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S1 NaƟonal mobility indicators during the pandemic

S1.1 Age-specific U.S. foot traffic

To characterise changes in human contact paƩerns during the pandemic, Foursquare Labs Inc. provided
longitudinal U.S. foot traffic data across the 50U.S. states, the District of Columbia, andNewYork City [1].
The data are based on Foursquare’s US first-party panel that includes millions of opt-in, always-on acƟve
users. Visits are derived via Foursquare’s core locaƟon technology, Pilgrim [2], which leverages a variety
of mobile device signals to pinpoint the Ɵme, duraƟon, and locaƟon of panelists’ visits to locaƟons such
as shops, malls, restaurants, concert venues, theaters, parks, beaches, or universiƟes. From operated
and partner apps, Foursquare Labs Inc. collect a variety of device signals against opted-in users. These
include intermiƩent device GPS coordinate pings, WiFi signals, cell signal strength, device model, and
operaƟng system version. AddiƟonally, a smaller set of labeled explicit check-ins are captured from a
porƟon of the user panel. Check-ins are explicit confirmaƟons that a user was at a given venue at a
given point of Ɵme. One example source of this is Foursquare’s Swarm app, where users can “check in”
to venues to keep a log of where their mobility history. These check-ins then serve as training labels for a
non-linear model that is used to predict visits among users with unlabeled visits in terms of probabiliƟes
as to which venue users ulƟmately visited. For research and insights use cases, the probabiliƟes are
processed further, projected and aggregated by state / metropolitan area, day, and age cohort. This
projecƟon accounts for changes in the number of individuals in the panel and the representaƟveness of
panelists according to their home state or metropolitan area, age band, and gender relaƟve to latest US
Census data.

Daily projected visit volumes were available at state / metropolitan area-level from February 1, 2020
to October 29, 2020 for individuals for 6 age groups

ã ∈ Ã =
{
[18− 24], [25− 34], [35− 44], [45− 54], [55− 64], [65+]

}
. (S1)

Daily projected visit volumes were standardised to projected per capita visits Vm,t,ã of individuals in
state / metropolitan area m and age band ã on day t by dividing the visit volumes with the number of
individuals in state / metropolitan area m and age band ã. Per capita visits appeared low for the first
two days of the Ɵme series, and were excluded. Data updates were obtained from May 26 onwards.

Fig. S17 illustrates the pre-processed Ɵme series of projected per capita visits Vm,t,ã. Individuals in
New York City, New York, and Hawai were projected to have considerably more per capita visits than
other states and metropolitan areas. Across states and metropolitan areas, projected per capita visits
were highest for individuals aged 35− 44 years, both before and aŌer stay at home orders were issued.
Individuals aged 65 or older had lowest projected per capita visits across all states and metropolitan
areas.
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Figure S17: Projected per person foot traffic per day for the 50 US states, District of Columbia and New York
City. Data were obtained using Foursquare’s locaƟon technology Pilgrim that pinpoints the Ɵme, duraƟon, and
locaƟon of panelist’s visits. Projected per capita visits standardised visit volumes by the populaƟon size in each
locaƟon and age group.
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S1.2 Age-specific U.S. mobility trends

Age-specific mobility trends were derived from the U.S. foot traffic data described in SecƟon S1.1. Our
aim was to quanƟfy changes in U.S. foot traffic during the pandemic relaƟve to a baseline period for
individuals in the 5-year age bands (S21) in each of the U.S. states, the District of Columbia, and New
York City. The baseline period was defined from February 3 to February 9, 2020, which corresponded to
the first week of the Ɵme series of projected per capita visits. We first calculated average projected per
capita visits during the baseline week,

V base
m,ã =

∑
t∈{Feb 3−Feb 9}

Vm,t,ã (S2)

and then derived the mobility trends

Xm,t,ã = Vm,t,ã/V
base
m,ã (S3)

for each state / metropolitan aream and the age bands ã available through the U.S. foot traffic data.

S1.3 QuanƟtaƟve Analysis

To characterise different effects during the iniƟal phase of the pandemic, the Ɵme when stay at home
orders were introduced, and later Ɵme periods, we derived two parƟcular Ɵme points for each state or
metropolitan area. The first Ɵme point characterises the start of substanƟal declines in mobility across
all age groups, and the second Ɵme point characterises the Ɵme aŌer which mobility trends begin to re-
bound. To determine the two Ɵme points we calculated the 15-days central moving average of projected
per capita visits in each locaƟon (state or metropolitan area)m,

Xm-avg
m,t =

1

30 + 1

1

Ã

15∑
s=−15

∑
ã

Xm,t+s,ã, (S4)

where Ã is the number of age groups in the mobility data specified in (S1), such that Ã = 6. The
first Ɵme point, which we refer to as the dip date, was determined as the first day when the 15-days
moving-average had fallen by over 10% compared to the one two weeks prior,

tdipm = min
{
t : Xm-avg

m,t /Xm-avg
m,t−14 < 0.9

}
. (S5)

The second Ɵme point, which we refer to as the rebound date, was determined as the day with the
smallest 15-days moving-average,

treboundm = argmin
t>tdipm

Xm-avg
m,t , (S6)

where tdipm < treboundm ,∀m. Using different Ɵme intervals in the central moving average calculaƟons did
not alter the value of change points substanƟally (not shown). Figure S1 shows the mobility trends (S3)
for every U.S. state, the District of Columbia, and New York City, along with the dip and rebound dates.
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We then assessed differences in the weekly, age-specific mobility trends when compared to the
baseline week in early February. Gamma regression models with log link, and locaƟon and age category
interacƟon terms were fiƩed to the selected daily mobility trends. NegaƟve regression coefficients with
a two-sided p-value below 0.05 were interpreted as age groups showing staƟsƟcally significantly lower
mobility compared to the baseline week. Similarly, posiƟve regression coefficients with a two-sided
p-value below 0.05 were interpreted as age groups showing staƟsƟcally significantly higher mobility
compared to the baseline week, and regression coefficients with a two-sided p-value above 0.05 were
interpreted as age groups showing mobility trends that were not significantly different compared to the
baseline week. Fig. S18 summarises the results. Overall, relaƟve to the baseline week, mobility trends
started to decline significantly in mid March, were not significantly lower than baseline levels for the
first states in early to mid May, and not significantly lower than baseline levels for most states by early
August.

Next, we compared the relaƟve mobility trends between age groups over Ɵme, using the 35-44
age group for relaƟve comparisons. Gamma regression models were fiƩed to the trend data similarly
as described above. Fig. S19 summarises the results. Overall, individuals aged 18-24 had significantly
lower mobility trends when compared to individuals aged 35-44 across most states in the early phase
of the pandemic, between mid March and early June. No other age group showed similarly strong
relaƟve declines inmobility. However these relaƟve differencesweakened over Ɵme and sincemid June,
individuals aged 18-24 tended to have similarmobility trends as individuals aged 35-44. The only notable
excepƟon are younger individuals aged 18-24 (and also those aged 25-34) in Hawaii, who tended to
have significantly higher mobility trends than individuals aged 35-44 throughout the enƟre observaƟon
period. Overall, individuals aged 65+ also had significantly lower mobility trends than those aged 35-
44, although less consistently across states when compared to young individuals. In conclusion, the
Foursquare data suggest that, except for Hawaii, individuals aged 18-34 have lower or similar, but not
significantly higher mobility when compared to individuals aged 35-44. In addiƟon, individuals aged 18-
24 showed significancly lower mobility trends when compared to individuals aged 35-44 between mid
March and early June in most states.

S1.4 Comparison of Foursquare mobility trend data set to an independent U.S. mobility
trend data set

To substanƟate the trends observed in the naƟonal Foursquare data set, we evaluated an independent
data set of age-straƟfiedmobility indicators that was provided by Emodo. The Emodo data set quanƟfies
the proporƟon of individuals with at least one observed ping outside the user’s home locaƟon, out of
a panel of individuals whose GPS enabled devices emiƩed at least one ping on the corresponding day.
The observed, age-specific, daily mobility indicators within the panel were projected to locaƟon-level
mobility indicators. The projecƟon accounts for changes in the number of individuals in the panel, and
the representaƟveness of panel members in their home area, age band, and gender relaƟve to the latest
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Figure S18: Analysis of mobility trends relaƟve to the baseline week. Gamma regression models with log link
were fiƩed to the daily trends. For each calendar week, mobility trends were categorised as staƟsƟcally signifi-
cantly lower when compared to the baseline week, not significantly different, and staƟsƟcally higher.
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Figure S19: Analysis of mobility trends relaƟve to trends among individuals aged 35 − 44. Gamma regression
models with log link were fiƩed to the daily trends. For each calendar week and each age group, mobility trends
were categorised as staƟsƟcally significantly lower when compared to the trends among individuals aged 35− 44

in the same week, not significantly different, and staƟsƟcally higher.
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U.S. Census.
Daily projected mobility indicators V̆m,t,ă were available at state / metropolitan area-level m from

Feb 01 to Jul 26 for individuals between the age groups

ă ∈ Ă =
{
[18− 24], [25− 34], [35− 44], [45− 54], [55+]

}
. (S7)

To compare the data against the age-specific Foursquaremobility trends (S3), we derivedmobility trends
similarly as for the Foursquare data. We first calculated average mobility trends during the baseline
period,

V̆ base
m,ă =

∑
t∈{Feb 19−Mar 03}

V̆m,t,ă (S8)

and then derived the mobility trends

X̆m,t,ă = V̆m,t,ă/V̆
base
m,ă (S9)

for each locaƟon (states or metropolitan area)m and the age bands ă.
IniƟal analysis indicated that the mobility trends (S9) were noisy for some locaƟons. For this reason,

analysis was limited to locaƟon with an average of 20, 000 disƟnct panelists per day per age band, and
the baseline period in (S8) was defined over 14 days. In total, data from 11 locaƟons were used. Fig. S20
compares the age-specific mobility trends derived from the Foursquare data to those derived from the
Emodo data set. Overall, the trends observed in both data sets were very similar unƟl mid July. Since
mid July, the Emodo data suggest that mobility trends plateaued below baseline levels, whereas the
Foursquare data suggest that mobility conƟnued to increase in all age groups.

The primary aim of this analysis was to assess whether the Emodo data support the above obser-
vaƟon that individuals aged 18 − 24 and 25 − 34 had mobility trends that are not significantly higher
than those seen for older individuals. We repeated the analyses presented in SecƟon S1.2, with the
last observaƟon week set to the last complete week of observaƟons in both data sets (September 20,
2020). Fig. S21 summarises the results. The Emodo data substanƟate that individuals aged 18-24 and
25− 34 had lower or similar mobility levels than individuals aged 34-45, and not higher mobility levels
than individuals aged 34-45.
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Figure S20: Comparison ofmobility trends derivedwith Foursquare’s locaƟon technology and Emodo’s mobility
data. The comparison was restricted to idenƟcal age bands in the two data sets, a common range of observaƟon
days, and states and metropolitan areas with an average of at least 20, 000 panelists per day.
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Figure S21: Comparison of mobility trends in the Foursquare and Emodo data sets relaƟve to the 35-44 refer-
ence age group. For each calendar week and each age group, mobility trends were categorised as staƟsƟcally
significantly lower when compared to the trends among individuals aged 35 − 44 in the same week, not signif-
icantly different, and staƟsƟcally higher. Results based on the Emodo data set are ploƩed above those for the
Foursquare data set. The comparison was restricted to idenƟcal age bands in the two data sets, a common range
of observaƟon days, and states and metropolitan areas with an average of at least 20, 000 panelists per day.
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S2 Age-specific COVID-19 aƩributable mortality data

S2.1 Source of the unstraƟfied and age-specific COVID-19 deaths data

Daily COVID-19 death counts from February 01, 2020 unƟl October 30, 2020 regardless of age were ob-
tained from John Hopkins University (JHU) for all U.S. states and the District of Columbia [3], except New
York State. For New York City, daily COVID-19 deaths counts were obtained from the GitHub Repository
[4]. The overall death counts were used for staƟsƟcal inference prior to when age-specific death counts
were reported for each locaƟon (state or metropolitan areas).

Age-specific COVID-19 cumulaƟvedeath countswere retrieved for 43US states, theDistrict of Columbia
and New York City from city or state Department of Health (DoH) websites, data repositories or via data
requests to DoH. Table S8 lists our data sources for each locaƟon, the date since when age-specific mor-
tality data used in this study was recorded, and the frequency of data updates.

S2.2 Data collecƟon and processing of the age-specific COVID-19 deaths counts

The recorded death counts were processed to create a Ɵme series of daily deaths for every locaƟon.
Some dates had missing data, typically either because no updates were reported, because the web-
page failed or because the URL of the website had mutated. Missing daily death counts were imputed,
assuming a constant increase in daily deaths between two days with data. Some updates displayed a
decreasing cumulaƟve death from one day. To ensure that the Ɵme series wasmonotonically increasing,
we back adjust with the most recent count assumed to be the correct cumulaƟve count. Finally, certain
age bands declared by the Department of Health could not be directly associated with the age bands
used in the analysis, defined in (S21). In this case, the boundaries of these problemaƟc age bands were
modified to reflect the closest age band from the analysis. Fig. S7 illustrates the age-specific COVID-19
mortality data that were retrieved. To assess the completeness of the age-specific death data, we com-
pared the Ɵme evoluƟon of the sum of the age-specific deaths that we retrieved to the Ɵme evoluƟon
of the overall number of COVID-19 deaths reported by JHU [3] and the New York City Github Reposi-
tory [4]. Fig. S22 confirms that the sum of the age-specific data that we retrieved closely matched the
overall death data.

