t7a,a/Cm,t,a
a a a’
— C *
= Sm,t,a’ Pa’ bmit,a,a’ Cm t.a
a a

(578)
= Z Cm,t,a’
a/
= Cm,t,
Equation (S77) can be re-arranged to
Ryt = Z C:;z,t,a/c;kn,tRmvtvm (579)
a

where R, ; o is defined in (S23).

Estimated age-specific SARS-CoV-2 transmission flows. Following on from Equation (S25), the trans-
mission flows from age group a to age group a’ at time ¢ in location m are,

t—1
Fm,t,a,a’ = Smyt,a’ Pa’ cm,t,a,a’ (Z Cm,s,a g(t - S)) , (580)

s=1

where s, ; o is defined in (S24), p, o is defined in (522), and C,,, ; 4 is defined in (S26). In terms of the
age bands reported in the main text, the transmission flows by aggregated age groups are

Fm,t,d,d’ = E Fm,t,a,a’- (581)
a€d,a’ed’
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Estimated contribution of age groups to SARS-CoV-2 transmission. Following on from Equation (S80),
the age-specific contribution of infections from age band a in location m on day t is

m,t,a: <Z mtaa>/<ZZFm,t,a,a’>- (582)

The age-specific contribution of infections are proportions, such that ), Sy, 1, = 1 forall a. In terms
of the age bands reported in the main text, the aggregated contribution of infections in age band d in
location m on day t are equal to

Smtd = < Z Fm,t,d,d’) / < Z Z Fm,t,d,d’) . (S83)
@ 4 &

National averages. Several quantities are reported at the national level by age,

C*
d

Rig=Y < Rpua, (584)
; 2 C?,t,d

CLa= Y Cmitd (s85)
m

dya =Y dmid (586)
m

where ¢, ; is the number of infectious individuals at time ¢ in location m and age band d, defined
in (§75), and Ry, t.d, Cm.t,a and dy, ¢ o are defined in (S72). Finally, for reporting at the national level
regardless of age, we calculated

Cm td
R t.ds (587)
zm:%;) 21 2 keD Gtk
cr = Z Ctds (588)
d
d =Y dig. (S89)
d

S$3.7 Counterfactual scenarios

Time period of counterfactual scenarios. Counterfactual scenarios on the likely epidemic outcomes
were investigated retrospectively, starting at a day in the past and considering counterfactual simulations
until the last observation day, October 29, 2020. This strategy allowed us to investigate what would have
happened if one of the model parameters had been different, while keeping all other model parameters
at their best fit values that best reproduce epidemic trajectories as of October 29, 2020. We focused
on the impact of alternative, counterfactual school re-opening scenarios between August 24, 2020 and
October 29, 2020, which corresponds to the last day with death data in the analysis.
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Counterfactual school closure scenario. Inthis counterfactual scenario, we assumed that kindergartens,
and elementary, middle and high schools would have remained closed between August 24, 2020 and
October 29, 2020 in all states and metropolitan areas evaluated. This scenario was implemented via
Equation (S35), by setting the school re-opening time index 5choclreoren o nast the last observation day
in all states, October 30, 2020. Output quantities were then generated from the model with all other
parameters sampled from their inferred joint posterior distribution.

Counterfactual school re-opening scenario. In this counterfactual scenario, we assumed that schools
reopened on August 24, 2020 in all locations, and that there would not have been a reduction in disease-
relevant contacts from and to school-aged children. This scenario was implemented via Equation (S35),
by setting the school re-opening time index tschoolreoren o Aygust 24, 2020 in all states, and by set-
ting nMlden — 1 and v = 1. Output quantities were then generated from the model with all other
parameters sampled from their inferred joint posterior distribution.

