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1. Materials and Methods 
Understanding the transmission of SARS-CoV-2 is challenging. The available data are subject to 
competing biases, such as dependence on case definition for testing and reporting, as well as being 
influenced by capacity and logistical constraints. These factors are further complicated by the nature 
of SARS-CoV-2 transmission, whereby a substantial proportion of infected individuals develop very 
mild symptoms, or remain asymptomatic, but are nonetheless able to infect others (1). In this section, 
we describe the data used in our analyses, give details on the dynamic transmission model, and 
present the methods used for fitting the model to the various data sources, accounting for the 
inherent biases in those data.  

1.1 Data sources 

Here we detail the datasets used to calibrate the model to the regional epidemics. We fitted our model 
to time series data spanning 16th March 2020 to 2nd December 2020 (inclusive), using the data 
available to us on 14th December 2020, by which point the effect of remaining reporting lags would 
be minimal. 
 

1.1.1 Hospital admissions and bed occupancy 

We use healthcare data for each NHS region from the UK Government Dashboard (supplementary 
data files: data_rtm.csv, columns: phe_admissions, phe_occupied, phe_patients) (2).    

For admissions data, we use the daily number of confirmed COVID-19 patients admitted to hospital, 
which includes people admitted to hospital who tested positive for COVID-19 in the 14 days prior to 
admission and inpatients who tested positive in hospital after admission, with the latter being 
reported as admitted on the day prior to their diagnosis.  

For ICU bed occupancy, we use the daily number of (confirmed) COVID-19 patients in beds which are 
capable of delivering mechanical ventilation. 

For the occupancy in general (i.e. non-ICU) hospital beds, we use the daily number of confirmed 
COVID-19 patients in hospital beds with ICU occupancy subtracted. 

1.1.2 Deaths 

We use the number of deaths by date of death for people who had a positive COVID-19 test result and 
died within 28 days of their first positive test provided Public Health England. These can be found on 
(2). We also use the number among these deaths occurring in hospital (as reported by NHS England) 
and consider the remainder to have occurred in care homes. While non-hospital deaths may include 
deaths in other settings, such as in private residences, comparison with ONS data suggests that care 
home deaths from COVID-19 may also have been under-reported. As such we consider non-hospital 
deaths to be an appropriate proxy for care home deaths, and do not expect the margin for under or 
over- ascertainment to affect our conclusions. These data were provided by PHE and the data we have 
been using is provided as a supplementary file (supplementary data file: data_rtm.csv, columns: 
death2, death3) to allow reproducibility of our analysis. 

1.1.3 Pillar 2 testing 

We use pillar 2 testing data (see supplementary data files), which covers PCR testing for the general 
population (as compared with pillar 1 testing, which mainly occurred in hospitals). Since such testing 
was not available to the whole population for much of the spring wave of the pandemic, we only use 
this data from June 1st onwards. 
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We use the daily number of positives and negative tests by specimen date. Each individual who tested 
positive was only counted once in the number of positives, on the specimen date of their first positive 
test. Multiple negatives were allowed per individual, but the negatives of all individuals who ever 
tested positive had been removed. We only consider PCR tests and thus exclude lateral flow tests, 
which have been introduced recently in trials of population mass testing. We also only use pillar 2 data 
for those aged 25 or over, to avoid bias resulting from increased testing of university students around 
the reopening of universities (supplementary data file: data_rtm.csv, columns: 
pillar2_negatives_non_lft_over25, pillar2_positives_over25). 

1.1.4 Serology surveys 

Serological survey data come from antibody testing by Public Health England of samples from healthy 
adult blood donors, supplied by NHS Blood and Transplant (NHSBT) (supplementary data file: 
data_serology.csv). 

1.1.5 REACT-1 prevalence survey 

We use the daily number of positives and negatives by specimen date from the first 7 rounds of the 
REACT-1 (Real-time Assessment of Community Transmission) infection prevalence survey 
(supplementary data file: data_rtm.csv, columns: react_positive, react_samples) (3). Note that results 
published in REACT preprints use data aggregated using the administrative regions of England, 
whereas for the purposes of this study the data has been aggregated using NHS regions. Additionally, 
small changes can occur in the aggregated datasets that were published in real time because of 
participant withdrawals and additional data cleaning.  

1.1.6 Summary of the data used for calibration 

Table S 1 details the datasets used to calibrate the model to the regional epidemics. 
 
Table S 1: Data sources and definitions. 

Data type Description Source Reference 

Hospital deaths Daily number of COVID-19 
deaths reported by NHS 
England within 28 days of a 
positive result 

PHE 

 

See data 
supplement. These 
data underlie what 
is released on (2) 

Care home deaths Daily number of COVID-19 
deaths not reported by NHS 
England within 28 days of a 
positive result 

PHE See data 
supplement. These 
data underlie what 
is released on (2) 

ICU occupancy Daily number of confirmed 
COVID-19 patients in ICU 

Gov.uk 
Dashboard 

(2) 

General bed 
occupancy 

Daily number of confirmed 
COVID-19 patients in non-ICU 
beds  

Gov.uk 
Dashboard 

(2) 

Admissions Daily number of confirmed 
COVID-19 patients admitted to 
hospital 

Gov.uk 
Dashboard 

(2) 
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Pillar 2 testing Daily number of positive and 
negative PCR test results  

PHE See data 
supplement. These 
data underlie what 
is released on (2) 

REACT-1 testing Daily number of positive and 
negative PCR test results 

REACT (3) 

Serology Serology survey conducted on 
blood donors aged 15-65 

PHE See data 
supplement, these 
data are collected as 
part of (4) 

Patient progression in 
hospital 

Number of hospital admissions 
going down each treatment 

route (e.g. ICU, stepdown 
care) and length of stay in 

each ward. 

CHESS (5) 
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1.1.7 Other data sources 

1.1.7.1 Patient progression in hospital 

The COVID-19 Hospitalisation in England Surveillance System (CHESS) data consists of a line list of daily 
individual patient-level data on COVID-19 infection in persons requiring hospitalisation, including 
demographic and clinical information on severity and outcomes. We use the individual dates of 
progression through hospital wards, from admission to eventual death or discharge, to produce age-
stratified estimates of hospital progression parameters to be passed to the wider transmission model 
(see Section 1.9.2 and (supplementary data file: support_progression.csv, support_severity.csv). 

1.1.7.2 Demographic data  

We use data from the Office for National Statistics (ONS (6)) to get the number of individuals in each 
of the 17 age-groups, i.e. 16 five-year age bands (0-4, 5-9, …, 75-79) and an 80+ group. We get the 
number of care-home beds in England from (7) giving us the number of care-home beds for each NHS 
regions. We then got an estimate of the total population of care-home residents in the UK from (8) 
that we scaled down to the England population size, combined with the estimate of the total number 
of beds in England, we derived a value of the total occupancy of care-homes of 74.2%. We assumed 
that the occupancy is the same in all the NHS regions. Care-home residents are subtracted from the 4 
oldest age group (5% from age 65-69, 5% age 70-74, 15% age 75-79 and 75% age 80+ (9)). We then 
assume a 1:1 ratio of care-home residents to care-home workers and assume that the care-home 
workers population is homogeneously distributed among the 25-65 population in the region. 