S2.3 Share of deaths and cases by common age strata across locaƟons

For an iniƟal analysis of the Ɵme evoluƟon of death counts across locaƟons, the data from different age
straƟficaƟons were used to predict death counts in the common age bands A defined in (S21) across
all locaƟons using a latent Dirichlet-mulƟnomial model. Denote by Bmt the age bands specified in loca-
Ɵonm in month t by the DoH. To ensure that deaths by all age bands are mapped correctly, the latent
Dirichlet-mulƟnomial model uses internally the 1-year straƟficaƟon

Ǎ =
{
0, 1, . . . , 104, 105

}
. (S10)
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We denote the COVID-19 aƩributable deaths occurring in locaƟon m in calendar month t by yǍ,mt =

[ymtǎ]ǎ∈Ǎ. In otherwords, ymtǎ are the sumof the daily newCOVID-19 aƩributable deaths that occurred
in locaƟonmwithin calendar month t among individuals in the 1-year age bands ǎ. The monthly deaths
yǍ,mt are not observed, and assumed to follow a distribuƟon specified by a combinaƟon of several base
funcƟons that depend only on age. To simplify notaƟon, we suppress the locaƟon and Ɵme indices in the
following, with all variables and parameters being specific to one locaƟon and one month. We adopted
the parametric model

yǍ ∼ Dirichlet-mulƟnomial(N,κ×ψǍ), (S11a)

ψǍ = soŌmax(ϑǍ), (S11b)

ϑǍ,ǎ = ω1 + ω2 ǎ+ ω3 ǎ
2 + ω4 log(ǎ), for all ǎ ∈ Ǎ, (S11c)

whereN =
∑

ǎ yǎ and the soŌmax funcƟon is

soŌmax(z)ǎ =
exp(zǎ)∑
k∈Ǎ exp(zk)

. (S12)

Because of the self-normalising property of the soŌmax funcƟon, the vector ψ can be interpreted as
the unknown, expected proporƟons of death counts that fall into the fine-resoluƟon age bands ǎ ∈
Ǎ. Thus, the above model describes the expected proporƟons as a combinaƟon of constant, linear,
square and logarithmic funcƟons on the untransformed scale. The model is straighƞorward to fit to the
observed death counts in the reporƟng strataB by the aggregaƟon property of the Dirichlet-mulƟnomial
distribuƟon. Denote the reported deaths by yB = [yb]b∈B. Then, the likelihood of the fine-resoluƟon
model is

yB ∼ Dirichlet-mulƟnomial(N,κ×ψB) (S13a)

ψB = soŌmax(ϑB) (S13b)

ϑB,b =
∑
ǎ∈b

ϑǍ,ǎ for all b ∈ B. (S13c)

The Dirichlet-mulƟnomial allows for overdispersion in the fine-resoluƟon death counts. A priori, we
sought to allocate highest probabilitymass to the sub-model without overdispersion, whichwe obtained
with the re-parameterisaƟon

1 + ν =
N + κ

1 + κ
, (S14)

and adopƟng the prior densiƟes

ωi ∼ N (0, 1), i = 1, . . . , 4, (S15a)

ν ∼ ExponenƟal(1). (S15b)

The fine resoluƟonmodelwas fiƩedwith Stan version 2.23, using 3HamiltonianMonte CarloMarkov
Chains of 10,000 iteraƟons and 1,000 warmup iteraƟons. All chains mixed well, had good convergence
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diagnosƟcs, no divergent transiƟons, and the effecƟve sample size for all parameters was above 500 in
all analyses.

The proporƟon of deaths in the common age straƟficaƟon A and the corresponding death counts
were predicted from the fiƩed fine-resoluƟon model. Specifically, denote the predicted proporƟons
of deaths and deaths counts respecƟvely by φ⋆

a, d
⋆
a. Then, we sampled φ⋆

a, d
⋆
a according to their pos-

terior predicƟve distribuƟons. For samples (ψ, κ)|yB from the joint posterior distribuƟon of the fine-
resoluƟon model, we used again the aggregaƟon property of the Dirichlet-mulƟnomial distribuƟon,

ψA|yB = soŌmax(ϑA) (S16)

ϑA,c|yB =
∑
ǎ∈a

ϑǍ,ǎ|yB for all d ∈ C, (S17)

and then predicted

φ⋆
A|yB ∼ Dirichlet(κ×ψA|yB), (S18)

d⋆a|yB ∼ MulƟnomial(N,φ⋆
A|yB). (S19)

We back-calculated the monthly number of cases, c⋆a, by dividing the esƟmated number of deaths
by the infecƟon fatality rate in the corresponding age group,

c⋆a|d⋆a = d⋆a / πa, (S20)

where πa is the infecƟon fatality rate in age group a esƟmated in the meta-analysis by Levin and col-
leagues [5].

Figure S11 shows the monthly share of deaths for all age group and Figure S12 shows the monthly
share of cases over Ɵme among individuals aged 20 − 49. To evaluate if any the age-specific share
changed significantly over Ɵme, we computed for every month the share’s difference relaƟve to the
first month with at least 30 cumulaƟve deaths. On Figure S11, we added a star (∗) next to the name of
locaƟons for which there was a significant shiŌ in the share of deaths among individuals age 80+. In
Figure S12, we added a star (∗) next to the name of locaƟons for which there was a significant shiŌ in
the share of cases among individuals age 20− 49.
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Table S8: Age-specific Mortality Data source, date of first availability and update frequency by locaƟon (state
and metropolitan area). The data are available in the GitHub repository [6].

LocaƟon Date record start Frequency of updates Source
Alabama May 03, 2020 Daily [7]
Alaska June 09, 2020 Daily [8]
Arizona May 13, 2020 Daily [9]
Arkansas - - -
California May 13, 2020 Daily [10]
Colorado March 23, 2020 Daily [11]
ConnecƟcut April 05, 2020 Daily [12]
Delaware May 12, 2020 Daily [13]
District of Columbia April 13, 2020 Daily [14]
Florida March 27, 2020 Daily [15]
Georgia May 09, 2020 Daily [16]
Hawaii September 18, 2020 Weekly [17]
Idaho June 16, 2020 Daily [18]
Illinois May 14, 2020 Daily [19]
Indiana May 13, 2020 Daily [20]
Iowa May 13, 2020 Daily [21]
Kansas June 02, 2020 Mon, Wed and Fri. [22]
Kentucky May 13, 2020 Daily [23]
Louisiana May 12, 2020 Daily except Sat. [24]
Maine March 12, 2020 Daily [25]
Maryland May 14, 2020 Daily [26]
MassachuseƩs April 20, 2020 Daily [27]
Michigan March 21, 2020 Daily [28], [29]
Minnesota May 21, 2020 Weekly [30]
Mississippi September 30, 2020 Daily [31]
Missouri May 13, 2020 Daily [32]
Montana - - -
Nebraska - - -
Nevada June 07, 2020 Daily [33]
New Hampshire June 07, 2020 Daily [34]
New Jersey May 25, 2020 Daily [35]
New Mexico March 25, 2020 Daily [36]
New York - - -
New York City July 01, 2020 Daily [37], [4]
North Carolina May 20, 2020 Daily [38]
North Dakota May 14, 2020 Daily [39]
Ohio - - -
Oklahoma May 13, 2020 Daily [40]
Oregon June 05, 2020 Mon-Fri., someƟmes Sat. [41]
Pennsylvania June 07, 2020 Daily [42]
Rhode Island June 01, 2020 Weekly [43]
South Carolina May 14, 2020 Tue and Fri. [44]
South Dakota - - -
Tennessee April 09, 2020 Daily [45]
Texas July 28, 2020 Daily [46]
Utah June 17, 2020 Daily [47]
Vermont June 16, 2020 Daily [48]
Virginia April 21, 2020 Daily [49]
Washington June 08, 2020 Daily [50]
West Virginia - - -
Wisconsin March 15, 2020 Daily [51]
Wyoming September 22, 2020 Daily [52]
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Figure S22: Comparison of the Covid-19 overall death between the Department of Health death by age data
with the overall death from JHU [3], and the New York City Github repository (for NYC) [4].
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S3 Bayesian semi-mechanisƟc SARS-CoV-2 infecƟon model

Figure S23 summarises the main components of the age-specific contact and infecƟon model. Sec-
Ɵon S3.1 describes the infecƟon component of the model, and SecƟon S3.2 describes the contact com-
ponent of the model. SecƟon S3.3 describes how the model is fiƩed against age-specific mortality data.
SecƟon S3.4 specifies input parameters and prior distribuƟons. Table S9 gives an overview of the model
parameters and associated prior distribuƟons. SecƟon S3.6 describes the generated quanƟƟes of the
contact and infecƟon model. Finally, SecƟon S3.5 provides details on computaƟonal inference.

Figure S23: Overview of the age-specific contact and infecƟon model.
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Table S9: List of inputs and model parameters.

Name EsƟmated Prior Notes
SecƟon
reference

IniƟal number of infecƟons yes log cm,t,[20−54] ∼ N (4.85, 0.42), infecƟons seeded among individuals aged 20-54 SecƟon S3.4.1
cm,t,a = 0, for a /∈ [20− 54], with log-normal prior with mean 138
where t = 1, . . . , 6.

InfecƟon parameters yes logR0,m ∼ N (0.98, 0.22) Based on [53] SecƟon S3.4.1
with log-normal prior with mean, 2.5% and 97.5% quanƟles: 2.7, 1.8, and 3.9.

SuscepƟbility to infecƟon yes log ρS[0−14] ∼ N (−1.07, 0.222) SuscepƟbility was modelled relaƟve to individuals aged 15-64, SecƟon S3.4.1
log ρS[65+] ∼ N (0.38, 0.162) with lower suscepƟbility to infecƟon among individuals aged 0-14,

and higher suscepƟbility among individuals aged 65+.
Based on [54]

DiscreƟzed generaƟon Ɵme distribuƟon no - Based on [55] SecƟon S3.4.1
Baseline age-specific contact matrix no - Predicted based on locaƟons’ age composiƟon and populaƟon SecƟon S3.4.2
before mobility decreased density for weekdays and weekends
Schools closure age-specific contact matrix no - Used for individuals aged [0− 19] during school closure periods SecƟon S3.4.2

Based on [54]
Mobility trend predictors no - Decomposed into 3 components to allow for varying effect sizes SecƟon S3.4.2
Regression coefficients to describe yes βeased

m ∼ N (βeased, σ2
eased) LocaƟon-specific random effects to quanƟfy the effect of rapid SecƟon S3.4.2

Ɵme-varying contact intensiƟes βeased ∼ N (0, 1) decreases in mobility between the dip date and the rebound date.
before the rebound date. σeased ∼ Exp(1.5) Effects are assumed to be constant across age groups.
Regression coefficients to describe yes βupswing

m,t,a = (βupswing-base + βupswing-age
m,a )× βupswing-Ɵme

m,t Random effects to capture unobserved behavioral factors SecƟon S3.4.2
Ɵme-varying contact intensiƟes βupswing-base ∼ N (0, 1) aŌer the rebound date. Effects vary over Ɵme and age for each
aŌer the rebound date. βupswing-Ɵme

m,t = εm,⌊c(t)/2⌋ locaƟon. Time-varying effects are modelled with bi-weekly
εm,1 ∼ N[0,∞)(0, 0.025

2) AR(1) processes.
εm,v ∼ N[0,∞)(εm,v−1, σ

2
ε) for v > 1

logσε ∼ N (−1.2, 0.22)
βupswing-age
m,[20−49] ∼ Exp(βupswing-age

m,[20−49] )

βupswing-age
m,[20−49] ∼ Exp(0.1)

ReducƟon in contact intensiƟes from/to yes ηchildren ∼ Uniform(0.1, 1.0) Vague prior density. SecƟon S3.4.2
school children
ReducƟon in contact intensiƟes among yes log γ ∼ N (0, 0.35) Prior centered on null hypothesis of no addiƟonal effect. SecƟon S3.4.2
school children
LocaƟon and age-specific yes πm,a = πa × δm,a The prior distribuƟon on age-specific fatality raƟos πa is based SecƟon S3.4.3
infecƟon fatality raƟos logπa ∼ N (µa, σ

2
a) on the meta-analysis of [5]. µa, σa are specified in

log δm,[20−49] ∼ Exp(δIFR[20−49]) Table S11. LocaƟon- and age-specific random effects
log δm,[50−69] ∼ Exp(δIFR[50−69]) allow for heterogeneity across locaƟons.
log δm,[70+] ∼ Exp(δIFR[70+])

δIFR[20−49], δ
IFR
[50−69], δ

IFR
[70+] ∼ Exp(0.1)

InfecƟon-to-death distribuƟon no - As in [56] SecƟon S3.4.3
Upper bound on aƩack rate among school-aged children no - Upper bound was derived by mulƟplying reported aƩack rates SecƟon S3.4.3

in school seƫngs with ξ = 6 in the central analysis. Parameter
choice was moƟvated assuming that 50% of infected children and
teens are asymptomaƟc [57].

Overdispersion parameter yes ϕ ∼ N[0,∞)(0, 5) As in [56] SecƟon S3.4.3
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In the model, SARS-CoV-2 spreads via person-to-person contacts. Person-to-person contacts are de-
scribed at the populaƟon level with the expected number of contacts made by one individual, referred
to as contact intensiƟes. Contact intensiƟes are age-specific. Contact intensiƟes vary across locaƟons
(states andmetropolitan areas) according to each locaƟon’ age composiƟon and populaƟon density, and
change over Ɵme. Data from contact surveys before the pandemic are used to define baseline contact in-
tensiƟes. Data fromage-specific, cell phone derivedmobility trends are used to esƟmate changes in con-
tact intensiƟes during the epidemic in each locaƟon, among individuals aged 20+. Contact intensiƟes
involving individuals aged 0-19 are defined based on contact surveys conducted during the pandemic.
InfecƟon dynamics in each locaƟon are modelled through age-specific, discrete-Ɵme renewal equaƟons
over Ɵme-varying contact intensiƟes. Natural disease parameters such as age-specific suscepƟbility to
infecƟon, the generaƟon Ɵme distribuƟon, and symptom onset and onset to death distribuƟons are in-
formed by epidemiologic analyses of contact tracing data. Age-specific infecƟon fatality raƟo esƟmates
are informed by large-scale sero-prevalance surveys. Disease heterogeneity is modelled with random
effects in space and Ɵme on contact intensiƟes and disease parameters. Themodel returns the expected
number of COVID-19 deaths over Ɵme in each locaƟon, which is fiƩed against age-specific, COVID-19
mortality data. New data sources presented in this study are indicated in double-framed boxes.