Age stratification for school re-opening scenarios. To quantify the impact of the school re-opening
scenarios, we used the age bands

deD= {[0 — 9],[10 — 18], [19 — 34], [35 — 49], [50 — 64], [65 — 79], [80+]}. (590)

We introduce the superscript x to denote the various counterfactual scenarios. Then, in the counter-
factual scenarios, time-varying reproduction numbers were calculated through

c* L qRZ ot i R _ ~
m,t,[10—14] in,t,[lO 14] Z in,t,[15 19] Y, t,[15—19] ifd = [10 — 18]
. Con,t,[10—14] T 5%m,t,[15-19]
. 5ot [15—19) Lo . [15—19) T 2_ae{[20—24],[25—29],30—34]} CmtaBmta =
Red= . ! if d = [19 — 34]
*Ecm,t,[15—19] + Zke{[20—24],[25—29],[30—34}} Cont ke
c - .
L ifd < 100rd > 34.
\ acd Zk)éd Cm,t,k
(591)
The number of daily new cases were calculated through
T 4 T e 7
Cm,t,[10-14] T 5 Cm.1,[15-19] ifd = [10 — 18]
1 L
&= 56%,t,[15—19] + Z Cmta 1Td=[19—34] (592)
m,t,d _ _ <
t, ae{[20—24],[25—29],[30—34]}
> i ifd <100rd > 34.
acd
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The number of daily deaths were calculated through

- 4 -
dm,t,[1o—14} + 5dm,t,[15_19} if d = [10 — 18]
1 . . .
e _ ) wmipso10) T Z mta 1fd=[19—34]
doqi=q ° (593)
mt, ae{[20—24],[25—29],[30—34]}
Y e if d < 10 or, d > 34.
acd

The transmission flows of age group don day t in location m and scenario x were calculated through

9 .
Evaz,t,[IO—IQ} ifd = [10 - 18]
F* - = e 5 594
mtd =\ ggFmenocro + Faeo-ay  Fd=[19-34] (594)
t.d ifd < 10 ord > 34.

Based on Equations (S91-594), the excess cumulative number of cases in the observed data versus the
counterfactual continued school closure scenario during the time period of the counterfactual was cal-

culated as
tend tend
excess _ observed | § : closure
cm,d - ( Z Cm,t,d ) ( Cm,t,d ) (595)
t:tiglhool-reopen t:tiglhool-reopen

The percent increase in cumulated cases in the observed data versus the continued school closure sce-
nario during the time period of the counterfactual was calculated as

tend tend
m m
pc-increase observed closure )
Cm,d ( E Cont.d g Cont.d 1. (596)
t:t:%hool-reopen t:tislhool-reopen

Predicted excess deaths and percent increases in deaths were calculated analogously. Comparisons
between the counterfactual school re-opening scenario as if non-pharmaceutical interventions would
have had no effect and/or children and teens are as infectious as adults versus the observed data were
also done analogously.
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S4 Comparison of model outputs to estimated contact intensities during the
pandemic

The SARS-CoV-2 transmission model presented in Section S3.1 makes detailed predictions on the time
evolution of age-specific contact patterns during the pandemic. As a form of external model validation,
we here compare the model predictions against data from contact survey studies.

In the US, the Berkeley Interpersonal Contact Study (BICS) was designed to measure the effects of
social distancing on contact patterns during the pandemic, and began in spring 2020 [82]. Their study
included adults aged 18+ and wave 0 was conducted between March 22 to April 08, 2020. In this wave,
approximately half the study participants were from five cities (New York, San Francisco Bay Area, At-
lanta, Phoenix, Boston) with the rest from around the rest of the US. In their initial analyses, the study
authors found that individuals had a mean of 2.7 conversational contacts with similar IQR when com-
pared to the study of Jarvis et al. [73] in the UK: 85% of respondents reported four or fewer contacts.
Despite wide confidence intervals, these figures indicate substantial reductions in the overall number
of contacts in the early phase of the pandemic, and early after lockdown or stay at home orders were
issued.

We compared the estimates from the two contact surveys to the average number of contacts at the
midpoint of the wave 0 period of the BICS study, March 28, 2020 (Table S12). To match the study sample
of the BICS study, we report estimates for two metropolitan areas included in the model analysis (New
York City and District of Columbia), and an overall estimate for the US obtained by averaging across
all states evaluated, New York City, and the District of Columbia. Overall, the COVID-19 contact and
infection model estimates similar strong reductions in the number of daily contacts, with a probability
of one that overall, the average number of daily contacts by individuals of all ages was at most four.