The contact matrix between the 17 age-groups is based on the POLYMOD contact survey. See 
parameterisation for more details (10).   

  

1.2 Evidence synthesis 

Figure S 1 shows the functional relationships between data sources, modelled outputs and parameters 
in our study. 
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Figure S 1: Graph showing the functional relationships between data sources (rectangles), modelled outputs (ovals) and parameters (hexagons). 
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1.3 Model description  

We developed a stochastic compartmental transmission-dynamic model incorporating hospital care 
pathways to reconstruct the course of the COVID-19 epidemic in the seven NHS regions of England 
(Figure S 2). All analyses were done by regions, and then aggregated somehow if needed (e.g. for 
national IFR, or cumulative incidence). In the following description we do not mention any index 
denoting the region and thus all notations refer to the same NHS region. 

 

1.3.1 Stratification of population into groups 

We divided each regional population into 19 strata, denoted by the superscript 𝑖𝑖, 17 strata 
representing age groups within the general population, and two separate risk groups comprising care 
home workers (CHW) and care home residents (CHR). The 17 age groups consisted of 16 five-year age 
bands (0-4, 5-9, …, 75-79) and an 80+ group. The total size of the care home worker and resident 
groups were calculated assuming that 74.2% of available care home beds are occupied and there is a 
1:1 carer to resident ratio (11). The care home workers were then split equally between all 8 age 
categories in the range 25 – 64-year-old and removed from the corresponding age categories in the 
general population. Despite the care-home workers being removed from all age categories in the 
range 25 – 64-year-old, they care-home workers are assumed to constitute one single group in our 
model for simplicity. The care home residents were drawn from the 65+ year old general population, 
such that 5% were aged 65-69, 5% aged 70-74, 15% aged 75-79 and 75% aged 80+ (9) and similarly 
removed from the corresponding age groups in the general population. Again, similarly to care-home 
workers they do constitute a single group in our model. We thus do not capture specific transmission 
dynamics within each care home, but rather an average mixing between residents and workers in the 
regional care home sector as a whole. 
 

1.3.2 Progression of infection and hospitalisation 

Prior to the importation of COVID-19, all individuals were assumed equally susceptible to infection (𝑆𝑆). 
Upon infection, individuals pass through a latent period (𝐸𝐸) before becoming infectious. A proportion 
(𝑝𝑝𝐶𝐶) of infectious individuals develop symptoms (𝐼𝐼𝐶𝐶) while the rest remain asymptomatic (𝐼𝐼𝐴𝐴). All 
asymptomatic individuals are assumed to recover naturally. Those with symptoms may also recover 
naturally (𝑅𝑅), however a proportion (𝑝𝑝𝐻𝐻𝑖𝑖 , age/care home-dependant as indicated by the i superscript) 
develop severe disease requiring hospitalisation. Of these, a proportion (𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 ) die at home without 
receiving hospital care. In practice this proportion is set to zero except among care home residents. 
Of the patients who are admitted to hospital, a proportion (𝑝𝑝∗(𝑡𝑡)) have their COVID-19 diagnoses 
confirmed prior to admission, while the remainder may be diagnosed during their inpatient stay. All 
hospital compartments are divided between suspected (but not yet confirmed) and confirmed 
diagnoses (indicated by superscript  ∗). A proportion (𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)) of new hospital admissions are triaged 
(𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝) before admission to the intensive care unit (𝐼𝐼𝐼𝐼𝐼𝐼), where a fraction (𝑝𝑝𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷

𝑖𝑖 (𝑡𝑡)) die; those who 
do not die get out of ICU to a ward (𝑊𝑊) where a proportion (𝑝𝑝𝑊𝑊𝐷𝐷

𝑖𝑖 (𝑡𝑡)) die, while the remainder recover, 
following an inpatient care stepdown period. Inpatients not triaged to the ICU are assigned to general 
hospital beds (𝐻𝐻), where a proportion (𝑝𝑝𝐻𝐻𝐷𝐷

𝑖𝑖 (𝑡𝑡)) die, while the remainder recover. Recovered 
individuals are assumed to be immune to reinfection for at least the duration of the simulation. 
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In addition, there are two parallel flows which we use for fitting to testing data: (i) for PCR positivity 
and (ii) for seropositivity. Upon infection, an individual enters the PCR flow in a pre-positivity 
compartment (𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝) before moving into the PCR positivity compartment (𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝) and then 
ultimately into the PCR negativity compartment (𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛). Meanwhile, individuals move into the 
seropositivity flow upon becoming infectious, entering first into a pre-seropositivity compartment 
(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝). A proportion of individuals (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝) then seroconvert and move into the seropositivity 
compartment (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝), while the remainder move into the seronegativity compartment (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛). 

We calibrated the duration distributions for each hospital compartment, and the age-stratified 
probabilities of moving between compartments, using the analysis of individual-level patient data 
(presented below in Section 1.9.2). The required Erlang distributional form was achieved within the 
constraints of the modelling framework by splitting each model compartment into 𝑘𝑘 sequential sub-
compartments (Table S 2).  

 

Figure S 2: Model structure flow diagram with rates of transition between infection states. Variable names 
defined in text.   
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Table S 2: Description of model compartments and distribution of time spent in each. For each named 
compartment, we give the associated duration. Due to the Markovian structure these are model Erlang-like 
distributions with 𝑘𝑘𝑗𝑗 the number of exponential-like compartments and 𝛾𝛾𝑗𝑗 the rate of the exponential-like 
compartment. 𝔼𝔼�𝜏𝜏𝑗𝑗� gives the mean duration in days spent in the corresponding compartment. The structure 
and duration of each stage was assumed to be the same for unconfirmed and confirmed cases in hospital (see 
Figure S2). For length of stays related to hospital pathways, more detail is given in section 1.9.2. 

Compartment Description 

 

Duration  

𝜏𝜏𝑗𝑗~Erlang (𝑘𝑘𝑗𝑗 , 𝛾𝛾𝑗𝑗)  

(days) 

𝔼𝔼�τj� = 𝑘𝑘𝑗𝑗/𝛾𝛾𝑗𝑗   

Source 

𝒋𝒋   𝑘𝑘𝑗𝑗   𝛾𝛾𝑗𝑗   (95% CI)  

𝑺𝑺  Susceptible to 
infection 

Determined by transmission dynamics 

𝑬𝑬  Latent infection 2 0.44 4.6 (0.6, 12.8) Lauer et al.(12) 

𝑰𝑰𝑨𝑨  Asymptomatic 
infection 

1 0.48 2.1 (0.1, 7.7) Bi et al.(13) 

𝑰𝑰𝑪𝑪  Symptomatic 
infection 

1 0.25 4.0 (0.1, 14.8)  Docherty et 
al.(14) 

𝑮𝑮𝑫𝑫  Severe illness 
leading to death in 
the general 
population 

2 0.40 5.0 Bernabeu-Wittel 
et al. (15) 