S3.1 InfecƟon model

The Ɵme evoluƟon of SARS-CoV-2 infecƟons is quanƟfied in terms of a discrete-Ɵme age-specific renewal
model. The discrete renewalmodel arises as the expected value of an age dependent branching process.
The model extends a previous version to age-specific disease dynamics [56]. In the renewal equaƟons,
we model populaƟons straƟfied by the 5-year age bandsA, such that

a ∈ A =
{
[0− 4], [5− 9], . . . , [75− 79], [80− 84], [85+]

}
, (S21)

resulƟng in A = 18 populaƟon strata. We denote the number of new infecƟons, c, on day t, in age
band a, and locaƟon m as cm,t,a, with cm,t,a ≥ 0 for all t, m, a. Here infecƟons are taken to be both
symptomaƟc and asymptomaƟc. We introduce a series of daily contact intensity matrices Cmt of di-
mension 18 × 18 in each locaƟon m. The Ɵme changing contact intensiƟes Cm,t were modelled in a
regression framework that uses as input pre-pandemic contact intensiƟes, which will be presented in
SecƟon S3.4.2, as well as the age-specific mobility trends Xm,t,a that are described in the Supplemen-
tary materials. Entry Cm,t,a,a′ quanƟfies the expected number of contacts that one person in age group
a has with persons of another age a′ on day t in locaƟonm, which we refer to as contact intensity. We
further consider the probability ρa′ that a contact with an infecƟous person leads to infecƟon of one
person in a′. We interpret ρa′ as a natural disease parameter that is region and Ɵme independent. We
model ρa′ as the product of a constant baseline parameter ρ0, and relaƟve suscepƟbility parameters ρSa′
for a′ ∈ A through

ρa′ = ρ0 × ρSa′ = exp(log ρ0 + log ρSa′). (S22)
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To ensure a relaƟve interpretaƟon of the suscepƟbility parameters, we set ρSa′ = 1 for some age bands.
Details are given in the Supplementary materials. This allows us to describe the Ɵme-varying reproduc-
Ɵon number on day t from one infecƟous person in a in locaƟonm with

Rm,t,a =
∑
a′

sm,t,a′ ρa′ Cm,t,a,a′ , (S23)

where sm,t,a′ is the proporƟon of the populaƟon in locaƟonm and in age band a′ that remains suscep-
Ɵble to SARS-CoV-2 infecƟon. It is given by

sm,t,a′ = 1−
∑t−1

s=1 cm,t,a′

Nm,a′
, (S24)

whereNm,a′ denotes the populaƟon count in age group a′ and locaƟonm. Extending the basic renewal
model, we obtain similarly

cm,t,a′ = sm,t,a′ρa′
∑
a

Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)

)
(S25)

where g is the discreƟzed generaƟon Ɵme distribuƟon as in [56]. This is because an individual of age a′

in countrym at Ɵme tmakes contacts with individuals of age a at rate Cm,t,a,a′ , and these are successful
with probability ρa′ if and only if 1) the individual in a′ is suscepƟble, which is the case with probability
sm,t,a′ , and 2) the individual in a is sƟll infecƟous, which is the case with probability g(t− s).

S3.2 Time-varying contact paƩerns

S3.2.1 Overview

Several studies have collected data on age-specific contact paƩerns in various seƫngs across the United
States prior to emergence of SARS-CoV-2 [58, 59, 60, 61]. However, liƩle data are available on how
contact paƩerns changed during the pandemic. These consideraƟons prompted us to take a predicƟve
approach. First, we used data from the Polymod study [62] to predict baseline contact matrices during
the early part of the pandemic for each locaƟon, which we denote by Cm. The pre-pandemic contact
matrices quanƟfy the expected number of contacts from one person in age band a with individuals in
age band a′ per day in locaƟon m, also known as contact intensiƟes. PopulaƟons were straƟfied by
5-year age bands a ∈ A defined in (S21). ReflecƟng differences in contact paƩerns during weekdays
and on weekends, disƟnct pre-pandemic contact matrices were generated for weekdays and weekends,
Cwdaym and Cwendm . For simplicity we suppress the weekday and weekend notaƟon in what follows, with all
equaƟons being analogous. Our approach is similar to those reported in [63, 64]. Details are presented
in SecƟon S3.2.2.

Second, we used the age-specific mobility trend data available for individuals aged 18+ to predict
Ɵme-varying contact intensiƟes among individuals abve age 20. Overall, Ɵme changing contact intensi-
Ɵes on day t in locaƟonm were modelled through

Cm,t,a,a′ = ηm,t,a Cm,a,a′ ηm,t,a′ , (S26)
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where a ∈ {[20− 25], . . . , [85+] } and a′ ∈ {[20− 25], . . . , [85+]}. The mulƟpliers ηm,t,a describe the
esƟmated effect of the age-specificmobility trendsXm,t,a on changes in pre-pandemic contact matrices
for each locaƟon. Since both the index person and the contacted individuals are changing their mobility
over Ɵme, the mulƟpliers are applied to the rows and columns of the contact intensity matrix. Details
are presented in SecƟon S3.2.3.

Third, we used data from two contact surveys conducted aŌer nursery, kindergartens, and schools
closures to specify contact intensiƟes from and to individuals aged 0-19 during periods of school closure.
Details are presented in SecƟon S3.2.4.

Fourth, aŌer state-wide school closures were no longermandated, we reverted to the pre-pandemic
contact intensiƟes for children and teens aged 0-19, and esƟmated the extent to which disease relevant
contacts fromand to children and teenswere reduced, and the extent towhich disease relevant contacts
between children and teens aged 0-19 were reduced. Details are presented in SecƟon S3.2.4.

S3.2.2 Baseline contact intensity matrices prior to changes in mobility

Wefirst obtained esƟmates ofweekday andweekend contactmatrices for 8 European countries from the
Polymod contact survey [62]. Briefly, survey parƟcipants were recruited in such a way as to be broadly
representaƟve of the whole populaƟon in terms of geographical spread, age, and sex. ParƟcipants were
asked to keep a diary of their contacts. The study included 7,290 parƟcipants recruited between May
12, 2005 and September 05, 2006. Contact intensiƟes were esƟmated for Belgium, Germany, Finland,
Italy, Luxembourg, the Netherlands, Poland, and the United Kingdom using the approach of [65], using
code at the Github repository [66]. We index each of the European countries with e. The posterior
median esƟmates of the number of individuals in age ǎ′ that were contacted per day by one individual
in age ǎ were extracted. Using the available methodology, populaƟons were straƟfied in 1-year age
bands. Figure S24 illustrates the esƟmated weekend and weekday contact intensity matrices for the 8

European countries.
To match the populaƟon straƟficaƟon in the SARS-CoV-2 infecƟon model, the esƟmated contact

intensiƟes at 1-year resoluƟon were aggregated to 5-year resoluƟon using

Ce,a,a′ =
∑

ǎ∈a,ǎ′∈a′

Ne,ǎ(∑
ǎ∈aNe,ǎ

) Ce,ǎ,ǎ′ , (S27)

where Ne,ǎ denotes the number of individuals in 1-year age band ǎ in the corresponding European
country e. The esƟmated contact intensiƟes Ce,a,a′ were real-valued and posiƟve.

Following [63, 64], we constructed a predicƟve staƟsƟcal model of contact intensiƟes based on pop-
ulaƟon demographics including the total populaƟon size, the number of individuals in age band a′, the
proporƟon of individuals in age band a′, and populaƟon density. Regression models were fiƩed based
on the 8 ∗ 18 ∗ 18 = 2, 592 esƟmates (S27) from the European-wide Polymod survey, separately for
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Figure S24: EsƟmated contact intensiƟes for the 8 Polymod countries by weekday and weekend.
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Figure S25: Predicted contact intensiƟes versus Polymod esƟmates. Median predicƟons and 95% predicƟve
intervals under model (S28) are shown in grey, and Polymod esƟmates are shown in blue.
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Figure S26: Difference in contact intensiƟes at weekends compared to weekdays. LocaƟons ordered by popula-
Ɵon density.
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weekdays and weekends. The chosen staƟsƟcal model was of the form

log Ce,a,a′ ∼ N (µe,a,a′ , σ
2) (S28a)

µe,a,a′ = θa,a′ + θ1
Ne,a′

Ne
+ θ2 log

Ne,a′

Ae
, (S28b)

where θa,a′ are pairwise age-specific baseline terms, Ne,a′ is the number of individuals in age band a′

in locaƟon e, and Ae is the land area of locaƟon e in square kilometres. The least squares esƟmates
of θ1 and θ2 were posiƟve and highly significant for both weekday and weekend contact intensiƟes, so
that under model (S28) contact intensiƟes with individuals of age a′ increase as the proporƟon of the
populaƟon of age a′ increases, and as populaƟon density increases. The fits of model (S28) through
the training data are illustrated in Fig. S25. The leave-one-out cross-validaƟon mean absolute error
associated with model (S28) was 0.361 and 84.1% of the variance was explained.

Baseline contact matrices for the 50 U.S states, the District of Columbia and New York City were
then predicted using (S28). Fig. S4 shows the predicted baseline weekday contact matrices Cm for all
locaƟons. The predicted contact matrices are consistent with key characterisƟcs of human contact pat-
terns, including high number of contacts between children and teenagers of same age, parent-child
interacƟons, broader workforce interacƟons, and child/parent-grandparent interacƟons. Fig. S5 illus-
trates locaƟon-specific differences in predicted contact intensiƟes relaƟve to the naƟonal average. In
locaƟons with young populaƟons such as Alaska, the District of Columbia, Texas or Utah, lower contact
intensiƟes are predicted with individuals in young age groups when compared to the naƟonal average.
Similarly, in locaƟonswith older populaƟons such asMaine, higher contact intensiƟes are predictedwith
individuals in older age groups when compared to the naƟonal average. Fig. S6 illustrates that locaƟons
with high populaƟon density such as the District of Columbia and New York City are predicted to have
higher contact intensiƟes compared to the naƟonal average. Fig. S26 compares predicted contact inten-
siƟes on weekdays to those predicted for weekends. Predicted contact intensiƟes were higher between
children and the elderly individuals on weekends compared to weekdays for all locaƟons.

S3.2.3 Time-varying contact intensiƟes among individuals aged 20 and above

The Ɵme changing mulƟpliers ηm,t,a to the rows and columns of the pre-pandemic contact matrices
were obtained through a regression model using the age-specific mobility trends (S3) as predictors. We
matched the age straƟficaƟon (S21) used in the model, with those from the original mobility trends
through

Xm,t,a = Xm,t,ã, if a ∈ ã, (S29)

where ã ∈ Ã are the broader age strata in which the mobility data were reported, [18 − 24], [25 −
34], [35− 44], [45− 54], [55− 64], [65+].

Tomodel heterogeneity in human behaviour and disease transmission aŌer the rebound Ɵme inmo-
bility trends, the mobility trends S29 were decomposed into three components. The three components

DOI: https://doi.org/10.25561/82551 Page 25 of 73

https://doi.org/10.25561/82551


07 January 2021 Imperial College COVID-19 Response Team

are a baseline mobility trend denoted by Xbase
m,t,a, an eased mobility trend which we denote by Xeased

m,t,a,
and an upswing mulƟplier that we denote byXupswing

m,t,a . The decomposiƟon saƟsfies the relaƟon

Xm,t,a = Xbase
m,t,a ×Xeased

m,t,a ×Xupswing
m,t,a (S30)

for allm, t, and a ∈ {[20− 24], . . . , [85+]}. This approach is moƟvated by the general observaƟon that
since May/June 2020, when iniƟal lock-downs were liŌed, changes in overall mobility are less strongly
correlated with changes in transmission risk [67, 68]. The above decomposiƟon allows us to decou-
ple the impact of mobility trends on changing contact intensiƟes and transmission risk in the model in
different stages of the COVID-19 epidemics.

Specifically, the base mobility trends, the eased mobility trends and mulƟpliers were defined as

Xbase
m,t,a =

Xm,t,a if t < tdipm ,

1 if t ≥ tdipm ,
(S31a)

Xeased
m,t,a =


1 if t < tdipm ,

Xm,t,a if tdipm ≤ t < treboundm ,

χwday
m,a if t ≥ treboundm and t is a weekday,

χwend
m,a if t ≥ treboundm and t is a weekend,

(S31b)

Xupswing
m,t,a =


1 if t < tdipm ,

1 if tdipm ≤ t < treboundm ,

Xm,t,a/χ
wday
m,a if t ≥ treboundm and t is a weekday,

Xm,t,a/χ
wend
m,a if t ≥ treboundm and t is a weekend,

(S31c)

where χwday
m,a is the average of the mobility trendXm,t,a over the 5 weekdays before treboundm , and χwend

m,a

is the average of the mobility trendXm,t,a over the 4 weekend days before treboundm . Fig. S27 illustrates
the decomposed mobility trends for four locaƟons.

With the decomposed mobility trends, we modelled the mulƟpliers in (S26) that quanƟfy the Ɵme
evoluƟon in contact intensiƟes through

ηm,t,a = exp
(
logXbase

m,t,a + βeased
m logXeased

m,t,a + βupswing
m,t,a logXupswing

m,t,a

)
, (S32)

where βeased
m is a spaƟally varying random effect across locaƟons, and βupswing

m,t,a are structured random
effects that vary in space, Ɵme and by age. The purpose of the eased mobility regression coefficient
βeased
m was to capture the effect of permanent reducƟons in contact paƩerns in the early phase of the

pandemic. We reasoned that in populous areas, the same per cent reducƟon in venue check-ins may
translate into a larger reducƟon in contact intensiƟes than in less populous areas, and so allowed for
different βeased

m across locaƟons. In addiƟon, this choice was further moƟvated by the observaƟon that
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Figure S27: DecomposiƟon of mobility trends, shown for 4 US locaƟons. For each locaƟon, the change point in
overall mobility trends was determined using a 10-day moving average. Age-specific mobility trends were then
decomposed into eased mobility trends and mulƟpliers as shown. The verƟcal dash lines indicate the change
points when mobility dipped and began to rebound.

mobility trends dipped to varying extent across locaƟons and showed systemaƟcally different trajecto-
ries aŌer rebound, which suggested that the mobility trends cannot be interpreted on the same scale
across states.