Table S12: Estimated number of contacts on March 28, 2020 (midpoint of BICS wave0 study). Posterior median
and 95% credible intervals in brackets. We include a weighted average across the US and two cities which were
included in the BICS study.

Number of daily contacts [95% credible intervals] Posterior probability of at most 4 daily contacts

District of Columbia 2.69[1.92 - 3.74] 100%
New York City 2.23[1.8-2.72] 100%
United States 2.87 [2.75-2.99] 100%

We also compared the age breakdown of daily number of conversational contacts from the BICS
study with our model estimates for New York City, District of Columbia and a national average. Fig. S32
indicates good agreement between the estimates of the BICS study and model fits.
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Figure S32: Estimated daily number of contacts per age band on March 28, 2020 (midpoint of BICS wave0 study).

S5 Comparison of model outputs to seroprevalence estimates

To further assess model fit, we reviewed data from several large-scale COVID-19 seroprevalence surveys
in the US, and qualitatively compared the sero-prevalence estimates from the antibody surveys to the
estimates under the contact and infection model at location.

We included 32 COVID-19 antibody surveys from across the US in this comparison (Table $13). 31
studies were conducted by the U.S. Centers for Disease Control & Prevention (CDC) in 7 locations, Con-
necticut, Florida, Louisiana, Minnesota, Missouri, New York City, Utah, and Washington. Multiple rounds
of seroprevalence surveys were done in each location, except Louisiana where one seroprevalence sur-
vey was performed. The surveys included individuals who had blood specimens tested for reasons un-
related to COVID-19 [79], and thus the study samples may not be representative of the underlying pop-
ulations. For instance, the CDC compared the predicted number of total infections obtained under the
COVID-19 sero-prevalence estimates to the number of reported cases, and found that in most locations,
approximately one in ten cases were reported. However for the study in Connecticut, the ratio was
one in six, and for the study in Missouri, the ratio was one in 24, suggesting that the study samples in
these locations may not be representative. The final survey included in the comparison was also from
New York City [83], and included participants recruited through flyers at the entrances of grocery stores.
Individuals who are less likely to visit grocery stores may have lower infection risk (e.g. because of self-
isolation) or higher infection risk (e.g. quarantine after infection), and estimates from this study may
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also be subject to unknown biases.

Table S13: Characteristics of large-scale antibody studies used for the comparison. All dates are for the year
2020. Data were retrieved from the CDC dashboard [84].

Study Round Period Number of participants
. Apr 26 - May 3 1431
Connecticut May 21-May 26 1800
Jun 15 - Jun 17 1798
Jul7-Jul6 1802
Jul 27 - Jul 27 1799
Louisiana Apr1-Apr8 1184

. Apr30-May12 860

Minnesota May25-Jun7 1323
Jun 15 - Jun 27 1667
Jul 6 -Jul 18 1677
Jul 27 - Aug 8 1588
Missouri Apr 20 - Apr 26 1882

May 25 - May 30 1831
Jun 15 -Jun 20 1850
Jul'5-Jul9 1914
Jul 27 - Jul 30 1931
Mar 23 - Apr 1 2482
Apr 6 - Apr 16 1618
Apr 27 - May 6 1116
Jun15-Jun 21 1581
Jul 7-Jul11 1602
Jul 27 - Jul 30 1547
Apr 13 - Apr 25 824

May 26 - May 30 1743
Jun 14 - Jun 20 1694
Jul6-Jul11 1751
Jul 27 - Aug 8 1730
Apr 23 - Apr 27 1224
May 19 - May 27 1539
Jul 20 - Jul 23 1223
Apr 6 - Apr 10 1742
Apr 20 - Apr 24 1280
Jun 19 -Jun 17 1790
Jul 20 - Jul 23 1721
Apr 20 - May 3 1132

New York City Metro Area

Philadelphia Metro Area

San Francisco Bay Area

South Florida

Utah May25-Jun5 1940
Jun 25 - Jun 27 1976
Jul'6-Jul 15 1824
Jul 27 - Aug 6 1906

Mar 23 - Apr 1 3264
Apr27-May 11l 1719
Jun 15 - Jun 20 1803
Jul6-Jul7 1797
Jul 27 - Jul 31 1718