𝑯𝑯𝑹𝑹  Hospitalised on 
general ward 
leading to recovery 

1 0.09 10.7 (0.3, 39.4) Fitted to CHESS 

𝑯𝑯𝑫𝑫  Hospitalised on 
general ward 
leading to death 

2 0.19 10.3 (1.3, 28.8) Fitted to CHESS 

𝑰𝑰𝑰𝑰𝑰𝑰𝒑𝒑𝒑𝒑𝒑𝒑  Triage to ICU 1 0.40 2.5 (0.1, 9.2) Fitted to CHESS 

𝑰𝑰𝑰𝑰𝑰𝑰𝑼𝑼𝑾𝑾𝑹𝑹
  Hospitalised in ICU, 

leading to recovery 
1 0.06 15.6 (0.4, 57.6) Fitted to CHESS 

𝑰𝑰𝑰𝑰𝑰𝑰𝑼𝑼𝑾𝑾𝑫𝑫
   Hospitalised in ICU, 

leading to death in 
step-down following 
ICU 

1 0.14 7.0 (0.2, 25.7) Fitted to CHESS 

𝑰𝑰𝑰𝑰𝑰𝑰𝑼𝑼𝑫𝑫   Hospitalised in ICU, 
leading to death 

2 0.17 11.8 (1.4, 32.9) Fitted to CHESS 

𝑾𝑾𝑹𝑹  Stepdown recovery 
period after leaving 
ICU 

2 0.16 12.2 (1.5, 34.0) Fitted to CHESS 
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𝑾𝑾𝑫𝑫 Stepdown period 
before death after 
leaving ICU 

1 0.12 8.1 (0.2, 29.7) Fitted to CHESS 

𝑹𝑹  Recovered  - - - - 

𝑻𝑻𝒑𝒑𝒑𝒑𝒑𝒑𝑷𝑷𝑷𝑷𝑷𝑷 Pre-PCR positive 1 0.33 3.0 (0.1, 11.1) Omar et al. (16) 

- 𝑻𝑻𝒑𝒑𝒑𝒑𝒑𝒑𝑷𝑷𝑷𝑷𝑷𝑷 True PCR positive 1 0.06 17.5 (0.4, 64.5) 

𝑻𝑻𝒏𝒏𝒏𝒏𝒏𝒏𝑷𝑷𝑷𝑷𝑷𝑷 True PCR negative - - - 

𝑻𝑻𝒑𝒑𝒑𝒑𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  Pre-seroconversion 1 0.08 

 

13.0 (0.3, 48.0) Benny et al. (17) 

𝑻𝑻𝒑𝒑𝒑𝒑𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  True seropositive - -  - 

𝑻𝑻𝒏𝒏𝒏𝒏𝒏𝒏𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  True seronegative - -  - 

Values of fitted parameters are set out in Table S 6. 

 

1.3.3 Progression of infection and hospitalisation 

The force of infection, 𝜆𝜆𝑖𝑖(𝑡𝑡), for individuals in group 𝑖𝑖 ∈ {[0,5), … , [75,80), [80 +),𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶}  

depends on time-varying social mixing between age groups and prevalence in all age/care home 
groups:  

𝜆𝜆𝑖𝑖(𝑡𝑡) = �𝑚𝑚𝑖𝑖,𝑗𝑗(𝑡𝑡)Π𝑗𝑗(𝑡𝑡)
𝑗𝑗

 (1) 

where 𝑚𝑚𝑖𝑖,𝑗𝑗(𝑡𝑡) is the (symmetric) time-varying person-to-person transmission rate from group j to 
group i, and Π𝑗𝑗(𝑡𝑡) is the number of infectious individuals in group j, given by: 

Π𝑗𝑗(𝑡𝑡) =  𝐼𝐼𝐴𝐴
𝑗𝑗(𝑡𝑡) + 𝐼𝐼𝐶𝐶

𝑗𝑗(𝑡𝑡) (2) 

 

Broadly, to parameterise 𝑚𝑚𝑖𝑖,𝑗𝑗(𝑡𝑡), we informed mixing in the general population, and between the 
general population and care home workers using POLYMOD (10) via the R package socialmixr using 
age-structured regional demography (18).  

Transmission between different age groups (𝑖𝑖, 𝑗𝑗) ∈ {[0,5), … , [75,80), [80 +)}2 was parameterised as 
follows:  

𝑚𝑚𝑖𝑖,𝑗𝑗(𝑡𝑡) = 𝛽𝛽(𝑡𝑡)𝑐𝑐𝑖𝑖,𝑗𝑗  (3) 
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Here 𝑐𝑐𝑖𝑖,𝑗𝑗 is the (symmetric) person-to-person contact rate between age group i and j, derived from 
pre-pandemic data (10). 𝛽𝛽(𝑡𝑡) is the time-varying transmission rate 𝑤𝑤hich encompasses both changes 
over time in transmission efficiency (e.g. due to temperature) and temporal changes in the overall 
level of contacts in the population (due to changes in policy and behaviours). 

We assumed 𝛽𝛽(𝑡𝑡) to be piecewise linear: 

𝛽𝛽(𝑡𝑡) = �

𝛽𝛽1,                                                 
𝑡𝑡𝑖𝑖 − 𝑡𝑡
𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1

𝛽𝛽𝑖𝑖−1 +
𝑡𝑡 − 𝑡𝑡𝑖𝑖−1
𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1

𝛽𝛽𝑖𝑖  , 

 𝛽𝛽13,                                                   

  if  𝑡𝑡 ≤ 𝑡𝑡1                                             
if  𝑡𝑡𝑖𝑖−1 < 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 2, … ,13
if 𝑡𝑡 > 𝑡𝑡13                                                 

 (4) 

 

with 12 change points 𝒕𝒕𝒊𝒊 corresponding to major announcements and changes in COVID-19 related 
policy, as detailed in Table S 3.  

 
Table S 3: Changepoints for 𝛽𝛽(𝑡𝑡) 

Changepoint Value of 𝜷𝜷(𝒕𝒕) at 
changepoint 

Date Description 

𝒕𝒕𝟏𝟏  𝛽𝛽𝟏𝟏 16/03/20 PM makes speech advising working 
from home, against non-essential 

travel (19) 

𝒕𝒕𝟐𝟐  𝛽𝛽𝟐𝟐 23/03/20 PM announces lockdown 1 (20) 

𝒕𝒕𝟑𝟑 𝛽𝛽𝟑𝟑 25/03/20 Lockdown 1 into full effect (21) 

𝒕𝒕𝟒𝟒  𝛽𝛽𝟒𝟒 11/05/20 Initial easing of lockdown 1 (22) 

𝒕𝒕𝟓𝟓 𝛽𝛽𝟓𝟓 15/06/20 Non-essential shops can re-open 
(23) 

𝒕𝒕𝟔𝟔 𝛽𝛽𝟔𝟔 04/07/20 Restaurants, pubs etc can re-open 
(24) 

𝒕𝒕𝟕𝟕 𝛽𝛽𝟕𝟕 03/08/20 “Eat out to help out” scheme starts 
(25) 

𝒕𝒕𝟖𝟖 𝛽𝛽𝟖𝟖 01/09/20 Schools and universities re-open 
(26)  

𝒕𝒕𝟗𝟗  𝛽𝛽𝟗𝟗 14/09/20 “Rule of six” introduced (27) 

𝒕𝒕𝟏𝟏𝟏𝟏  𝛽𝛽𝟏𝟏𝟏𝟏 14/10/20 Tiered system introduced (28) 

𝒕𝒕𝟏𝟏𝟏𝟏   𝛽𝛽𝟏𝟏𝟏𝟏  31/10/20 Lockdown 2 announced (29) 

𝒕𝒕𝟏𝟏𝟏𝟏  𝛽𝛽𝟏𝟏𝟏𝟏 05/11/20 Lockdown 2 starts (29) 
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The contact matrix 𝑐𝑐𝑖𝑖,𝑗𝑗  between different age groups (𝑖𝑖, 𝑗𝑗) ∈ {[0,5), … , [75,80), [80 +)}2 is derived 
from the POLYMOD survey (10) for the United Kingdom using the socialmixr package (18,30), scaling 
by the local population demography to yield the required person-to-person daily contact rate matrix.  