The purpose of the upswing regression coefficients βupswing
m,t,a was to capture longer-term effects aŌer

the iniƟal reducƟon in contact paƩerns during the early phase of the pandemic. In general, because
of the lower correlaƟon of mobility trends with transmission risk aŌer iniƟal lock-downs, behaviour
change and widely implemented non-pharmaceuƟcal intervenƟons [67, 68], we expected the upswing
coefficients to be significantly lower than the coefficients associated with the iniƟal declines. To model
the substanƟal role of further behavioral factors such as contact duraƟon, types of venues visited [69], or
mask use [67, 70], the upwsing coefficientswere allowed to vary in Ɵme independently for each locaƟon.
Finally, to invesƟgate the nature of resurgent epidemics and if resurgent epidemics are linked to changes
in contact intensiƟes and transmission risk from younger individuals, we further allowed the upswing
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coefficients to vary by age. With this specificaƟon, we were able to formulate age-specific changes in
transmission risk through differences in age-specific mobility trends (per cent change in venue check-
ins by age groups) and further unobserved factors (e.g. age differences in contact duraƟon, number of
contacts per venue check-in, types of venues visited, protecƟve measures in venues, etc.). A parƟcular
feature of the contact-and-infecƟon model is that, when fiƩed to age-specific mobility and age-specific
death data, all random effect regression parameters are idenƟfiable across all states.

To illustrate the effect of the regression coefficients, consider the case that βeased
m = βupswing

m,t,a = 0.
In this case, ηm,t,a = 1 and the contact intensiƟes on day t are the same as at baseline aŌer the dip
date. If instead βeased

m = βupswing
m,t,a = 1, the contact intensiƟes on day t from index persons scale with the

observed mobility trendXm,t,a. Finally, if βeased
m = 1 and βupswing

m,t,a = 0, the contact intensiƟes on day t
from index persons scale with the derived eased mobility trendXeased

m,t,a aŌer the dip date.

S3.2.4 Contact intensiƟes from and to children and teens aged 0-19 during periods of school closure
and aŌer re-opening

In the United States, closures of kindergartens, elementary schools, middle schools, and high schools
were ordered at least at one level from April 4, 2020 [71]. School closure mandates have been conƟnu-
ously revised over the summer and fall of 2020. We retrieved dates on school closures and re-openings
from the Oxford COVID-19 Government Response Tracker [71] and from EducaƟon Week, an indepen-
dent K-12 educaƟon news organisaƟon [72]. The data from EducaƟonWeek are specific to government
intervenƟons targeƟng elementary, middle and high schools, and as suchwere preferred over the school
intervenƟon index of the Oxford COVID-19 Government Response Tracker, which also subsumed open-
ing of colleges and universiƟes.

In the model, we calculated periods of school closures and re-opening as follows. School closure
dates were defined as the first week day on which state administraƟons mandated or recommended
state-wide closures of elementary, middle, and high schools, and retrieved these dates from the Ox-
ford COVID-19 Government Response Tracker [71]. School re-opening dates were defined as the first
week day on which state administraƟons no longer mandated state-wide closure of elementary, mid-
dle, and high schools, and we retrieved these dates from EducaƟon Week [72]. We denote the Ɵme
indices corresponding to state-wide school closures in locaƟon m by tschool-closem , and the Ɵme indices
corresponding to school re-opening in locaƟonm by tschool-reopenm . EducaƟon Week data only started on
August 19, 2020. If a school closure order was not in effect from the first day of the EducaƟon Week
data, we set tschool-reopenm to August 24, 2020. By October 29, 2020, only the District of Columbia conƟn-
ued to mandate state-wide school closures [72]. Fig. S28 shows the Ɵmelines of schools status, across
the US, as specified in our analysis.

To specify contact intensiƟes from and to children and teens aged 0-19 during periods of school
closure, we used data from two contact surveys conducted aŌer kindergarten and school closures in
response to acceleraƟng COVID-19 epidemics in the UK and China [73, 54]. Fig. S29 compares the esƟ-
mated contact intensiƟes from one individual aged 0-19 using the contact surveys in Wuhan and Shang-
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Figure S28: Timing of school closure periods in the model. School closure data were retrieved from [71] and
school re-opening data were retrieved from [72]. School closure dates were defined as the first week day onwhich
state administraƟons mandated or recommended state-wide closures of elementary, middle, and high schools.
School re-opening dates were defined as the first week day on which state administraƟons no longer mandated
state-wide closure of elementary, middle, and high schools.
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hai before and during lockdown. Fig. S30 compares the esƟmated contact intensiƟes to individuals aged
0-19. We plot the point esƟmates from the original report before lockdown to those during lockdown
[54] (top row) and the raƟo of the contact intensiƟes during lockdown versus the corresponding contact
intensiƟes before lockdown (boƩom row). During lockdown, the esƟmated, average number of daily
peer-to-peer contacts from one individual aged 0-19 to individuals in the same age group was 0.09, cor-
responding to a contact intensity raƟo of 0.01 across both ciƟes. The total number of contacts from
one individual aged 0-19 during the outbreak was 2.3, corresponding to a contact intensity raƟo of 0.14
across both ciƟes. The average number of contacts from one individual randomly chosen in the pop-
ulaƟon to individuals in 0 − 19 was 0.29 during lockdown, associated with a contact intensity raƟo of
0.24. The contact survey of Jarvis and colleagues [73] in the UK included individuals aged 18+, but in-
terviewed individuals were also asked to report contacts to children and teenagers aged 0-17. During
lockdown, the esƟmated, average number of daily peer-to-peer contacts from one individual older than
18 to children aged 0-17 was 0.78, corresponding to a contact intensity raƟo of 0.25. In the model,
we set the average daily contact intensiƟes involving children and teens aged 0-19 during periods of
school closure to the average daily contact intensiƟes involving children and teens aged 0-19 that were
observed during lockdown in Wuhan and Shanghai. We denote the observed, average daily contact
intensiƟes in Wuhan and Shanghai by

Clckdwn−0−19
a,a′ , (S33)

where either a ∈ {[0 − 4], [5 − 9], [10 − 14], [15 − 19]} and a′ is one of the 5-year age bands of the
infecƟon-and-contactmodel, or a is one of the 5-year age bands and a′ ∈ {[0−4], [5−9], [10−14], [15−
19]}.

AŌer school closures were no longer mandated at state-level, children and teens aged 0-19 were
modelled to resume their typical contact intensiƟes on weekdays and weekends. Similarly as for the
contact intensiƟes between individuals aged 20+ in EquaƟon (S26), we modelled that these contact
intensiƟes could be reduced to lower levels through a mulƟplier ηchildren that acts on contacƟng chil-
dren and teens, and on contacted children and teens. We further considered an addiƟonal mulƟplier
γ acƟng on contacts between children and teens. In the absence of any mobility data for children and
teens, these two parameters were esƟmated, and for this reason were also constant in Ɵme, across
locaƟons, and between children and teen age bands. The two variables reflect a number of factors
miƟgaƟng disease spread, including temporary school closures in some school districts, impact of non-
pharmaceuƟcal intervenƟons in schools with in-school teaching, reducedmobility of children and teens,
or reduced infecƟousness of SARS-Cov-2 from children and teens aged 0-19, and in pracƟce we are un-
able to disentangle these factors. Specifically, aŌer school closures periods, contact intensiƟes were
specified through

Creopen-0-19m,t,a,a′ =


γηchildrenCm,a,a′η

children if a < 20, a′ < 20
ηchildrenCm,a,a′ηm,t,a′ if a < 20, a′ ≥ 20
ηm,t,a′Cm,a,a′η

children if a ≥ 20, a′ < 20
ηm,t,a′Cm,a,a′ηm,t,a′ if a ≥ 20, a′ ≥ 20

(S34)
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where a, a′ ∈ A, Cm,a,a′ denote the pre-pandemic contact intensiƟes, and ηm,t,a′ are the mulƟpli-
ers (S32).

In summary, for all Ɵme indices, the contact intensiƟes involving children and teens aged 0-19 were
modelled through

Cm,t,a,a′ =


Cm,a,a′ if t < tschool-closem

Clckdwn−0−19
a,a′ if t ∈ [tschool-closem , tschool-reopenm − 1]

Creopen-0-19m,t,a,a′ if t ≥ tschool-reopenm

(S35)

where a or a′ are one of [0 − 4], [5 − 9], [10 − 14], [15 − 19], Cm,a,a′ is the prepandemic contact
intensiƟes described in SecƟon S3.2.2, Clckdwn−0−19

a,a′ are the average contact intensiƟes during lockdown
of [54] that described in (S33), and Creopen-0-19m,t,a,a′ are the contact intensiƟes since school re-opening that
are described in (S34).
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Figure S29: EsƟmated changes in contact intensiƟes fromone child or teen aged 0-19during lockdown, Shanghai
and Wuhan, China. Data from [54]. (A) Average number of contacts from one individual in 0-19 to individuals in
5-year age bands before (blue) and during (orange) lockdown. (B) Contact intensity raƟo (grey).
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Figure S30: EsƟmated changes in contact intensiƟes to children and teens aged 0-19 during lockdown, Shanghai
and Wuhan, China. Data from [54]. (A) Average number of contacts from one individual in 5-year age bands to
children aged 0-19 before (blue) and during (orange) lockdown. (B) Contact intensity raƟo (grey).
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S3.3 Likelihood

The contact-and-infecƟon model is fiƩed to age-specific death counts for each locaƟon m, to overall
death counts for Ɵme periods in which age-specific death counts are not available, and to overall case
counts. To establish a link between the data and the expected number of cases cm,t,a (S25), we model
the probabilityHm,a(t−s) that a person in age band a dies from SARS-CoV-2 infecƟon before Ɵme t−s

aŌer infecƟon at Ɵme s in locaƟonm. We decompose the probability into the infecƟon fatality raƟo in
locaƟonm, and age band a, πm,a, and the infecƟon-to-death distribuƟon h that describes when a death
occurs condiƟonal on non-survival. We decompose Hm,a(t − s) in this manner because esƟmates of
both terms are available from the literature [5, 56]. Our model is

Hm,a(t− s) = πm,a

∫ t−s

0
h(u)du, (S36)

where t− s is in conƟnuous Ɵme and h integrates to 1. Using (S36), we can express the probability that
a person in locaƟonm and age band a dies on day s aŌer SARS-CoV-2 infecƟon as

hm,s,a =

∫ s+0.5

s−0.5
πm,ah(u)du = πm,a

∫ s+0.5

s−0.5
h(u)du ∀s = 2, 3, . . . , (S37)

and hm,1,a = πm,a

∫ 1.5
0 h(u)du for s = 1. Using (S37), the expected number of COVID-19 deaths on day

t in age band a in locaƟonm is

dm,t,a =

t−1∑
s=1

cm,s,ahm,t−s,a, (S38)

where cm,s,a is the expected number of new cases on day s in age band a in locaƟonm, (S25).
We link the expected number of deaths under the contact-and-infecƟon model to the observed

number deaths through an over-dispersed count model. For each locaƟonm, the data consist of daily,
overall reported COVID-19 related deaths regardless of age unƟl day tage-startm . For each locaƟon, Ɵme
was re-scaled to 30 days prior to the first day when the cumulaƟve number of deaths was 10 or larger.
We denote the overall number of deaths on day t in locaƟonm by ym,t for t < tage-startm . Fromday tage-startm

onwards, COVID-19 related deaths are reported in locaƟon-specific age bands b ∈ Bm. We denote the
number of deaths on day t in locaƟon m in age band b ∈ Bm by ym,t,b for t ≥ tage-startm . To match the
locaƟon-specific death data, we aggregate the expected number of deaths under the self-renewalmodel
to

dm,t =
∑
a∈A

dm,t,a ∀t < tage-startm (S39)

dm,t,b =
∑
a∈b

dm,t,a ∀t ≥ tage-startm , ∀b ∈ Bm. (S40)
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The log likelihood of the observed deaths then consists of three parts,

ℓdeaths(y|ϕ) =
∑
m

[ ∑
tstartm ≤ t<tage-startm

log NegBin
(
ym,t

∣∣dm,t, ϕ
)
+ (S41a)

∑
t=tage-startm

∑
b∈Bm

log NegBin
( tage-startm∑

s=1

ym,s,b

∣∣ tage-startm∑
s=1

dm,s,b, ϕ
)
+ (S41b)

∑
tage-startm < t≤ tendm

∑
b∈Bm

log NegBin
(
ym,t,b

∣∣dm,t,b, ϕ
)]
, (S41c)

where tstartm is the first day on which at least 10 cumulated deaths were reported in locaƟonm, and tendm

corresponds to the last day with overall death, or death by age data, see Table S10.
To ensure that the inferred, expected number of actual cases are larger than the number of reported

cases in the following week, the contact-and-infecƟon model is also fiƩed to the logarithm of weekly
reported case data in each locaƟon, zm,w. The case log likelihood was described in units of weeks to
circumvent day-of-week effects. Plots suggested that the reported case data are subject to noise. For
this reason we used a loess smoother through the reported data to predict the log weekly observed
cases ζm,w, which can be considered to follow a t-distribuƟon with mean parameter µobs-cases

m,w , standard
deviaƟon σobs-cases

m , and degrees of freedom νobs-casesm , that are returned by the loess smoother. The log
likelihood of the observed case data was then specified through

ℓobs-cases(ζ) =
∑
m

∑
wstart

m ≤ w<wend
m

logPr(ζm,w < log cm,w−1), (S42)

where wstart
m denotes the week in which at least 10 cumulated deaths were reported in locaƟonm, and

wend
m denotes the week with the last day of death data.
To ensure that the inferred, expected number of actual cases among school-aged children are larger

than reported cases in schools and smaller than a mulƟple of the reported cases, the contact-and-
infecƟon model is further fiƩed to reported aƩack rates among school-aged children and teens aged
5-18, um, during state-specific observaƟon periods, taƩ-startm to taƩ-endm . To calculate aƩack rates among
school-aged children and teens, we first idenƟfied schools in locaƟon m that reported student case
counts K1-K12 during the enƟre observaƟon period and for which enrolment sizes could be retrieved
from the Common Core of Data America’s School database [74]. Then, aƩack rates were calculated by
summing reported student cases across schools in the period taƩ-startm to taƩ-endm , and dividing the total
by the sum of student enrolment sizes in the same schools. In the model, expected aƩack rates among
school-aged children were calculated through

am =
( ∑

taƩ-startm ≤t≤taƩ-endm

cm,t,[5−9] + cm,t,[10−14] +
4

5
cm,t,[15−19]

)/
(
Nm,[5−9] +Nm,[10−14] +

4

5
Nm,[15−19]

)
,

(S43)
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where cm,t,a are the new infecƟons in locaƟonm on day t in age band a, and Nm,a are the number of
individuals in locaƟon m in age band a. The log likelihood of the reported aƩack rates among school-
aged children and teens was then specified through

ℓschool-aƩ-lower(u|a) =
∑
m

log Normal-cdf(am;um, um/10). (S44)

We further assumed that the expected aƩack rates among school-aged children and teens should not
be higher than a mulƟple ξ of the reported aƩack rates um, and added the constraint

ℓschool-aƩ-upper(u|a) =
∑
m

log Normal-ccdf(am; (ξum), (ξum)/10), (S45)

where ξ was varied between 2 and 10, and ξ = 6 was used in the central analysis; see SecƟon S3.4.3.