Western Washington Region

UBEBWNRUDWNRPRPWNRPRPWNRPRPURWNRPOUBRWNRUBRDWNRURWNRRUEAEWN R

In all studies, IgM and IgG enzyme-linked immunosorbent assays (ELISA) were used to test for COVID-
19 antibodies. Common limitations of these tests are that infected individuals with antibodies may test
negative (false negatives), uninfected individuals without antibodies may test positive (false positives),
that infected individuals may not yet have developed antibodies (antibody eclipse phase), and that in-
fected individuals may have already lost antibodies (sero-reversion). The above studies adjusted sero-
prevalence estimates for false positive and false negative rates, however re-analyses of manufacturer
sensitivity and specificity figures suggest that these numbers may have to be considered with caution [5].
To account for the antibody eclipse phase, we calculated as part of the infection model the number of
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expected infected individuals with antibodies. Specifically, COVID-19 symptoms are estimated to de-
velop on average 6 days after infection (estimated range 2 to 14 days) [85] and individuals are estimated
to develop IgG antibodies on average 14 days after symptom onset (estimated range 7 to 21 days) [86,
87]. Based on these estimates, we specified the infection-to-onset-of-symptoms distribution and the
onset-to-antibody distribution as the sum of both components through

k(s) = Gamma(s; 5.1,0.86) 4+ Normal(s; 14, 3.57) (S97)

where s is in continuous time. We then express the probability that a person in location m and age band
a develops antibodies on day s after SARS-CoV-2 infection as

s+0.5 s+0.5
ks = / k(u)du = / k(u)du Vs=2,3,..., (S98)
s—0.5 s—0.5
and ks = 01'5 k(u)du for s = 1. Using (S98), the expected number of infected individuals that develop

COVID-19 antibodies on day ¢ in age band a in location m is

t—1
bm,t,a = Z Cm,s,a kt—s; (599)
s=1

where ¢, s o is the expected number of new cases on day s in age band a in location m, (525). In the
model seroreversion was not considered, and the expected proportion of individuals with COVID-19
antibodies on day t in location m was calculated as

S, = < > Zt: bm,s,a) /N, (5100)

a s=1

where N, is the number of individuals in location m. The day of comparison was set to the last day
of the study period. For the New York City study [83], the Utah study, the second round of the Florida
and Minnesota studies, and the fourth round of the Washington study, individuals up to age 18 were
excluded from calculation of the sero-prevalence estimate (S100), because of small sample sizes in the
surveys.

Fig. S33 compares the expected proportion of individuals with COVID-19 antibodies (S100) to study
estimates. For Connecticut, the model estimates higher seroprevalence levels than the CDC study. How-
ever under the estimates of the CDC study, the ratio of expected to observed cases was unusually low at
6:1 or lower across the study rounds, suggesting that seroprevalence was likely underestimated in that
study by a factor of two. An alternative explanation is that the model does not account for sustained spa-
tial importation of SARS-Cov-2 infections such as from New York City, and may have overestimated local
transmission dynamics. For Florida, survey samples were collected in South Florida, which experienced
higher numbers of reported cases and contributed disproportionately towards total deaths within the
state. This suggests that survey estimates likely overstated seroprevalence compared to the state as a
whole, and the implications on our comparison are unclear. For the round 1 study in Missouri, we note
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Figure S33: Comparison between estimates of COVID-19 seroprevalence under the contact and infection model
with those from large-scale antibody studies. Shown are posterior medians and 95% credible intervals for model
output, and estimates as reported from the antibody studies, for the dates reported by the studies.