We defined parameters representing transmission rates within care homes (between and among 
workers and residents), which were assumed to be constant over time. Parameter 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 represents 
the person-to-person transmission rate among care home workers and between care home workers 
and residents; 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶  represents the person-to-person transmission rate among care home residents. 
Hence, 

𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑚𝑚𝐶𝐶𝐶𝐶𝑊𝑊 (5) 

𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶  (6) 

Transmission between the general population and care home workers was assumed to be similar to 
that within the general population, accounting for the average age of care home workers, with, for 
𝑖𝑖 ∈ {[0,5), … , [75,80), [80 +)}, 

𝑚𝑚𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝛽𝛽(𝑡𝑡)𝑐𝑐𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶 (7) 

where 𝑐𝑐𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶 is the mean of 𝑐𝑐𝑖𝑖,[25,30), 𝑐𝑐𝑖𝑖,[30,35), … , 𝑐𝑐𝑖𝑖,[60,65) (i.e. of the age groups that the care home 
workers are drawn from). 

Transmission between the general population and care home residents was assumed to be similar to 
that between the general population and the 80+ age group, adjusted by a reduction factor (𝜖𝜖, which 
was estimated), such that, for 𝑖𝑖 ∈ {[0,5), … , [75,80), [80 +)}, 

𝑚𝑚𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) =  𝜖𝜖𝛽𝛽(𝑡𝑡)𝑐𝑐𝑖𝑖,80+ (8) 

These represent contact between visitors from the general community and care home residents. This 
might involve a slightly different age profile than the age profile of the contact made by people in the 
80+ age group.  
 

1.3.4 Age-varying and time-varying infection progression probabilities 

Various probabilities of clinical progression within the model are assumed to vary across age groups 
to account for severity of infection varying with age, and some are assumed to vary in time in order 
to model improvements in clinical outcomes, such as those achieved through the use of 
dexamethasone (31). 

Two probabilities are age-varying but not time-varying, the probability of admission to hospital for 
symptomatic cases, and the probability of death for severe symptomatic cases in care homes. These 
were modelled as follows: 

 

𝑝𝑝𝐻𝐻𝑖𝑖   =  𝜓𝜓𝐻𝐻𝑖𝑖 𝑝𝑝𝐻𝐻
𝑚𝑚𝑚𝑚𝑚𝑚   (9) 

𝑝𝑝𝐺𝐺𝐷𝐷
𝑖𝑖  = 𝜓𝜓𝐺𝐺𝐷𝐷

𝑖𝑖 𝑝𝑝𝐺𝐺𝐷𝐷
𝑚𝑚𝑚𝑚𝑚𝑚   (10) 

 

where for probability 𝑝𝑝𝑋𝑋𝑖𝑖 , 𝑝𝑝𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum across all groups and 𝜓𝜓𝑋𝑋𝑖𝑖  is the age scaling such that 
𝜓𝜓𝑋𝑋𝑖𝑖 = 1 for the group corresponding to the maximum, against which all other groups are scaled. 
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As well as varying with age, four probabilities also vary with time: the probability of admission to ICU 
for hospitalised cases, the probability of death in ICU, the probability of death for hospitalised cases 
not admitted to ICU, and the probability of death in hospital after discharge from ICU: 

 

𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)  = 𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼
𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑡𝑡) (11) 

𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
𝑖𝑖 (𝑡𝑡)  = 𝜓𝜓𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷

𝑖𝑖 𝑝𝑝𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷
𝑚𝑚𝑚𝑚𝑚𝑚 ℎ(𝜇𝜇𝐷𝐷 , 𝑡𝑡) (12) 

𝑝𝑝𝐻𝐻𝐷𝐷
𝑖𝑖 (𝑡𝑡)  = 𝜓𝜓𝐻𝐻𝐷𝐷

𝑖𝑖 𝑝𝑝𝐻𝐻𝐷𝐷
𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝜇𝜇𝐷𝐷 , 𝑡𝑡) (13) 

𝑝𝑝𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)  = 𝜓𝜓𝑊𝑊𝐷𝐷

𝑖𝑖 𝑝𝑝𝑊𝑊𝐷𝐷
𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝜇𝜇𝐷𝐷 , 𝑡𝑡) (14) 

 

where here for probability 𝑝𝑝𝑋𝑋𝑖𝑖 , 𝑝𝑝𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚gives the maximum initial value across groups and ℎ(𝜇𝜇, 𝑡𝑡) = 1 
before April 1st, ℎ(𝜇𝜇, 𝑡𝑡) = 𝜇𝜇 < 1 after June 1st, with a linear reduction in between. 

Care home residents with severe disease leading to death are assumed to remain in compartment 𝑮𝑮𝑫𝑫 
for 5 days on average before dying (modelled with 𝑘𝑘𝑮𝑮𝑫𝑫 = 2 and 𝛾𝛾𝑮𝑮𝑫𝑫 = 0.4), 95% range 0.6-13.9 days 
broadly consistent with durations in (15) and with duration about half the length observed in hospital 
streams (see Figure S 5). 

For care home workers, the age scaling 𝜓𝜓𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 is taken as the mean of the age scalings 𝜓𝜓𝑋𝑋𝑖𝑖  for 𝑖𝑖 ∈
{[25,30), [30,35), … , [60,65)}. For care home residents, we assume that 𝜓𝜓𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 =  𝜓𝜓𝑋𝑋

[80+), with the 
exception of the probability of individual with severe disease requiring hospitalisation dying at home 
(without receiving hospital care), where we assume 𝜓𝜓𝐺𝐺𝐷𝐷

𝐶𝐶𝐶𝐶𝐶𝐶 = 1 and 𝜓𝜓𝐺𝐺𝐷𝐷
𝑖𝑖 = 0 for all other groups, to 

effectively allow death outside hospital only for care home residents.  
 