S3.4 Inputs and prior distribuƟons on model parameters

The contact-and infecƟon model has the following inputs, which we consider fixed, and model parame-
ters, which we consider unknown and esƟmate (see Table S9). The total number of esƟmated parame-
ters in the model is 31+ (NV +7)×M , whereM is the number of locaƟons andNV is the number of
bi-weekly intervals, which for the central analysis amounted to 771 esƟmated parameters.

S3.4.1 InfecƟon dynamics

IniƟal number of infecƟons. For each locaƟon, the number of SARS-CoV-2 infecƟons in the first 6 days
of the observaƟon period among individuals aged 20-54 are given the prior distribuƟon

log cm,t,[20−54] ∼ N (4.85, 0.42), t = 1, . . . , 6 (S46)

Recall that the observaƟon period starts 30 days prior to the first day when the cumulaƟve number of
deaths in locaƟonmwas 10 or larger. A priori we thus expect on average 125 infecƟons to have occurred
in the first 6 days among individuals aged 20-54 years. The new infecƟons are then equally distributed
across the corresponding age bands,

cm,t,a =

{
cm,t,[20−54]/7 if a ∈ A0

0 otherwise, (S47)

whereA0 = {[20− 24], [25− 59], [30− 34], [35− 39], [40− 44], [45− 49], [50− 54]} and t = 1, . . . , 6.

InfecƟon parameters. The infecƟon parameters described in (S22) comprise the baseline infecƟon
parameter in locaƟonm, ρ0m (real-valued), as well as relaƟve suscepƟbility (S) parameters ρS (vector-
valued of length A).
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Table S10: Dates with overall and death by age data included in the likelihood. Our analysis include 40 locaƟons
with death by age.

LocaƟon
Dates with
overall data

Dates with
death by age data

Number of age groups

Alabama March 29, 2020 - May 02, 2020 May 03, 2020 - October 29, 2020 6
Alaska - - -
Arizona March 27, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 5
Arkansas - - -
California March 17, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 4
Colorado March 25, 2020 - March 25, 2020 March 26, 2020 - October 29, 2020 9
ConnecƟcut March 23, 2020 - April 04, 2020 April 05, 2020 - October 29, 2020 9
Delaware March 31, 2020 - May 11, 2020 May 12, 2020 - October 29, 2020 6
District of Columbia April 02, 2020 - April 12, 2020 April 13, 2020 - October 29, 2020 8
Florida March 20, 2020 - March 26, 2020 March 27, 2020 - October 29, 2020 10
Georgia March 19, 2020 - May 08, 2020 May 09, 2020 - October 29, 2020 18
Hawaii - - -
Idaho April 04, 2020 - June 15, 2020 June 16, 2020 - October 29, 2020 8
Illinois March 23, 2020 - May 13, 2020 May 14, 2020 - October 29, 2020 8
Indiana March 24, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 8
Iowa April 02, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 5
Kansas April 01, 2020 - June 01, 2020 June 02, 2020 - October 29, 2020 9
Kentucky March 30, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 9
Louisiana March 19, 2020 - May 11, 2020 May 12, 2020 - October 29, 2020 7
Maine - - -
Maryland March 29, 2020 - May 13, 2020 May 14, 2020 - October 29, 2020 9
MassachuseƩs March 24, 2020 - April 19, 2020 April 20, 2020 - October 29, 2020 8
Michigan March 23, 2020 - March 23, 2020 March 24, 2020 - October 29, 2020 8
Minnesota March 30, 2020 - May 20, 2020 May 21, 2020 - October 29, 2020 11
Mississippi March 28, 2020 - September 29, 2020 September 30, 2020 - October 29, 2020 7
Missouri March 28, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 8
Montana - - -
Nebraska - - -
Nevada March 26, 2020 - June 06, 2020 June 07, 2020 - October 29, 2020 8
New Hampshire April 08, 2020 - June 06, 2020 June 07, 2020 - October 29, 2020 9
New Jersey March 20, 2020 - May 24, 2020 May 25, 2020 - October 29, 2020 7
New Mexico April 03, 2020 - April 03, 2020 April 04, 2020 - October 29, 2020 8
New York - - -
New York City March 16, 2020 - June 30, 2020 July 01, 2020 - October 29, 2020 5
North Carolina March 31, 2020 - May 19, 2020 May 20, 2020 - October 29, 2020 6
North Dakota April 21, 2020 - May 13, 2020 May 14, 2020 - October 29, 2020 9
Ohio - - -
Oklahoma March 28, 2020 - May 12, 2020 May 13, 2020 - October 29, 2020 6
Oregon March 25, 2020 - June 04, 2020 June 05, 2020 - October 29, 2020 9
Pennsylvania March 25, 2020 - June 06, 2020 June 07, 2020 - October 29, 2020 8
Rhode Island April 01, 2020 - May 31, 2020 June 01, 2020 - October 29, 2020 9
South Carolina March 27, 2020 - May 13, 2020 May 14, 2020 - October 29, 2020 9
South Dakota - - -
Tennessee March 30, 2020 - April 08, 2020 April 09, 2020 - October 29, 2020 9
Texas March 24, 2020 - July 27, 2020 July 28, 2020 - October 29, 2020 11
Utah April 06, 2020 - June 16, 2020 June 17, 2020 - October 29, 2020 6
Vermont - - -
Virginia March 26, 2020 - April 20, 2020 April 21, 2020 - October 29, 2020 9
Washington March 04, 2020 - June 07, 2020 June 08, 2020 - October 29, 2020 5
West Virginia - - -
Wisconsin March 26, 2020 - March 26, 2020 March 27, 2020 - October 29, 2020 9
Wyoming - - -
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To place a prior density on ρ0,m, we consider prior esƟmates on the basic reproducƟon number [75],
and specify the following prior distribuƟon on the basic reproducƟon number R0,m in locaƟonm,

logR0,m ∼ N (0.98, 0.22), (S48a)

where the corresponding prior mean and 95% confidence intervals, 2.7 [1.6 − 3.9], are based on the
meta-analysis of [53]. To obtain ρ0,m, we re-scaleR0,m by the average number of contacts of one person
in locaƟonm at baseline,

ρ0,m = R0,m/C̄m (S49a)

C̄m =
∑
a

pm,a

∑
a′

Cwdaym,a,a′ , (S49b)

where Cwdaym is the baseline weekday contact matrix defined in S3.4.2 and pm,a is the proporƟon of the
populaƟon of locaƟonm in age band a.

To place prior densiƟes on the relaƟve suscepƟbility parameters, we used available data fromcontact
tracing and tesƟng in mainland China [54]. Based on the available data, we considered relaƟve suscep-
Ɵbility parameters for the age bands [0 − 14], [15 − 64] and [65+], and specified the prior densiƟes

log ρS[0−14] ∼ N (−1.0702, 0.21702) (S50a)

log ρS[65+] ∼ N (0.3828, 0.16382), (S50b)

where the hyperparameters were obtained by fiƫng a lognormal distribuƟon to the reported 95% con-
fidence intervals in [54] with the lognorm R package, version 0.1.6 [76].

The log suscepƟbility parameters for age band [15 − 64] were set to 0, so that ρS is interpreted
relaƟve to infecƟon dynamics from/to individuals in age band [15− 64]. Considering the 18 age bands
of the COVID-19 transmission model, the age-specific relaƟve suscepƟbility parameters were set to

log ρSa =


log ρS[0−14] if a ∈ [0− 14]

log ρS[15−64] if a ∈ [15− 64]

log ρS[65+] if a ∈ [65+].

, (S51)

DiscreƟsed generaƟon Ɵme distribuƟon. The generaƟon Ɵme distribuƟon (S25) was kept fixed. Using
esƟmates of [55], we specified the conƟnuous-Ɵme version

gCT (s) = Gamma(6.5, 0.62). (S52)

EquaƟon (S52) was then discreƟsed to units of days,

g(s) =

∫ s+0.5

s−0.5
gCT (u) du ∀s = 2, 3, . . . (S53)

and g(1) =
∫ 1.5
0 gCT (u) du for s = 1. This input specificaƟon is the same as in the base model [56].
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S3.4.2 Time changing contact paƩerns

Baseline age-specific contactmatrices The pre-pandemic contact intensitymatrices were constructed
as described in the Supplementary materials, and are illustrated in Figs. S4-S26.

Mobility trends (percent reducƟon in venue visits by age). Changes in contact intensiƟes were de-
scribed through a random effects regression model with decomposed, age- and locaƟon-specific mo-
bility trends as covariates and addiƟonal locaƟon, age, and Ɵme-specific random effects. The mobility
trend data used in this study are described in SecƟon S1.2, and capture percent changes in venue visits
of individuals in different age groups over Ɵme. The decomposiƟon into baselinemobility trendsXbase

m,t,a,
eased mobility trendsXeased

m,t,a and upswing mulƟpliersXupswing
m,t,a on day t in locaƟonm and age band a is

defined in (S31), and was used to reflect lower correlaƟons between mobility trends and transmission
risk aŌer iniƟal lock-downs.

Mobility trend regression coefficients and further randomeffects. EquaƟons (S26) and (S32) describe
our model of changing contact intensiƟes,

Cm,t,a,a′ = ηm,t,a Cm,a,a′ ηm,t,a′

ηm,t,a = exp
(
logXbase

m,t,a + βeased
m logXeased

m,t,a + βupswing
m,t,a logXupswing

m,t,a

)
.

The purpose of the eased mobility regression coefficient βeased
m was to capture the effect of permanent

reducƟons in contact paƩerns in the early phase of the pandemic. We reasoned that in populous areas,
the sameper cent reducƟon in venue check-insmay translate into a larger reducƟon in contact intensiƟes
than in less populous areas, and so allowed for different βeased

m across locaƟons. In addiƟon, this choice
was further moƟvated by the observaƟon that mobility trends dipped to varying extent across locaƟons
and showed systemaƟcally different trajectories aŌer rebound, which suggested that themobility trends
cannot be interpreted on the same scale across states. Specifically, we specified the spaƟal random
effect through,

βeased
m ∼ N (βeased, σ2

eased)

βeased ∼ N (0, 1)

σeased ∼ ExponenƟal(1.5).

(S54)

The upswing random effects βupswing
m,t,a are intended to capture further disease-relevant, unobserved be-

havioral factors such as contact duraƟon, types of venues visited, or mask use [67, 70]. In addiƟon, the
random effects were specified to invesƟgate the nature of resurgent epidemics and if resurgent epi-
demics are linked to changes in contact intensiƟes and transmission risk from younger individuals. A
parƟcular feature of the contact-and-infecƟon model is that, when fiƩed to age-specific mobility and
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age-specific death data, all random effect regression parameters are idenƟfiable across states. Specifi-
cally, we specified the upswing random effects through

βupswing
m,t,a = (βupswing-base + βupswing-age

m,a )× βupswing-Ɵme
m,t . (S55)

In (S55), βupswing-base acts as a baseline effect of mobility increases since the rebound Ɵme on contact
intensiƟes,

βupswing-base ∼ N (0, 1), (S56)

which a priori we expected to be lower than the average effect associated with iniƟal reducƟons in
mobility trends, βeased. The Ɵme-specific random effects βupswing-Ɵme

m,t are, independently for each loca-
Ɵon, specified as a bi-weekly AR(1) process centered at zero. This allows the mobility trends (percent
reducƟon in venue check-ins for each age group) to have different effects on contact intensiƟes and
transmission risk over consecuƟve two week intervals in each locaƟon, and as such can be interpreted
as unobserved factors that modulate how changes in venue check-ins translate into transmission risk
over Ɵme. Specifically,

βupswing-Ɵme
m,t = εm,⌊c(m,t)/2⌋,

εm,1 ∼ N[0,∞)(0, 0.025
2),

εm,v ∼ N[0,∞)(εm,v−1, σ
2
ε) for v > 1,

logσε ∼ N (−1.2, 0.22),

(S57)

whereN[a,b) denotes a truncated normal distribuƟon between a and b and c(t) is a funcƟon that maps
the Ɵme indices in locaƟon m to calendar weeks. The random effects were constrained to posiƟve
values in order to escape strong correlaƟons with βupswing-base in the joint posterior density and facilitate
mixing. The variance parameter σε was a priori given a mean of 0.3 to favour smooth Ɵme trends in
βupswing-Ɵme
m,t over spontaneous changes. The age-specific random effects βupswing-age

m,a )were added to the
model to test for the presence of age-specific unobserved factors among individuals aged 20-49 with a
net posiƟve effect on disease relevant contact intensiƟes and transmission risk. Together with the Ɵme
effects βupswing-Ɵme

m,t , the age-specific unobserved factors among individuals aged 20-49 can in principle
have occurred within any two week interval aŌer mobility trends started to rebound. We allowed for
heterogeneity in the age-specific effects among individuals aged 20-49 across locaƟons through

βupswing-age
m,[20−49] ∼ Exp(βupswing-age

[20−49] )

βupswing-age
[20−49] ∼ Exp(0.1),

(S58)

and then specified

βupswing-age
m,a =

{
βupswing-age
m,[20−49] if a ∈ [20− 49]

0 otherwise.
(S59)

More general versions of this model with age-specific random effects for individuals aged 20-49, 50-74,
and 75+ were also considered, however the posterior distribuƟons of the age-specific random effects
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associated with individuals aged 50-74 and 75+ were close to zero and leŌ out from the final model
for computaƟonal tractability. More general versions of this model with age-specific random effects for
individuals aged 20-34 and 35-49 resulted in strong correlaƟons between the two parameters, indicaƟng
that we are unable to separate effects aƩributable to both age groups based on the current data.