the ratio of expected to observed cases was unusually high at 23:1, suggesting that seroprevalence was
likely overestimated in the study by a factor of two. In contrast, low ratios of 3:1 of expected to observed
cases in the third and fourth round suggest underestimation of seroprevalence in these rounds. For the
New York metropolitan area, the catchment area increased from round 1 to round 2 to include Long Is-
land, suggesting that the survey estimates could understate seroprevalence compared to New York City
in early May. The survey estimates decreased from rounds 2 to 4. Seroreversion was not considered in
the model, and so a poorer fit to actual seroprevalence data at later time points is expected. For Utah,
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the round 2 point estimate is significantly lower than that of round 1, though the 2:1 ratio of expected to
observed cases in rounds 2 to 4, may indicate underestimation by a factor of 5. For Washington, survey
samples were collected in the Western region, which also experienced higher case and death numbers
than the Eastern part of Washington state, suggesting that survey estimates could have overstated state-
level seroprevalence. The second New York City study [83] found considerably higher seroprevalence
estimates at a time point before the first CDC study in New York City. Our model estimates appear to be
more in line with the sero-prevalence estimates of the CDC studies in New York City. In the context of
these potential caveats, we find that the model fits are qualitatively in good agreement with available
seroprevalence data. The corresponding cumulative attack rates estimates are presented in Table S6.
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S6 Sensitivity analyses

$6.1 Alternative assumptions on age-specific infection fatality ratios

The contact-and-infection model is sensitive to the underlying infection fatality rates (IFR), as any model
that infers disease dynamics from COVID-19 attributable deaths [56, 88]. The central analysis uses an IFR
prior that is centered on the version 7 meta-analysis estimates of Levin and colleagues [89]. The contact
and infection model is sensitive to the assumed IFR prior, as any model that infers disease dynamics from
COVID-19 attributable deaths [56]. In sensitivity analyses, we considered an alternative IFR prior density
centered on the version 5 meta-analysis estimates of Levin and colleagues [89], which were lower for
younger age bands and higher for older age bands (Figure S34).
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Figure S34: Comparison of age-specific IFR estimates used in the central analysis and the sensitivity analysis.
Mean and 95% uncertainty ranges of age-specific IFR estimates from version 5 and version 7 of the meta-analysis
of [89]. Version 7 was used in the central analysis, and version 5 in the sensitivity analysis..

Figure S35 compares the cumulative attack rates in each location that were estimated under the
central model, and the alternative model that uses the version 5 meta-analysis IFR estimates. In the sen-
sitivity analysis, estimated cumulative attack rates were in some locations considerably higher among
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individuals aged < 70 than in the central analysis. Figure S36 compares the seroprevalence estimates
under both models to the estimates of the seroprevalence studies described in Section S5. The sero-
prevalence estimates in the central analysis showed smaller differences relative to the estimates of the
CDC seroprevalence studies, when compared to the estimates in the sensitivity analysis.

Figure S37 compares estimates of age-specific reproduction numbers and the contribution of age
groups to onward spread under the central model, and the alternative model that uses the version 5
meta-analysis IFR estimates. Both models made very similar inferences on age-specific disease spread.
This suggests that the estimated scale of COVID-19 epidemics depends on the assumed IFR, resulting in
>5% differences in estimated cumulative attack rates for less than a one order of magnitude change in
IFR estimates among young age groups. However differences in the estimated scale of the epidemics
had no significant impact on estimated reproduction numbers, and the estimated contribution of age
groups to SARS-Cov-2 infection.
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Figure S35: Age-specific cumulative attack rate estimates under the central model and under the alternative
model using an IFR prior density centered at alternative meta-analysis estimates. Dots and error bars indicate
the posterior median estimate and 95% credible intervals in cumulative attack rates as of August 23, 2020. Central

model is in purple and alternative model is in black.
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Figure S36: Comparison of seroprevalence estimates from the central model and the alternative model using an
IFR prior density centered at alternative meta-analysis estimates. Shown are posterior medians and 95% credible
intervals for the model estimates on the midpoint of the observation periods of the seroprevalence studies, against

estimates from the seroprevalence surveys (see Section S5).
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Figure S37: Age-specific weekly reproduction numbers and contribution of age groups to onward spread under
the central model and under the alternative model using an IFR prior density centered at alternative meta-
analysis estimates. (Top) Estimated weekly age-specific reproduction numbers for the week August 17, 2020 -
August 23, 2020 under the central model (purple) and the alternative model (black). Dots and error bars indicate
the posterior median estimate and 95% credible intervals. (Bottom) Estimated cumulative contribution of age
groups to onward spread as of August 17, 2020.
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$6.2 Alternative assumptions on contact intensities from and to children aged 0-19 during
periods of school closure