1.4 Reproduction number 𝑹𝑹𝒕𝒕 and effective reproduction number 𝑹𝑹𝒕𝒕
𝒆𝒆𝒆𝒆𝒆𝒆 

We calculated the reproduction number over time, 𝑅𝑅𝑡𝑡, and effective reproduction number over time, 
𝑅𝑅𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒, using next generation matrix methods (32). The reproduction numbers are calculated for the 

general population, i.e. excluding care home workers and residents. We define 𝑅𝑅𝑡𝑡 as the average 
number of secondary infections a case infected at time t would generate in a large entirely susceptible 
population, and 𝑅𝑅𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒 as the average number of secondary infections generated by a case infected at 
time t would accounting for the finite population size and potential immunity in the population.  
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To compute the next generation matrix, we calculated the mean duration of infectiousness Δ𝐼𝐼, as  

Δ𝐼𝐼 = (1 − 𝑝𝑝𝐶𝐶)𝔼𝔼�τ𝐼𝐼𝐴𝐴� + 𝑝𝑝𝐶𝐶𝔼𝔼�τ𝐼𝐼𝐶𝐶� (15) 

 

where parameter and model compartment notations are defined in Table S 2 - Table S 8. 

For this calculation, the expected durations of stay in compartments were adjusted to account for the 
discrete-time nature of the model, via calculating the expected number of time-steps (of length 𝑑𝑑𝑑𝑑) 
spent in a given compartment. Note that if in continuous-time a compartment duration is 
𝜏𝜏~Erlang (𝑘𝑘, 𝛾𝛾), then the corresponding discrete-time mean duration is: 

 
𝐸𝐸[𝜏𝜏] =

𝑘𝑘 𝑑𝑑𝑑𝑑
(1 − 𝑒𝑒−𝛾𝛾𝛾𝛾𝛾𝛾)

 

  
(16) 

 The next generation matrix was calculated as, for (𝑖𝑖, 𝑗𝑗) ∈ {[0,5), … , [75,80), [80 +)}2, 

 

NGM𝑖𝑖𝑖𝑖(𝑡𝑡) =  𝑚𝑚𝑖𝑖𝑖𝑖(𝑡𝑡)Δ𝐼𝐼𝑁𝑁𝑖𝑖  (17) 

 

where 𝑁𝑁𝑖𝑖 is the total population of group 𝑖𝑖 and 𝑅𝑅𝑡𝑡 is taken to be the dominant eigenvalue of NGM(𝑡𝑡), 
while the effective next generation matrix was calculated as: 

 

NGM𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) =  𝑚𝑚𝑖𝑖𝑖𝑖(𝑡𝑡)Δ𝐼𝐼𝑆𝑆𝑖𝑖(𝑡𝑡) (18) 

with 𝑅𝑅𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒 taken to be the dominant eigenvalue of NGM𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡). 

 

1.5 Infection severity 

Posterior estimates of severity, namely the infection hospitalisation and infection fatality ratios, were 
calculated in each group 𝑖𝑖 as follows:  

 

IHR𝑖𝑖   = 𝑝𝑝𝐶𝐶𝑝𝑝𝐻𝐻𝑖𝑖 (1 − 𝑝𝑝𝐺𝐺𝐷𝐷
𝑖𝑖 )  (19) 

IFR𝑖𝑖(t)  
= 𝑝𝑝𝐶𝐶𝑝𝑝𝐻𝐻𝑖𝑖 �𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 + �1 − 𝑝𝑝GD
𝑖𝑖 � �𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡) �𝑝𝑝𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷

𝑖𝑖 (𝑡𝑡) + �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷
𝑖𝑖 (𝑡𝑡)�𝑝𝑝𝑊𝑊𝐷𝐷

𝑖𝑖 (𝑡𝑡)� +

�1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)�𝑝𝑝𝐻𝐻𝐷𝐷
𝑖𝑖 (𝑡𝑡)��   

(20) 

 

Note that for simplicity the notation we use do refer explicitly to the NHS region of interest. We 
calculated age-aggregated estimates for each region by weighting the age-specific severity estimates 
by the cumulative incidence in that age group. Aggregate estimates for England were then calculated 
by weighting the region-specific estimates by the regional attack rates. 
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1.6 Compartmental model equations  

To clearly illustrate the model dynamics, we describe a deterministic version of the model in 
differential equations (21)-(56), followed by the stochastic implementation used in the analysis. Each 
compartment is stratified by mixing category 𝑖𝑖 ∈ {[0,5), … , [75,80), [80 +),𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶}. Full 
definitions of compartments and model parameters are set out in Table S 2 - Table S 8. 

 

𝑑𝑑𝑆𝑆𝑖𝑖(𝑡𝑡)/𝑑𝑑𝑑𝑑  = −𝜆𝜆𝑖𝑖(𝑡𝑡)𝑆𝑆𝑖𝑖(𝑡𝑡) (21) 

𝑑𝑑𝐸𝐸𝑖𝑖,1(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝜆𝜆𝑖𝑖(𝑡𝑡)𝑆𝑆𝑖𝑖(𝑡𝑡) − 𝛾𝛾𝐸𝐸𝐸𝐸𝑖𝑖,1(𝑡𝑡)  (22) 

𝑑𝑑𝐸𝐸𝑖𝑖,2(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐸𝐸𝐸𝐸𝑖𝑖,1(𝑡𝑡) − 𝛾𝛾𝐸𝐸𝐸𝐸𝑖𝑖,2(𝑡𝑡)  (23) 

𝑑𝑑𝑑𝑑𝐴𝐴𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = (1 − 𝑝𝑝𝐶𝐶)𝛾𝛾𝐸𝐸𝐸𝐸𝑖𝑖,2(𝑡𝑡) − 𝛾𝛾𝐴𝐴𝐼𝐼𝐴𝐴𝑖𝑖 (𝑡𝑡)  (24) 

𝑑𝑑𝑑𝑑𝐶𝐶𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝑝𝑝𝐶𝐶𝛾𝛾𝐸𝐸𝐸𝐸𝑖𝑖,2(𝑡𝑡) −  𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) (25) 

𝑑𝑑𝑑𝑑𝐷𝐷
𝑖𝑖,1(𝑡𝑡)/𝑑𝑑𝑑𝑑 = 𝑝𝑝𝐻𝐻𝑖𝑖 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) − 𝛾𝛾𝐺𝐺𝐷𝐷𝐺𝐺𝐷𝐷
𝑖𝑖,1(𝑡𝑡)  (26) 

𝑑𝑑𝑑𝑑𝐷𝐷
𝑖𝑖,2(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐺𝐺𝐷𝐷𝐺𝐺𝐷𝐷

𝑖𝑖,1(𝑡𝑡) − 𝛾𝛾𝐺𝐺𝐷𝐷𝐺𝐺𝐷𝐷
𝑖𝑖,2(𝑡𝑡)  (27) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷
𝑖𝑖 ��1 − 𝑝𝑝∗(𝑡𝑡)� 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡) 𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) − �𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛾𝛾𝑈𝑈� 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 (𝑡𝑡) (28) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑒𝑒∗
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 �𝑝𝑝∗(𝑡𝑡) 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) − 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑒𝑒∗
𝑖𝑖 (𝑡𝑡) + 𝛾𝛾𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 (𝑡𝑡) (29) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝑊𝑊𝑅𝑅
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 (𝑡𝑡)��1 − 𝑝𝑝𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)�𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡) − �𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅
+ 𝛾𝛾𝑈𝑈� 𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅

𝑖𝑖 (𝑡𝑡)  (30) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝑊𝑊𝑅𝑅∗
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  

= �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
𝑖𝑖 (𝑡𝑡)��1 − 𝑝𝑝𝑊𝑊𝐷𝐷

𝑖𝑖 (𝑡𝑡)�𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑒𝑒∗
𝑖𝑖 (𝑡𝑡) − 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅

𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅∗
𝑖𝑖 (𝑡𝑡) +

𝛾𝛾𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅
𝑖𝑖 (𝑡𝑡)  

(31) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 (𝑡𝑡)�𝑝𝑝𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡) − �𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷
+ 𝛾𝛾𝑈𝑈� 𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷

𝑖𝑖 (𝑡𝑡)  (32) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝑊𝑊𝐷𝐷∗
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 (𝑡𝑡)�𝑝𝑝𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑒𝑒∗

𝑖𝑖 (𝑡𝑡) − 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷
𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷∗

𝑖𝑖 (𝑡𝑡) + 𝛾𝛾𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)  (33) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝐷𝐷
𝑖𝑖,1(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 (𝑡𝑡)𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡) − �𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷 + 𝛾𝛾𝑈𝑈�𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷

𝑖𝑖,1(𝑡𝑡)  (34) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝐷𝐷
𝑖𝑖,2(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷

𝑖𝑖,1(𝑡𝑡) − �𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷 + 𝛾𝛾𝑈𝑈�𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷
𝑖𝑖,2(𝑡𝑡)  (35) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝐷𝐷∗
𝑖𝑖,1(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 (𝑡𝑡)𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑒𝑒∗
𝑖𝑖 (𝑡𝑡) − 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗

𝑖𝑖,1(𝑡𝑡) + 𝛾𝛾𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
𝑖𝑖,1(𝑡𝑡)  (36) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝐷𝐷∗
𝑖𝑖,2(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗

𝑖𝑖,1(𝑡𝑡) − 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗
𝑖𝑖,2(𝑡𝑡) + 𝛾𝛾𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖,2(𝑡𝑡)  (37) 

𝑑𝑑𝑊𝑊𝑅𝑅
𝑖𝑖,1(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅

𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅
𝑖𝑖 (𝑡𝑡) − �𝛾𝛾𝑊𝑊𝑅𝑅 + 𝛾𝛾𝑈𝑈�𝑊𝑊𝑅𝑅

𝑖𝑖,1(𝑡𝑡)  (38) 

𝑑𝑑𝑑𝑑𝑅𝑅
𝑖𝑖,2(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝑊𝑊𝑅𝑅𝑊𝑊𝑅𝑅

𝑖𝑖,1(𝑡𝑡) − �𝛾𝛾𝑊𝑊𝑅𝑅 + 𝛾𝛾𝑈𝑈�𝑊𝑊𝑅𝑅
𝑖𝑖,2(𝑡𝑡)  (39) 

𝑑𝑑𝑊𝑊𝑅𝑅∗
𝑖𝑖,1(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅

𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅∗
𝑖𝑖 (𝑡𝑡) − 𝛾𝛾𝑊𝑊𝑅𝑅𝑊𝑊𝑅𝑅∗

𝑖𝑖,1(𝑡𝑡) + 𝛾𝛾𝑈𝑈𝑊𝑊𝑅𝑅
𝑖𝑖,1(𝑡𝑡)  (40) 

𝑑𝑑𝑊𝑊𝑅𝑅∗
𝑖𝑖,2(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝑊𝑊𝑅𝑅𝑊𝑊𝑅𝑅∗

𝑖𝑖,1(𝑡𝑡) − 𝛾𝛾𝑊𝑊𝑅𝑅𝑊𝑊𝑅𝑅∗
𝑖𝑖,2(𝑡𝑡) + 𝛾𝛾𝑈𝑈𝑊𝑊𝑅𝑅

𝑖𝑖,2(𝑡𝑡) (41) 

𝑑𝑑𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷

𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡) − �𝛾𝛾𝑊𝑊𝐷𝐷 + 𝛾𝛾𝑈𝑈�𝑊𝑊𝐷𝐷

𝑖𝑖 (𝑡𝑡)  (42) 
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𝑑𝑑𝑊𝑊𝐷𝐷∗
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷

𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗
𝑖𝑖 (𝑡𝑡) − 𝛾𝛾𝑊𝑊𝐷𝐷𝑊𝑊𝐷𝐷∗

𝑖𝑖 (𝑡𝑡) + 𝛾𝛾𝑈𝑈𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)  (43) 

𝑑𝑑𝑑𝑑𝑅𝑅𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  
= 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 ��1 − 𝑝𝑝∗(𝑡𝑡)��1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)��1 − 𝑝𝑝𝐻𝐻𝐷𝐷
𝑖𝑖 (𝑡𝑡)�𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) −  �𝛾𝛾𝐻𝐻𝑅𝑅 +

𝛾𝛾𝑈𝑈�𝐻𝐻𝑅𝑅𝑖𝑖 (𝑡𝑡)  
(44) 

𝑑𝑑𝑑𝑑𝑅𝑅∗
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  

= 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷
𝑖𝑖 �𝑝𝑝∗(𝑡𝑡)�1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)��1 − 𝑝𝑝𝐻𝐻𝐷𝐷

𝑖𝑖 (𝑡𝑡)� 𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) + 𝛾𝛾𝑈𝑈𝐻𝐻𝑅𝑅𝑖𝑖 (𝑡𝑡) −
 𝛾𝛾𝐻𝐻𝑅𝑅𝐻𝐻𝑅𝑅∗

𝑖𝑖 (𝑡𝑡)  
(45) 

𝑑𝑑𝑑𝑑𝐷𝐷
𝑖𝑖,1(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 ��1 − 𝑝𝑝∗(𝑡𝑡)��1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)�𝑝𝑝𝐻𝐻𝐷𝐷
𝑖𝑖 (𝑡𝑡)𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) −  �𝛾𝛾𝐻𝐻𝐷𝐷 + 𝛾𝛾𝑈𝑈�𝐻𝐻𝐷𝐷

𝑖𝑖,1(𝑡𝑡)  (46) 

𝑑𝑑𝑑𝑑𝐷𝐷
𝑖𝑖,2(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐻𝐻𝐷𝐷𝐻𝐻𝐷𝐷

𝑖𝑖,1(𝑡𝑡) − �𝛾𝛾𝐻𝐻𝐷𝐷 + 𝛾𝛾𝑈𝑈�𝐻𝐻𝐷𝐷
𝑖𝑖,2(𝑡𝑡)  (47) 

𝑑𝑑𝑑𝑑𝐷𝐷∗
𝑖𝑖,1(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 �𝑝𝑝∗(𝑡𝑡)�1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)�𝑝𝑝𝐻𝐻𝐷𝐷
𝑖𝑖 (𝑡𝑡) 𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) + 𝛾𝛾𝑈𝑈𝐻𝐻𝐷𝐷

𝑖𝑖,1(𝑡𝑡) −  𝛾𝛾𝐻𝐻𝐷𝐷𝐻𝐻𝐷𝐷∗
𝑖𝑖,1(𝑡𝑡)  (48) 

𝑑𝑑𝑑𝑑𝐷𝐷∗
𝑖𝑖,2(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐻𝐻𝐷𝐷𝐻𝐻𝐷𝐷∗

𝑖𝑖,1(𝑡𝑡) − 𝛾𝛾𝐻𝐻𝐷𝐷𝐻𝐻𝐷𝐷∗
𝑖𝑖,2(𝑡𝑡) + 𝛾𝛾𝑈𝑈𝐻𝐻𝐷𝐷

𝑖𝑖,2(𝑡𝑡) (49) 