ReducƟon in contacts from and to school-aged children aŌer school re-opening. The parameter
ηschool in (S34) reduces the number of contacts from and to school aged children from pre-pandemic
levels, and was associated with the prior density

ηschool ∼ Uniform(0.1, 1.0). (S60)

The parameter γ in (S34) captures addiƟonal reducƟons in disease-relevant contacts between children
and teens was associated with the prior density

log γ ∼ N (0, 0.35). (S61)

S3.4.3 Likelihood

LocaƟon and age-specific infecƟon fatality raƟo. The contact-and-infecƟon model back-calculates
past infecƟons in age groups from observed deaths in age groups via the age specific infecƟon fatal-
ity raƟo as described in EquaƟons (S37-S38),

dm,t,a =
t−1∑
s=1

cm,s,ahm,t−s,a (S62)

hm,1,a = πm,a

∫ 1.5

0
h(u)du (S63)

hm,s,a = πm,a

∫ s+0.5

s−0.5
h(u)du ∀s = 2, 3, . . . , (S64)

where dm,t,a is the expected number of COVID-19 deaths on day t in age band a in locaƟonm, cm,s,a is
the expected number of new cases on day s in age band a in locaƟonm, h is the discreƟsed infecƟon-
to-death distribuƟon that describes when a death occurs condiƟonal on non-survival, and πm,a is the
infecƟon fatality raƟo in locaƟon m and age band a. Our specificaƟon of the age-specific infecƟon fa-
tality raƟo relies on a recent meta-analysis across 113meta-regression observaƟons of infecƟon fatality
raƟos [5], and further allows for deviaƟons across US locaƟons in terms of locaƟon and age-specific
random effects. Specifically, we decompose the age-specific infecƟon fatality raƟo into

πm,a = exp(logπIFR-meta
a + log δIFRm,a), (S65)

where πIFR-meta
a are the esƟmates taken from the meta-analysis of [5], and log δIFRm,a are locaƟon-specific

random effects to account for departures from the meta-regression esƟmate on a subset of age classes.
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Table S11: Hyperparameters of the prior density on age-specific infecƟon fatality raƟos, equaƟon (S66).

[0− 4] [5− 9] [10− 14] [15− 19] [20− 24] [25− 29]
µa −11.8588167 −11.2527085 −10.6468661 −10.041283 −9.4359533 −8.830871
σa 0.1657816 0.1513949 0.1374366 0.1240003 0.11122 0.0992908

[30− 34] [35− 39] [40− 44] [45− 49] [50− 54] [55− 59]
µa −8.2260307 −7.6214275 −7.0170568 −6.4129146 −5.8089986 −5.2053077
σa 0.0884956 0.0792359 0.0720426 0.0675226 0.0661851 0.068205

[60− 64] [65− 69] [70− 74] [75− 79] [80− 84] [85+]
µa −4.6018431 −3.9986079 −3.3956061 −2.7928423 −2.1903216 −1.2062531
σa 0.0733224 0.0809885 0.0906026 0.1016588 0.1137825 0.1364627

To construct a prior distribuƟon for log πIFR-meta
a , we took the numerical esƟmates of the 95% credible

intervals associated with the posterior predicƟve infecƟon fatality raƟos in [5], and fiƩed log-normal
distribuƟons using the lognorm R package, version 0.1.6, [76]. The resulƟng hyper-parameters of the
prior densiƟes

logπIFR-meta
a ∼ N (µIFR-meta

a , σIFR-meta
a

2
), (S66)

for the 18 increasing age bands in this study are reported in Table S11. For each locaƟon, the model
allows for potenƟally larger infecƟon fatality raƟos compared to the overall meta-analysis esƟmate in
terms of 3 age bands,

log δIFRm,[20−49] ∼ Exp(δIFR[20−49]), (S67a)

log δIFRm,[50−69] ∼ Exp(δIFR[50−69]), (S67b)

log δIFRm,[70+] ∼ Exp(δIFR[70+]), (S67c)

δIFR[20−49], δ
IFR
[50−69], δ

IFR
[70+] ∼ Exp(0.1). (S67d)

The random-effect parameters were restricted to capture posiƟve departures from the meta-analysis
esƟmates in order reduce correlaƟons in the joint posterior distribuƟon between the random effects
and other model parameters, and facilitate computaƟonal inference. Then, the age-specific random
effects log δIFRm,a for each of the 18 age bands of the contact-and-infecƟon model were set to

log δIFRm,a =


log δIFRm,[20−49] if a ∈ [20− 49]

log δIFRm,[50−69] if a ∈ [50− 69]

log δIFRm,[70+] if a ∈ [70+]
0 otherwise.

(S68)

InfecƟon-to-death distribuƟon. The infecƟon-to-death distribuƟon h in (S36) was kept fixed. Follow-
ing [77, 78], we first specified the infecƟon-to-onset-of-symptoms distribuƟon and the onset-to-death,
and modelled the infecƟon-to-death distribuƟon as the sum of both components through

h(s) = Gamma(s; 5.1, 0.86) + Gamma(s; 17.8, 0.45), (S69)

where s is in conƟnuous Ɵme. This input specificaƟon is the same as in the base model [56].
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Overdispersion parameter. The prior distribuƟon on the overdispersion parameter ϕ in the NegaƟve
Binomial observaƟon model (S41) was given by the prior density

ϕ ∼ N[0,∞)(0, 5). (S70)

Upper bound on aƩack rates among school-aged children and teens. The upper bound ξ on aƩack
rates among school-aged children and teens in EquaƟon (S45) was kept fixed in analyses, however differ-
ent upper bounds between ξ = 2 to ξ = 10were explored. The lower value ξ = 2wasbasedonprevious
findings that 50% of infected children and teens may be asymptomaƟc [57], so that approximately every
second infecƟon among children and teens might be detectable through tesƟng of individuals showing
symptoms. The upper bound ξ = 10 was moƟvated by the fact that esƟmated populaƟon-level raƟos
of reported versus actual cases were typically below 10 [79]. For the central analysis, we considered the
populaƟon-level raƟos of reported cases versus the posterior median of actual cases across locaƟons
in the model, which was typically between 3-6 since June 2020. On this basis we chose ξ = 6, and
interpret it as a likely overesƟmate and likely upper bound on the actual aƩack rate among school-aged
children and teens.

S3.5 ComputaƟonal inference

The Bayesian hierarchical model was fit with CmdStan release 2.23.0 (22 April 2020), using an adapƟve
Hamiltonian Monte Carlo (HMC) sampler [80]. 8 HMC chains were run in parallel for 2, 000 iteraƟons,
of which the first 1, 500 iteraƟons were specified as warm-up. CalculaƟons for each HMC chain were
distributed over 1 processor per U.S locaƟon (state or metropolitan area) with CmdStan’s reduce_sum
funcƟonality. Posterior convergence was assessed using the Rhat staƟsƟcs and by diagnosing divergent
transiƟons of the sampler. There are 4,000 iteraƟons aŌer burn-in across 8 chains, and 10 parameters
with the lowest effecƟve sample sizes were assessed. Those effecƟve sample sizes of are from 212 to
499, and Rhats are from 1.009 to 1.0321. There were 4092 divergent transiƟons, and that the average
posterior step size was around 0.003. The pair plot of parameters for New York City is in Fig. S31.
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Figure S31: Pair plots of the joint posterior distribuƟon of the model parameters for New York City.
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S3.6 Generated quanƟƟes

Age straƟficaƟon for reporƟng purposes. In the manuscript results are reported using the following
8 age bands

d ∈ D =
{
[0− 9], [10− 19], [20− 34], [35− 49], [50− 64], [65− 79], [80+]

}
. (S71)

Posterior samples were recorded in the 18 age bands used in the model ([0−4], [5−9], . . . , [85+]) and
then aggregated to the straƟficaƟonD using

Rm,t,d =
∑
a∈d

c∗m,t,a∑
k∈d c

∗
m,t,k

Rm,t,a,

cm,t,d =
∑
a∈d

cm,t,a,

dm,t,d =
∑
a∈d

dm,t,a,

(S72)

where c∗m,t,a is the number of infecƟous individuals in locaƟonm and Ɵme t that is in age band a defined
in (S75),Rm,t,a is defined in (S23), cm,t,a is defined in (S25) and dm,t,a is defined in (S8).

EsƟmated cumulated COVID-19 aƩack rates by age and over Ɵme. We calculate the percentage of
the populaƟon inm and in age band d that has been infected up to day t through

Am,t,d =

∑t
s=1 cm,s,d

Nm,d
, (S73)

where Nm,d is the number of individuals in locaƟon m and age band d, and cm,s,d is defined in (S72).
We also refer to (S73) as the age-specific cumulaƟve aƩack rate. Similarly, we calculate the percentage
of the populaƟon inm that has been infected up to day t through

Am,t =

∑
d

∑t
s=1 cm,s,d∑
dNm,d

=
∑
d

Nm,d

Nm
Am,t,d, (S74)

where Nm is the number of individuals in locaƟon m. We also refer to (S74) as the cumulaƟve aƩack
rate.

EsƟmated number of infecƟous individuals by age and over Ɵme. The effecƟve number of infecƟous
individuals c∗ in locaƟonm and age band d on day t is calculated byweighing how infecƟous a previously
infected individual is on day t,

c∗m,t,d =
t−1∑
s=1

cm,s,d g(t− s), (S75)
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where g appears in (S25). Similarly, the effecƟve number of infecƟous individuals c∗ in locaƟon m on
day t is calculated by

c∗m,t =
∑
d

t−1∑
s=1

cm,s,d g(t− s) =

t−1∑
s=1

cm,s g(t− s). (S76)

EsƟmated Ɵme-varying reproducƟon number of COVID-19 over Ɵme. The overall Ɵme-varying repro-
ducƟon number on day t in locaƟonm is given by

Rm,t = cm,t/c
∗
m,t (S77)

where cm,t is the number of new cases on day t in locaƟon m, and c∗m,t is the number of infecƟous
individuals on day t in locaƟonm [81]. Using the idenƟty∑

a

Rm,t,ac
∗
m,t,a =

∑
a

∑
a′

sm,t,a′ρa′Cm,t,a,a′c
∗
m,t,a

=
∑
a′

∑
a

sm,t,a′ρa′Cm,t,a,a′c
∗
m,t,a

=
∑
a′

cm,t,a′

= cm,t,

(S78)

EquaƟon (S77) can be re-arranged to

Rm,t =
∑
a

c∗m,t,a/c
∗
m,tRm,t,a, (S79)

whereRm,t,a is defined in (S23).

EsƟmated age-specific SARS-CoV-2 transmission flows. Following on from EquaƟon (S25), the trans-
mission flows from age group a to age group a′ at Ɵme t in locaƟonm are,

Fm,t,a,a′ = sm,t,a′ ρa′ Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)

)
, (S80)

where sm,t,a′ is defined in (S24), ρa,a′ is defined in (S22), and Cm,t,a,a′ is defined in (S26). In terms of the
age bands reported in the main text, the transmission flows by aggregated age groups are

Fm,t,d,d′ =
∑

a∈d,a′∈d′
Fm,t,a,a′ . (S81)
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EsƟmated contribuƟon of age groups to SARS-CoV-2 transmission. Following on from EquaƟon (S80),
the age-specific contribuƟon of infecƟons from age band a in locaƟonm on day t is

Sm,t,a =

(∑
a′

Fm,t,a,a′

)/(∑
a

∑
a′

Fm,t,a,a′

)
. (S82)

The age-specific contribuƟon of infecƟons are proporƟons, such that
∑

a Sm,t,a = 1 for all a. In terms
of the age bands reported in the main text, the aggregated contribuƟon of infecƟons in age band d in
locaƟonm on day t are equal to

Sm,t,d =

(∑
d′

Fm,t,d,d′

)/(∑
d

∑
d′

Fm,t,d,d′

)
. (S83)

NaƟonal averages. Several quanƟƟes are reported at the naƟonal level by age,

Rt,d =
∑
m

c∗m,t,d∑
l c

∗
l,t,d

Rm,t,d, (S84)

ct,d =
∑
m

cm,t,d, (S85)

dt,d =
∑
m

dm,t,d, (S86)

where c∗m,t,d is the number of infecƟous individuals at Ɵme t in locaƟon m and age band d, defined
in (S75), and Rm,t,d, cm,t,d and dm,t,a are defined in (S72). Finally, for reporƟng at the naƟonal level
regardless of age, we calculated

Rt =
∑
m

∑
d∈D

c∗m,t,d∑
l

∑
k∈D c∗l,t,k

Rm,t,d, (S87)

ct =
∑
d

ct,d, (S88)

dt =
∑
d

dt,d. (S89)

S3.7 Counterfactual scenarios

Time period of counterfactual scenarios. Counterfactual scenarios on the likely epidemic outcomes
were invesƟgated retrospecƟvely, starƟng at a day in the past and considering counterfactual simulaƟons
unƟl the last observaƟon day, October 29, 2020. This strategy allowed us to invesƟgate what would have
happened if one of the model parameters had been different, while keeping all other model parameters
at their best fit values that best reproduce epidemic trajectories as of October 29, 2020. We focused
on the impact of alternaƟve, counterfactual school re-opening scenarios between August 24, 2020 and
October 29, 2020, which corresponds to the last day with death data in the analysis.
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Counterfactual school closure scenario. In this counterfactual scenario, we assumed that kindergartens,
and elementary, middle and high schools would have remained closed between August 24, 2020 and
October 29, 2020 in all states and metropolitan areas evaluated. This scenario was implemented via
EquaƟon (S35), by seƫng the school re-opening Ɵme index tschool-reopenm to past the last observaƟon day
in all states, October 30, 2020. Output quanƟƟes were then generated from the model with all other
parameters sampled from their inferred joint posterior distribuƟon.