The cell-phone derived population-level mobility data used in this study were only available for individ-
uals aged 18+. We rely on limited data from two contact surveys performed in the United Kingdom and
China [73, 54] to characterise contact patterns from and to younger individuals during the pandemic (as
described in Section S3.2). In the central analysis, the 4 x 4 + (18 — 4) x 4 + 4 x (18 — 4) = 128
contact intensities from or to children and teens aged 0-19 were set to the corresponding, average of
the age-specific contact intensities during lockdown that were observed across location in [54]; see also
Equation (S35). In sensitivity analyses, we explored the impact of lower or higher contact intensities
from or to children and teens aged 0-19 during periods of school closures. We approached this by re-
formulating (S35) to the following form,

cm7a7a/ ift < tiﬁhool—close
lckdwn—0—19 H school-close tschool-reopen
Cotaa =14 TCou L ift € [t 3¢ pen _ 1] (5101)
Creopen/- - ift > tschool-reopen
™m,a,a = 'm

where a € {[0—4],[5—9],[10—14], [15—19]} or d’ is one of the 5-year age bands of the infection-and-
contact model, ti,iho""c'“e is the time index corresponding to schools closure in location m, tiﬁh°°"°pe“ is
the time index corresponding to schools re-opening in location m, C,, , .+ are the baseline pre-COVID-
19 contact intensities described in location m in Section $3.2.2, Clckdwn—0-19 gra the average contact
intensities derived from [54], and 7 is a new scaling factor that we introduce for the purpose of sensitivity
analyses.

To gauge a range of 7 values, we first calculated the contact intensity ratios between the city-level
contact matrices in [54] with the contact intensities C/¢k4wn—=0-19 that were used in the central analysis.
The maximum contact intensity ratio was 2.00 and the minimum was 0.15. Using data from the UK post
lockdown contact survey of Jarvis and colleagues [73], we also computed the mean contact intensities
from individuals aged 18+ with children aged 0 — 4 and children and teens age 5 — 17. We repeated

calculations for the average post-lock down contact matrix ¢/ckdwn—0-19

of Jarvis and colleagues [73].
The minimum and maximum ratio in the corresponding contact intensities were 1.79 and 2.22. We thus
performed two sensitivity analyses using 7 = 0.5 and 2, subject to the constraint that the resulting
contact intensities during lockdown were not larger than those prepandemic contact intensities C,, , o’
Figure S38 compares the resulting contact intensities from and to children and teens during periods of
school closure.

Then, we re-fitted the contact-and-infection model. Figure S39 compares estimates of age-specific
reproduction numbers, and the contribution of age groups to onward spread under the central and
alternative models. The alternative model assumptions lead to considerable differences in estimated,
age-specific reproduction numbers. For children aged 0—9, the estimated reproduction numbers ranged
from 0.30 [0.29, 0.32] to 0.83 [0.79, 0.88] as 7 increased from 0.5 to 2 in the week August 17, 2020 -

August 23, 2020. For teens aged 10-19, the estimated reproduction numbers ranged from 0.37 [0.35,
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Figure $S38: Comparison of contact intensities from and to children aged 0-19 during periods of school closures in
the central and sensitivity analyses. Shown are contact intensities from and to children and teens during periods
of school closure (on May 06, 2020) in California for different values of 7 in Equation (S101). The value 7 = 1
corresponds to the central analysis. Parts of the time varying contact matrices that are not affected by this change
in model assumptions are shown in grey.