𝑑𝑑𝑅𝑅𝑖𝑖(𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐴𝐴𝐼𝐼𝐴𝐴𝑖𝑖 (𝑡𝑡)+ �1 − 𝑝𝑝𝐻𝐻𝑖𝑖 �𝛾𝛾𝐶𝐶𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) + 𝛾𝛾𝐻𝐻𝑅𝑅 �𝐻𝐻𝑅𝑅
𝑖𝑖 (𝑡𝑡) + 𝐻𝐻𝑅𝑅∗

𝑖𝑖 (𝑡𝑡)� + 𝛾𝛾𝑊𝑊𝑅𝑅 �𝑊𝑊𝑅𝑅
𝑖𝑖(𝑡𝑡) + 𝑊𝑊𝑅𝑅∗

𝑖𝑖 (𝑡𝑡)� (50) 

𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝐸𝐸𝐸𝐸𝑖𝑖,2(𝑡𝑡) − 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡)  (51) 

𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡)  (52) 

𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = �1 − 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝� 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡)  (53) 

𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝜆𝜆𝑖𝑖(𝑡𝑡)𝑆𝑆𝑖𝑖(𝑡𝑡) − 𝛾𝛾𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡)  (54) 

𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡) − 𝛾𝛾𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡)  (55) 

𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖 (𝑡𝑡)/𝑑𝑑𝑑𝑑  = 𝛾𝛾𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡)  (56) 

 

We used the tau-leap method (33) to create a stochastic, time-discretised version of the model 
described in equations (60-(164), taking four update steps per day. The process was initialised with 
ten asymptomatic infectious individuals aged 15-19 on the epidemic start date 𝑡𝑡0, a parameter we 
estimate. For each time step, the model iterated through the procedure described below. In the 
following, we introduce a small abuse of notation: for transitions involving multiple onward 
compartments (e.g transition from compartment 𝐸𝐸 to compartments 𝐼𝐼𝐴𝐴 or 𝐼𝐼𝐶𝐶), for conciseness, we 
write  

�𝑑𝑑𝐸𝐸,𝐼𝐼𝐴𝐴
𝑖𝑖 , 𝑑𝑑𝐸𝐸,𝐼𝐼𝐶𝐶

𝑖𝑖 �  ~ Multinom �𝐸𝐸𝑖𝑖,2(𝑡𝑡), 𝑞𝑞𝐸𝐸,𝐼𝐼𝐴𝐴
𝑖𝑖 , 𝑞𝑞𝐸𝐸,𝐼𝐼𝐶𝐶

𝑖𝑖   �   

instead of 

�𝑑𝑑𝐸𝐸,𝐼𝐼𝐴𝐴
𝑖𝑖 , 𝑑𝑑𝐸𝐸,𝐼𝐼𝐶𝐶

𝑖𝑖 ,𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖  �  ~ Multinom �𝐸𝐸𝑖𝑖,2(𝑡𝑡), 𝑞𝑞𝐸𝐸,𝐼𝐼𝐴𝐴

𝑖𝑖 , 𝑞𝑞𝐸𝐸,𝐼𝐼𝐶𝐶
𝑖𝑖 , 1 − ∑ 𝑞𝑞𝐸𝐸,𝑥𝑥

𝑖𝑖
𝑥𝑥∈{𝐼𝐼𝐴𝐴,𝐼𝐼𝑐𝑐}  �   

where 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  is a dummy variable counting the number of individuals remaining in compartment 
𝐸𝐸𝑖𝑖,2. 

Using this convention, transition variables are drawn from the following distributions, with 
probabilities defined below: 

 

𝑑𝑑𝑆𝑆,𝐸𝐸
𝑖𝑖   ~ Binom �𝑆𝑆𝑖𝑖(𝑡𝑡), 1 − 𝑒𝑒−𝜆𝜆𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑  �  (57) 
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𝑑𝑑𝐸𝐸,𝐸𝐸
𝑖𝑖   ~ Binom �𝐸𝐸𝑖𝑖,1(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝐸𝐸𝑑𝑑𝑑𝑑�          (58) 

(𝑞𝑞𝐸𝐸,𝐼𝐼𝐴𝐴
𝑖𝑖 , 𝑞𝑞𝐸𝐸,𝐼𝐼𝐶𝐶

𝑖𝑖 )  = �(1 − 𝑝𝑝𝐶𝐶)�1 − 𝑒𝑒−𝛾𝛾𝐸𝐸𝑑𝑑𝑑𝑑�,𝑝𝑝𝐶𝐶�1 − 𝑒𝑒−𝛾𝛾𝐸𝐸𝑑𝑑𝑑𝑑�� (59) 

�𝑑𝑑𝐸𝐸,𝐼𝐼𝐴𝐴
𝑖𝑖 , 𝑑𝑑𝐸𝐸,𝐼𝐼𝐶𝐶

𝑖𝑖 �  ~ Multinom �𝐸𝐸𝑖𝑖,2(𝑡𝑡), 𝑞𝑞𝐸𝐸,𝐼𝐼𝐴𝐴
𝑖𝑖 , 𝑞𝑞𝐸𝐸,𝐼𝐼𝐶𝐶

𝑖𝑖   �   (60) 

𝑑𝑑𝐼𝐼𝐴𝐴,𝑅𝑅
𝑖𝑖   ~ Binom �𝐼𝐼𝐴𝐴𝑖𝑖 (𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝐴𝐴𝑑𝑑𝑑𝑑�  (61) 

𝑞𝑞𝐼𝐼𝐶𝐶,𝐺𝐺𝐷𝐷
𝑖𝑖   = 𝑝𝑝𝐻𝐻𝑖𝑖 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 �1 − 𝑒𝑒−𝛾𝛾𝐶𝐶𝑑𝑑𝑑𝑑� (62) 

𝑞𝑞𝐼𝐼𝐶𝐶,𝑅𝑅
𝑖𝑖   = �1 − 𝑝𝑝𝐻𝐻𝑖𝑖 ��1 − 𝑒𝑒−𝛾𝛾𝐶𝐶𝑑𝑑𝑑𝑑�  (63) 

𝑞𝑞𝐼𝐼𝐶𝐶,𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖   = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 ��1 − 𝑝𝑝∗(𝑡𝑡)� 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)�1 − 𝑒𝑒− 𝛾𝛾𝐶𝐶𝑑𝑑𝑑𝑑�  (64) 

𝑞𝑞𝐼𝐼𝐶𝐶,𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑒𝑒∗
𝑖𝑖   = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 �𝑝𝑝∗(𝑡𝑡) 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)�1 − 𝑒𝑒− 𝛾𝛾𝐶𝐶𝑑𝑑𝑑𝑑�  (65) 

𝑞𝑞𝐼𝐼𝐶𝐶,𝐻𝐻𝑅𝑅
𝑖𝑖   = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 ��1 − 𝑝𝑝∗(𝑡𝑡)� �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)� �1 − 𝑝𝑝𝐻𝐻𝐷𝐷
𝑖𝑖 (𝑡𝑡)� �1 − 𝑒𝑒−𝛾𝛾𝐶𝐶𝑑𝑑𝑑𝑑�  (66) 