Counterfactual school re-opening scenario. In this counterfactual scenario, we assumed that schools
reopened on August 24, 2020 in all locaƟons, and that therewould not have been a reducƟon in disease-
relevant contacts from and to school-aged children. This scenario was implemented via EquaƟon (S35),
by seƫng the school re-opening Ɵme index tschool-reopenm to August 24, 2020 in all states, and by set-
Ɵng ηchildren = 1 and γ = 1. Output quanƟƟes were then generated from the model with all other
parameters sampled from their inferred joint posterior distribuƟon.

Age straƟficaƟon for school re-opening scenarios. To quanƟfy the impact of the school re-opening
scenarios, we used the age bands

d̃ ∈ D̃ =
{
[0− 9], [10− 18], [19− 34], [35− 49], [50− 64], [65− 79], [80+]

}
. (S90)

We introduce the superscript x to denote the various counterfactual scenarios. Then, in the counter-
factual scenarios, Ɵme-varying reproducƟon numbers were calculated through

Rx
m,t,d̃

=



c∗m,t,[10−14]R
x
m,t,[10−14] +

4
5c

∗
m,t,[15−19]R

x
m,t,[15−19]

c∗m,t,[10−14] +
4
5c

∗
m,t,[15−19]

if d̃ = [10− 18]

1
5c

∗
m,t,[15−19]R

x
m,t,[15−19] +

∑
a∈{[20−24],[25−29],[30−34]} c

∗
m,t,aR

x
m,t,a

1
5c

∗
m,t,[15−19] +

∑
k∈{[20−24],[25−29],[30−34]} c

∗
m,t,k

if d̃ = [19− 34]∑
a∈d̃

c∗m,t,a∑
k∈d c

∗
m,t,k

Rx
m,t,a if d̃ < 10 or d̃ > 34.

(S91)

The number of daily new cases were calculated through

cx
m,t,d̃

=



cxm,t,[10−14] +
4

5
cxm,t,[15−19] if d̃ = [10− 18]

1

5
cxm,t,[15−19] +

∑
a∈{[20−24],[25−29],[30−34]}

cxm,t,a if d̃ = [19− 34]∑
a∈d̃

cxm,t,a if d̃ < 10 or d̃ > 34.

(S92)
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The number of daily deaths were calculated through

dx
m,t,d̃

=



dxm,t,[10−14] +
4

5
dxm,t,[15−19] if d̃ = [10− 18]

1

5
dxm,t,[15−19] +

∑
a∈{[20−24],[25−29],[30−34]}

dxm,t,a if d̃ = [19− 34]∑
a∈d̃

dxm,t,a if d̃ < 10 or, d̃ > 34.

(S93)

The transmission flows of age group d̃ on day t in locaƟonm and scenario x were calculated through

F x
m,t,d̃

=


9

10
F x
m,t,[10−19] if d̃ = [10− 18]

1

10
F x
m,t,[10−19] + F x

m,t,[20−34] if d̃ = [19− 34]

F x
m,t,d if d̃ < 10 or d̃ > 34.

(S94)

Based on EquaƟons (S91-S94), the excess cumulaƟve number of cases in the observed data versus the
counterfactual conƟnued school closure scenario during the Ɵme period of the counterfactual was cal-
culated as

cexcess
m,d̃

=
( tendm∑

t=tschool-reopenm

cobserved
m,t,d̃

)
−
( tendm∑

t=tschool-reopenm

cclosure
m,t,d̃

)
. (S95)

The percent increase in cumulated cases in the observed data versus the conƟnued school closure sce-
nario during the Ɵme period of the counterfactual was calculated as

cpc-increase
m,d̃

=
( tendm∑

t=tschool-reopenm

cobserved
m,t,d̃

)/( tendm∑
t=tschool-reopenm

cclosure
m,t,d̃

)
− 1. (S96)

Predicted excess deaths and percent increases in deaths were calculated analogously. Comparisons
between the counterfactual school re-opening scenario as if non-pharmaceuƟcal intervenƟons would
have had no effect and/or children and teens are as infecƟous as adults versus the observed data were
also done analogously.
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S4 Comparison ofmodel outputs to esƟmated contact intensiƟes during the
pandemic

The SARS-CoV-2 transmission model presented in SecƟon S3.1 makes detailed predicƟons on the Ɵme
evoluƟon of age-specific contact paƩerns during the pandemic. As a form of external model validaƟon,
we here compare the model predicƟons against data from contact survey studies.

In the US, the Berkeley Interpersonal Contact Study (BICS) was designed to measure the effects of
social distancing on contact paƩerns during the pandemic, and began in spring 2020 [82]. Their study
included adults aged 18+ and wave 0 was conducted between March 22 to April 08, 2020. In this wave,
approximately half the study parƟcipants were from five ciƟes (New York, San Francisco Bay Area, At-
lanta, Phoenix, Boston) with the rest from around the rest of the US. In their iniƟal analyses, the study
authors found that individuals had a mean of 2.7 conversaƟonal contacts with similar IQR when com-
pared to the study of Jarvis et al. [73] in the UK: 85% of respondents reported four or fewer contacts.
Despite wide confidence intervals, these figures indicate substanƟal reducƟons in the overall number
of contacts in the early phase of the pandemic, and early aŌer lockdown or stay at home orders were
issued.

We compared the esƟmates from the two contact surveys to the average number of contacts at the
midpoint of the wave 0 period of the BICS study, March 28, 2020 (Table S12). Tomatch the study sample
of the BICS study, we report esƟmates for two metropolitan areas included in the model analysis (New
York City and District of Columbia), and an overall esƟmate for the US obtained by averaging across
all states evaluated, New York City, and the District of Columbia. Overall, the COVID-19 contact and
infecƟon model esƟmates similar strong reducƟons in the number of daily contacts, with a probability
of one that overall, the average number of daily contacts by individuals of all ages was at most four.

Table S12: EsƟmated number of contacts on March 28, 2020 (midpoint of BICS wave0 study). Posterior median
and 95% credible intervals in brackets. We include a weighted average across the US and two ciƟes which were
included in the BICS study.

Number of daily contacts [95% credible intervals] Posterior probability of at most 4 daily contacts
District of Columbia 2.69 [1.92 - 3.74] 100%
New York City 2.23 [1.8 - 2.72] 100%
United States 2.87 [2.75 - 2.99] 100%

We also compared the age breakdown of daily number of conversaƟonal contacts from the BICS
study with our model esƟmates for New York City, District of Columbia and a naƟonal average. Fig. S32
indicates good agreement between the esƟmates of the BICS study and model fits.
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Figure S32: EsƟmated daily number of contacts per age band onMarch 28, 2020 (midpoint of BICSwave0 study).

S5 Comparison of model outputs to seroprevalence esƟmates

To further assess model fit, we reviewed data from several large-scale COVID-19 seroprevalence surveys
in the US, and qualitaƟvely compared the sero-prevalence esƟmates from the anƟbody surveys to the
esƟmates under the contact and infecƟon model at locaƟon.

We included 32 COVID-19 anƟbody surveys from across the US in this comparison (Table S13). 31
studies were conducted by the U.S. Centers for Disease Control & PrevenƟon (CDC) in 7 locaƟons, Con-
necƟcut, Florida, Louisiana,Minnesota,Missouri, New York City, Utah, andWashington. MulƟple rounds
of seroprevalence surveys were done in each locaƟon, except Louisiana where one seroprevalence sur-
vey was performed. The surveys included individuals who had blood specimens tested for reasons un-
related to COVID-19 [79], and thus the study samples may not be representaƟve of the underlying pop-
ulaƟons. For instance, the CDC compared the predicted number of total infecƟons obtained under the
COVID-19 sero-prevalence esƟmates to the number of reported cases, and found that in most locaƟons,
approximately one in ten cases were reported. However for the study in ConnecƟcut, the raƟo was
one in six, and for the study in Missouri, the raƟo was one in 24, suggesƟng that the study samples in
these locaƟons may not be representaƟve. The final survey included in the comparison was also from
New York City [83], and included parƟcipants recruited through flyers at the entrances of grocery stores.
Individuals who are less likely to visit grocery stores may have lower infecƟon risk (e.g. because of self-
isolaƟon) or higher infecƟon risk (e.g. quaranƟne aŌer infecƟon), and esƟmates from this study may
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also be subject to unknown biases.

Table S13: CharacterisƟcs of large-scale anƟbody studies used for the comparison. All dates are for the year
2020. Data were retrieved from the CDC dashboard [84].

Study Round Period Number of parƟcipants

ConnecƟcut
1 Apr 26 - May 3 1431
2 May 21 - May 26 1800
3 Jun 15 - Jun 17 1798
4 Jul 7 - Jul 6 1802
5 Jul 27 - Jul 27 1799

Louisiana 1 Apr 1 - Apr 8 1184

Minnesota
1 Apr 30 - May 12 860
2 May 25 - Jun 7 1323
3 Jun 15 - Jun 27 1667
4 Jul 6 - Jul 18 1677
5 Jul 27 - Aug 8 1588

Missouri
1 Apr 20 - Apr 26 1882
2 May 25 - May 30 1831
3 Jun 15 - Jun 20 1850
4 Jul 5 - Jul 9 1914
5 Jul 27 - Jul 30 1931

New York City Metro Area
1 Mar 23 - Apr 1 2482
2 Apr 6 - Apr 16 1618
3 Apr 27 - May 6 1116
4 Jun 15 - Jun 21 1581
5 Jul 7 - Jul 11 1602
6 Jul 27 - Jul 30 1547

Philadelphia Metro Area
1 Apr 13 - Apr 25 824
2 May 26 - May 30 1743
3 Jun 14 - Jun 20 1694
4 Jul 6 - Jul 11 1751
5 Jul 27 - Aug 8 1730

San Francisco Bay Area
1 Apr 23 - Apr 27 1224
2 May 19 - May 27 1539
3 Jul 20 - Jul 23 1223

South Florida
1 Apr 6 - Apr 10 1742
2 Apr 20 - Apr 24 1280
3 Jun 19 - Jun 17 1790
4 Jul 20 - Jul 23 1721

Utah
1 Apr 20 - May 3 1132
2 May 25 - Jun 5 1940
3 Jun 25 - Jun 27 1976
4 Jul 6 - Jul 15 1824
5 Jul 27 - Aug 6 1906

Western Washington Region
1 Mar 23 - Apr 1 3264
2 Apr 27 - May 11 1719
3 Jun 15 - Jun 20 1803
4 Jul 6 - Jul 7 1797
5 Jul 27 - Jul 31 1718

In all studies, IgMand IgG enzyme-linked immunosorbent assays (ELISA)were used to test for COVID-
19 anƟbodies. Common limitaƟons of these tests are that infected individuals with anƟbodies may test
negaƟve (false negaƟves), uninfected individuals without anƟbodies may test posiƟve (false posiƟves),
that infected individuals may not yet have developed anƟbodies (anƟbody eclipse phase), and that in-
fected individuals may have already lost anƟbodies (sero-reversion). The above studies adjusted sero-
prevalence esƟmates for false posiƟve and false negaƟve rates, however re-analyses of manufacturer
sensiƟvity and specificity figures suggest that these numbersmay have to be consideredwith cauƟon [5].
To account for the anƟbody eclipse phase, we calculated as part of the infecƟon model the number of
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expected infected individuals with anƟbodies. Specifically, COVID-19 symptoms are esƟmated to de-
velop on average 6 days aŌer infecƟon (esƟmated range 2 to 14 days) [85] and individuals are esƟmated
to develop IgG anƟbodies on average 14 days aŌer symptom onset (esƟmated range 7 to 21 days) [86,
87]. Based on these esƟmates, we specified the infecƟon-to-onset-of-symptoms distribuƟon and the
onset-to-anƟbody distribuƟon as the sum of both components through

k(s) = Gamma(s; 5.1, 0.86) + Normal(s; 14, 3.57) (S97)

where s is in conƟnuous Ɵme. We then express the probability that a person in locaƟonm and age band
a develops anƟbodies on day s aŌer SARS-CoV-2 infecƟon as

ks =

∫ s+0.5

s−0.5
k(u)du =

∫ s+0.5

s−0.5
k(u)du ∀s = 2, 3, . . . , (S98)

and ks =
∫ 1.5
0 k(u)du for s = 1. Using (S98), the expected number of infected individuals that develop

COVID-19 anƟbodies on day t in age band a in locaƟonm is

bm,t,a =

t−1∑
s=1

cm,s,a kt−s, (S99)

where cm,s,a is the expected number of new cases on day s in age band a in locaƟon m, (S25). In the
model seroreversion was not considered, and the expected proporƟon of individuals with COVID-19
anƟbodies on day t in locaƟonm was calculated as

sm,t =
(∑

a

t∑
s=1

bm,s,a

)
/Nm, (S100)

where Nm is the number of individuals in locaƟon m. The day of comparison was set to the last day
of the study period. For the New York City study [83], the Utah study, the second round of the Florida
and Minnesota studies, and the fourth round of the Washington study, individuals up to age 18 were
excluded from calculaƟon of the sero-prevalence esƟmate (S100), because of small sample sizes in the
surveys.