0.39] to 1.28 [1.21, 1.36] as 7 increased from 0.5 to 2. These differences also had a noticeable impact
on the estimated contribution of children and teens to SARS-CoV-2 transmission. The estimated cu-
mulative contribution to onward spread from children aged 0-9 as of August 17, 2020 increased from
1.78% [1.38%-2.19%] to 3.08% [2.38%-3.93%] as 7 increased from 0.5 to 2. For teens aged 10-19, the
estimated cumulative contribution to onward spread increased from 2.24% [1.88%-2.62%)] to 10.89%
[9.64%-12.37%)] as T increased from 0.5 to 2. Conversely, for young adults aged 20-34, the estimated
cumulative contribution to onward spread decreased for all other age groups as 7 increased from 0.5
to 2. This analyses indicate that reproduction numbers from teens aged 10-19 can in principle rise well
above 1, and that teens can contribute substantially to onward infection, if their disease relevant contact
intensities are assumed to be twice as high as in the central analysis. However when potential reduc-
tions in disease relevant contacts are estimated based on case and death data after school reopening,
we find substantial positive effects, which render the 7 = 2 scenario unlikely.
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Figure S39: Age-specific weekly reproduction numbers and contribution of age groups to onward spread under
the central model and under the alternative models using different assumption on contact intensities from
and to children and teens aged 0-19 during periods of school closure. (A) Estimated age-specific reproduction
numbers for the week August 17, 2020 to August 23, 2020 under the central model (purple) and the alternative
models; see (5101). (B) Estimated cumulative contribution of age groups to onward spread as of August 17, 2020
under the central model (purple) and the alternative models. The value 7 = 1 corresponds to the central model.
Dots and error bars indicate the posterior median estimate and 95% credible intervals.
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$6.3 Alternative assumptions on the relative susceptibility parameters

An important feature of SARS-CoV-2 transmission is that susceptibility to SARS-CoV-2 infection increases
with age [90, 91]. In the central analysis, the relative susceptibility parameters in (S51) are informed by
the contact tracing study of Zhang and colleagues [54]. In the sensitivity analysis, we considered instead
an alternative prior density on the relative susceptibility parameters based on the meta-analysis of Viner
and colleagues [90]. We approached this by reformulating (S51) to the following form

log p[%_g] ~ N (—0.6833129, 0.2424312) (5102a)
log pfio_19) ~ N'(—0.353706, 0.2245081%) (S102b)
log p[565 Ly~ N(0.3828,0.16387), (5102c)

where the hyperparameters were obtained by fitting a lognormal distribution to the reported 95% confi-
dence intervals in [90] with the lognorm R package, version 0.1.6 [76]. The log susceptibility parameters
for the age band [20 — 64] were set to 0, so that p° can be interpreted as the relative risk of SARS-CoV-2
infection among individuals aged 0-9, 10-19, 65+ relative to individuals aged 20 —64. Considering the 18
age bands of the contact-and-infection model, the age-specific relative susceptibility parameters were

set to
[SO | ifae[0-9
log pﬁo_lg] ifa € [10 — 19]
5 [
S

log p° = (S103)

log pyg_gy ifa € 20 — 64]
| ifae[65+]

in the sensitivity analysis. Thus, in the sensitivity analysis, the relative risk of SARS-Cov-2 infection among
children and teens was higher than in the central analysis.

Figure S40 compares estimates of age-specific reproduction numbers, and the contribution of age
groups to onward spread under the central model to those under the alternative model that uses relative
susceptibility estimates of Viner et al. [90]. Both models made very similar inferences on age-specific
disease spread. Figure S41 compares the cumulative attack rates estimated under the central model to
those under the alternative model. Both models displayed similar estimates on age-specific SARS-CoV-2
burden.
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Figure S40: Age-specific weekly reproduction numbers and contribution of age groups to onward spread under
the central model and under the alternative model that uses relative susceptibility estimates of Viner et al. [90]
(Top) Estimated weekly age-specific reproduction numbers for the week August 17, 2020 to August 23, 2020 under
the central model (purple) and the alternative model (black). (Bottom) Estimated cumulative contribution of age
groups to onward spread as of August 17, 2020. Dots and error bars indicate posterior median estimates and 95%
credible intervals.
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Figure S41: Age-specific cumulative attack rate estimates under the central model and under the alternative
model that uses relative susceptibility estimates of Viner et al. [90]. Central model is in purple and alternative

modelisin black. Dots and error bars indicate posterior median estimates and 95% credible intervals of cumulated
attack rates as of August 23, 2020.
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