Fig. S33 compares the expected proporƟon of individuals with COVID-19 anƟbodies (S100) to study
esƟmates. For ConnecƟcut, themodel esƟmates higher seroprevalence levels than the CDC study. How-
ever under the esƟmates of the CDC study, the raƟo of expected to observed cases was unusually low at
6:1 or lower across the study rounds, suggesƟng that seroprevalence was likely underesƟmated in that
study by a factor of two. An alternaƟve explanaƟon is that themodel does not account for sustained spa-
Ɵal importaƟon of SARS-Cov-2 infecƟons such as from New York City, and may have overesƟmated local
transmission dynamics. For Florida, survey samples were collected in South Florida, which experienced
higher numbers of reported cases and contributed disproporƟonately towards total deaths within the
state. This suggests that survey esƟmates likely overstated seroprevalence compared to the state as a
whole, and the implicaƟons on our comparison are unclear. For the round 1 study in Missouri, we note
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Figure S33: Comparison between esƟmates of COVID-19 seroprevalence under the contact and infecƟonmodel
with those from large-scale anƟbody studies. Shown are posterior medians and 95% credible intervals for model
output, and esƟmates as reported from the anƟbody studies, for the dates reported by the studies.

the raƟo of expected to observed cases was unusually high at 23:1, suggesƟng that seroprevalence was
likely overesƟmated in the study by a factor of two. In contrast, low raƟos of 3:1 of expected to observed
cases in the third and fourth round suggest underesƟmaƟon of seroprevalence in these rounds. For the
New York metropolitan area, the catchment area increased from round 1 to round 2 to include Long Is-
land, suggesƟng that the survey esƟmates could understate seroprevalence compared to New York City
in early May. The survey esƟmates decreased from rounds 2 to 4. Seroreversion was not considered in
the model, and so a poorer fit to actual seroprevalence data at later Ɵme points is expected. For Utah,
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the round 2 point esƟmate is significantly lower than that of round 1, though the 2:1 raƟo of expected to
observed cases in rounds 2 to 4, may indicate underesƟmaƟon by a factor of 5. For Washington, survey
samples were collected in the Western region, which also experienced higher case and death numbers
than the Eastern part ofWashington state, suggesƟng that survey esƟmates could have overstated state-
level seroprevalence. The second New York City study [83] found considerably higher seroprevalence
esƟmates at a Ɵme point before the first CDC study in New York City. Our model esƟmates appear to be
more in line with the sero-prevalence esƟmates of the CDC studies in New York City. In the context of
these potenƟal caveats, we find that the model fits are qualitaƟvely in good agreement with available
seroprevalence data. The corresponding cumulaƟve aƩack rates esƟmates are presented in Table S6.
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S6 SensiƟvity analyses

S6.1 AlternaƟve assumpƟons on age-specific infecƟon fatality raƟos

The contact-and-infecƟonmodel is sensiƟve to the underlying infecƟon fatality rates (IFR), as any model
that infers disease dynamics fromCOVID-19 aƩributable deaths [56, 88]. The central analysis uses an IFR
prior that is centered on the version 7 meta-analysis esƟmates of Levin and colleagues [89]. The contact
and infecƟonmodel is sensiƟve to the assumed IFR prior, as anymodel that infers disease dynamics from
COVID-19 aƩributable deaths [56]. In sensiƟvity analyses, we considered an alternaƟve IFR prior density
centered on the version 5 meta-analysis esƟmates of Levin and colleagues [89], which were lower for
younger age bands and higher for older age bands (Figure S34).

Figure S34: Comparison of age-specific IFR esƟmates used in the central analysis and the sensiƟvity analysis.
Mean and 95% uncertainty ranges of age-specific IFR esƟmates from version 5 and version 7 of the meta-analysis
of [89]. Version 7 was used in the central analysis, and version 5 in the sensiƟvity analysis..

Figure S35 compares the cumulaƟve aƩack rates in each locaƟon that were esƟmated under the
central model, and the alternaƟvemodel that uses the version 5meta-analysis IFR esƟmates. In the sen-
siƟvity analysis, esƟmated cumulaƟve aƩack rates were in some locaƟons considerably higher among
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individuals aged < 70 than in the central analysis. Figure S36 compares the seroprevalence esƟmates
under both models to the esƟmates of the seroprevalence studies described in SecƟon S5. The sero-
prevalence esƟmates in the central analysis showed smaller differences relaƟve to the esƟmates of the
CDC seroprevalence studies, when compared to the esƟmates in the sensiƟvity analysis.

Figure S37 compares esƟmates of age-specific reproducƟon numbers and the contribuƟon of age
groups to onward spread under the central model, and the alternaƟve model that uses the version 5
meta-analysis IFR esƟmates. Both models made very similar inferences on age-specific disease spread.
This suggests that the esƟmated scale of COVID-19 epidemics depends on the assumed IFR, resulƟng in
>5% differences in esƟmated cumulaƟve aƩack rates for less than a one order of magnitude change in
IFR esƟmates among young age groups. However differences in the esƟmated scale of the epidemics
had no significant impact on esƟmated reproducƟon numbers, and the esƟmated contribuƟon of age
groups to SARS-Cov-2 infecƟon.
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Figure S35: Age-specific cumulaƟve aƩack rate esƟmates under the central model and under the alternaƟve
model using an IFR prior density centered at alternaƟve meta-analysis esƟmates. Dots and error bars indicate
the posterior median esƟmate and 95% credible intervals in cumulaƟve aƩack rates as of August 23, 2020. Central
model is in purple and alternaƟve model is in black.

DOI: https://doi.org/10.25561/82551 Page 58 of 73

https://doi.org/10.25561/82551


07 January 2021 Imperial College COVID-19 Response Team

Figure S36: Comparison of seroprevalence esƟmates from the central model and the alternaƟvemodel using an
IFR prior density centered at alternaƟvemeta-analysis esƟmates. Shown are posteriormedians and 95% credible
intervals for themodel esƟmates on themidpoint of the observaƟonperiods of the seroprevalence studies, against
esƟmates from the seroprevalence surveys (see SecƟon S5).
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Figure S37: Age-specific weekly reproducƟon numbers and contribuƟon of age groups to onward spread under
the central model and under the alternaƟve model using an IFR prior density centered at alternaƟve meta-
analysis esƟmates. (Top) EsƟmated weekly age-specific reproducƟon numbers for the week August 17, 2020 -
August 23, 2020 under the central model (purple) and the alternaƟve model (black). Dots and error bars indicate
the posterior median esƟmate and 95% credible intervals. (BoƩom) EsƟmated cumulaƟve contribuƟon of age
groups to onward spread as of August 17, 2020.
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S6.2 AlternaƟve assumpƟons on contact intensiƟes from and to children aged 0-19 during
periods of school closure

The cell-phone derived populaƟon-level mobility data used in this study were only available for individ-
uals aged 18+. We rely on limited data from two contact surveys performed in the United Kingdom and
China [73, 54] to characterise contact paƩerns from and to younger individuals during the pandemic (as
described in SecƟon S3.2). In the central analysis, the 4 × 4 + (18 − 4) × 4 + 4 × (18 − 4) = 128

contact intensiƟes from or to children and teens aged 0-19 were set to the corresponding, average of
the age-specific contact intensiƟes during lockdown that were observed across locaƟon in [54]; see also
EquaƟon (S35). In sensiƟvity analyses, we explored the impact of lower or higher contact intensiƟes
from or to children and teens aged 0-19 during periods of school closures. We approached this by re-
formulaƟng (S35) to the following form,

Cm,t,a,a′ =


Cm,a,a′ if t < tschool-closem

τClckdwn−0−19
a,a′ if t ∈ [tschool-closem , tschool-reopenm − 1]

Creopen-0-19m,a,a′ if t ≥ tschool-reopenm

(S101)

where a ∈ {[0−4], [5−9], [10−14], [15−19]} or a′ is one of the 5-year age bands of the infecƟon-and-
contact model, tschool-closem is the Ɵme index corresponding to schools closure in locaƟonm, tschool-openm is
the Ɵme index corresponding to schools re-opening in locaƟon m, Cm,a,a′ are the baseline pre-COVID-
19 contact intensiƟes described in locaƟon m in SecƟon S3.2.2, Clckdwn−0−19 are the average contact
intensiƟes derived from [54], and τ is a new scaling factor thatwe introduce for the purpose of sensiƟvity
analyses.

To gauge a range of τ values, we first calculated the contact intensity raƟos between the city-level
contact matrices in [54] with the contact intensiƟes Clckdwn−0−19 that were used in the central analysis.
The maximum contact intensity raƟo was 2.00 and the minimumwas 0.15. Using data from the UK post
lockdown contact survey of Jarvis and colleagues [73], we also computed the mean contact intensiƟes
from individuals aged 18+ with children aged 0 − 4 and children and teens age 5 − 17. We repeated
calculaƟons for the average post-lock down contact matrix Clckdwn−0−19 of Jarvis and colleagues [73].
The minimum andmaximum raƟo in the corresponding contact intensiƟes were 1.79 and 2.22. We thus
performed two sensiƟvity analyses using τ = 0.5 and 2, subject to the constraint that the resulƟng
contact intensiƟes during lockdown were not larger than those prepandemic contact intensiƟes Cm,a,a′ .
Figure S38 compares the resulƟng contact intensiƟes from and to children and teens during periods of
school closure.

Then, we re-fiƩed the contact-and-infecƟon model. Figure S39 compares esƟmates of age-specific
reproducƟon numbers, and the contribuƟon of age groups to onward spread under the central and
alternaƟve models. The alternaƟve model assumpƟons lead to considerable differences in esƟmated,
age-specific reproducƟon numbers. For children aged 0−9, the esƟmated reproducƟon numbers ranged
from 0.30 [0.29, 0.32] to 0.83 [0.79, 0.88] as τ increased from 0.5 to 2 in the week August 17, 2020 -
August 23, 2020. For teens aged 10-19, the esƟmated reproducƟon numbers ranged from 0.37 [0.35,
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Figure S38: Comparison of contact intensiƟes fromand to children aged 0-19 during periods of school closures in
the central and sensiƟvity analyses. Shown are contact intensiƟes from and to children and teens during periods
of school closure (on May 06, 2020) in California for different values of τ in EquaƟon (S101). The value τ = 1

corresponds to the central analysis. Parts of the Ɵme varying contact matrices that are not affected by this change
in model assumpƟons are shown in grey.

0.39] to 1.28 [1.21, 1.36] as τ increased from 0.5 to 2. These differences also had a noƟceable impact
on the esƟmated contribuƟon of children and teens to SARS-CoV-2 transmission. The esƟmated cu-
mulaƟve contribuƟon to onward spread from children aged 0-9 as of August 17, 2020 increased from
1.78% [1.38%-2.19%] to 3.08% [2.38%-3.93%] as τ increased from 0.5 to 2. For teens aged 10-19, the
esƟmated cumulaƟve contribuƟon to onward spread increased from 2.24% [1.88%-2.62%] to 10.89%
[9.64%-12.37%] as τ increased from 0.5 to 2. Conversely, for young adults aged 20-34, the esƟmated
cumulaƟve contribuƟon to onward spread decreased for all other age groups as τ increased from 0.5

to 2. This analyses indicate that reproducƟon numbers from teens aged 10-19 can in principle rise well
above 1, and that teens can contribute substanƟally to onward infecƟon, if their disease relevant contact
intensiƟes are assumed to be twice as high as in the central analysis. However when potenƟal reduc-
Ɵons in disease relevant contacts are esƟmated based on case and death data aŌer school reopening,
we find substanƟal posiƟve effects, which render the τ = 2 scenario unlikely.
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Figure S39: Age-specific weekly reproducƟon numbers and contribuƟon of age groups to onward spread under
the central model and under the alternaƟve models using different assumpƟon on contact intensiƟes from
and to children and teens aged 0-19 during periods of school closure. (A) EsƟmated age-specific reproducƟon
numbers for the week August 17, 2020 to August 23, 2020 under the central model (purple) and the alternaƟve
models; see (S101). (B) EsƟmated cumulaƟve contribuƟon of age groups to onward spread as of August 17, 2020
under the central model (purple) and the alternaƟve models. The value τ = 1 corresponds to the central model.
Dots and error bars indicate the posterior median esƟmate and 95% credible intervals.
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S6.3 AlternaƟve assumpƟons on the relaƟve suscepƟbility parameters

An important feature of SARS-CoV-2 transmission is that suscepƟbility to SARS-CoV-2 infecƟon increases
with age [90, 91]. In the central analysis, the relaƟve suscepƟbility parameters in (S51) are informed by
the contact tracing study of Zhang and colleagues [54]. In the sensiƟvity analysis, we considered instead
an alternaƟve prior density on the relaƟve suscepƟbility parameters based on themeta-analysis of Viner
and colleagues [90]. We approached this by reformulaƟng (S51) to the following form

log ρS[0−9] ∼ N (−0.6833129, 0.2424312) (S102a)

log ρS[10−19] ∼ N (−0.353706, 0.22450812) (S102b)

log ρS[65+] ∼ N (0.3828, 0.16382), (S102c)

where the hyperparameters were obtained by fiƫng a lognormal distribuƟon to the reported 95% confi-
dence intervals in [90] with the lognorm R package, version 0.1.6 [76]. The log suscepƟbility parameters
for the age band [20− 64]were set to 0, so that ρS can be interpreted as the relaƟve risk of SARS-CoV-2
infecƟon among individuals aged 0-9, 10-19, 65+ relaƟve to individuals aged 20−64. Considering the 18
age bands of the contact-and-infecƟon model, the age-specific relaƟve suscepƟbility parameters were
set to

log ρSa =


log ρS[0−9] if a ∈ [0− 9]

log ρS[10−19] if a ∈ [10− 19]

log ρS[20−64] if a ∈ [20− 64]

log ρS[65+] if a ∈ [65+].

(S103)

in the sensiƟvity analysis. Thus, in the sensiƟvity analysis, the relaƟve risk of SARS-Cov-2 infecƟon among
children and teens was higher than in the central analysis.

Figure S40 compares esƟmates of age-specific reproducƟon numbers, and the contribuƟon of age
groups to onward spread under the centralmodel to those under the alternaƟvemodel that uses relaƟve
suscepƟbility esƟmates of Viner et al. [90]. Both models made very similar inferences on age-specific
disease spread. Figure S41 compares the cumulaƟve aƩack rates esƟmated under the central model to
those under the alternaƟve model. Both models displayed similar esƟmates on age-specific SARS-CoV-2
burden.
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Figure S40: Age-specific weekly reproducƟon numbers and contribuƟon of age groups to onward spread under
the central model and under the alternaƟvemodel that uses relaƟve suscepƟbility esƟmates of Viner et al. [90]
(Top) EsƟmatedweekly age-specific reproducƟon numbers for theweek August 17, 2020 to August 23, 2020 under
the central model (purple) and the alternaƟve model (black). (BoƩom) EsƟmated cumulaƟve contribuƟon of age
groups to onward spread as of August 17, 2020. Dots and error bars indicate posterior median esƟmates and 95%
credible intervals.
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Figure S41: Age-specific cumulaƟve aƩack rate esƟmates under the central model and under the alternaƟve
model that uses relaƟve suscepƟbility esƟmates of Viner et al. [90]. Central model is in purple and alternaƟve
model is in black. Dots and error bars indicate posteriormedian esƟmates and 95% credible intervals of cumulated
aƩack rates as of August 23, 2020.
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