𝑞𝑞𝐼𝐼𝐶𝐶,𝐻𝐻𝑅𝑅
∗  

𝑖𝑖   = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷
𝑖𝑖 �𝑝𝑝∗(𝑡𝑡) �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)� �1 − 𝑝𝑝𝐻𝐻𝐷𝐷

𝑖𝑖 (𝑡𝑡)� �1 − 𝑒𝑒−𝛾𝛾𝐶𝐶𝑑𝑑𝑑𝑑�  (67) 

𝑞𝑞𝐼𝐼𝐶𝐶,𝐻𝐻𝐷𝐷
𝑖𝑖   = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 ��1 − 𝑝𝑝∗(𝑡𝑡)� �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)� 𝑝𝑝𝐻𝐻𝐷𝐷
𝑖𝑖 (𝑡𝑡)�1 − 𝑒𝑒−𝛾𝛾𝐶𝐶𝑑𝑑𝑑𝑑�  (68) 

𝑞𝑞𝐼𝐼𝐶𝐶,𝐻𝐻𝐷𝐷∗
𝑖𝑖   = 𝑝𝑝𝐻𝐻𝑖𝑖 �1 − 𝑝𝑝𝐺𝐺𝐷𝐷

𝑖𝑖 �𝑝𝑝∗(𝑡𝑡) �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡)� 𝑝𝑝𝐻𝐻𝐷𝐷
𝑖𝑖 (𝑡𝑡)�1 − 𝑒𝑒−𝛾𝛾𝐶𝐶𝑑𝑑𝑑𝑑�  (69) 

�𝑑𝑑𝐼𝐼𝐶𝐶,𝐺𝐺𝐷𝐷
𝑖𝑖 , … ,𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝐷𝐷∗

𝑖𝑖 �    ~ Multinom�𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡), 𝑞𝑞𝐼𝐼𝐶𝐶,𝐺𝐺𝐷𝐷
𝑖𝑖 , … , 𝑞𝑞𝐼𝐼𝐶𝐶,𝐻𝐻𝐷𝐷∗

𝑖𝑖  �  (70) 

𝑑𝑑𝐺𝐺𝐷𝐷,𝐺𝐺𝐷𝐷
𝑖𝑖   ~ Binom �𝐺𝐺𝐷𝐷

𝑖𝑖,1(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝐺𝐺𝐷𝐷𝑑𝑑𝑑𝑑�  (71) 

𝑑𝑑𝐺𝐺𝐷𝐷,𝐷𝐷
𝑖𝑖   ~ Binom �𝐺𝐺𝐷𝐷

𝑖𝑖,2(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝐺𝐺𝐷𝐷𝑑𝑑𝑑𝑑�  (72) 

𝑞𝑞𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅
𝑖𝑖  = �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 (𝑡𝑡)� �1 − 𝑝𝑝𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)� �1 − 𝑒𝑒−𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑�𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑 (73) 

𝑞𝑞𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅∗
𝑖𝑖  = �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 (𝑡𝑡)� �1 − 𝑝𝑝𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)� �1 − 𝑒𝑒−𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑��1 − 𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑� (74) 

𝑞𝑞𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷
𝑖𝑖  = �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 (𝑡𝑡)� 𝑝𝑝𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡)�1 − 𝑒𝑒−𝛾𝛾𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑�𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑 (75) 

𝑞𝑞𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷∗
𝑖𝑖  = �1 − 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
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𝑖𝑖,1,2  =  �1 − 𝑒𝑒−𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑑𝑑𝑑𝑑��1 − 𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑� (106) 

�𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
𝑖𝑖 ,𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗

𝑖𝑖,1,1 ,𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼
𝑖𝑖,1,2   ~ Multinom �𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖,1(𝑡𝑡), 𝑞𝑞𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
𝑖𝑖 , 𝑞𝑞𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗

𝑖𝑖,1,1 ,𝑞𝑞𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
𝑖𝑖,1,2 � (107) 

𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗ ,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
𝑖𝑖   ~ Binom �𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗

𝑖𝑖,1(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝐼𝐼𝐶𝐶𝐶𝐶𝐷𝐷𝑑𝑑𝑑𝑑�  (108) 

�𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐷𝐷
𝑖𝑖 ,𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗

𝑖𝑖,2,2 � ~ Multinom �𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
𝑖𝑖,2(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑑𝑑𝑑𝑑 , 𝑒𝑒−𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑑𝑑𝑑𝑑�1 − 𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑��  (109) 

𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗ ,𝐷𝐷
𝑖𝑖   ~ Binom �𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗

𝑖𝑖,2(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑑𝑑𝑑𝑑�  (110) 
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𝑞𝑞𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅
𝑖𝑖  =  �1 − 𝑒𝑒−𝛾𝛾𝑊𝑊𝑅𝑅𝑑𝑑𝑑𝑑�𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑 (111) 

𝑞𝑞𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗
𝑖𝑖,1,1  =  𝑒𝑒−𝛾𝛾𝑊𝑊𝑅𝑅𝑑𝑑𝑑𝑑�1 − 𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑� (112) 

𝑞𝑞𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗
𝑖𝑖,1,2  =  �1 − 𝑒𝑒−𝛾𝛾𝑊𝑊𝑅𝑅𝑑𝑑𝑑𝑑��1 − 𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑� (113) 

�𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅
𝑖𝑖 ,𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗

𝑖𝑖,1,1 ,𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗
𝑖𝑖,1,2 �  ~ Multinom �𝑊𝑊𝑅𝑅

𝑖𝑖,1(𝑡𝑡), 𝑞𝑞𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅
𝑖𝑖 ,𝑞𝑞𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗

𝑖𝑖,1,1 ,𝑞𝑞𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗
𝑖𝑖,1,2 �  (114) 

𝑑𝑑𝑊𝑊𝑅𝑅∗ ,𝑊𝑊𝑅𝑅∗
𝑖𝑖   ~ Binom �𝑊𝑊𝑅𝑅∗

𝑖𝑖,1(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝑊𝑊𝑅𝑅𝑑𝑑𝑑𝑑�  (115) 

�𝑑𝑑𝑊𝑊𝑅𝑅,𝑅𝑅
𝑖𝑖 ,𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗

𝑖𝑖,2,2 � ~ Multinom �𝑊𝑊𝑅𝑅
𝑖𝑖,2(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝑊𝑊𝑅𝑅𝑑𝑑𝑑𝑑 , 𝑒𝑒−𝛾𝛾𝑊𝑊𝑅𝑅𝑑𝑑𝑑𝑑�1 − 𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑��  (116) 

𝑑𝑑𝑊𝑊𝑅𝑅∗ ,𝑅𝑅
𝑖𝑖   ~ Binom �𝑊𝑊𝑅𝑅∗

𝑖𝑖,2(𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝑊𝑊𝑅𝑅𝑑𝑑𝑑𝑑�  (117) 

�𝑑𝑑𝑊𝑊𝐷𝐷,𝐷𝐷
𝑖𝑖 ,𝑑𝑑𝑊𝑊𝐷𝐷,𝑊𝑊𝐷𝐷∗

𝑖𝑖 �  ~ Multinom �𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝑊𝑊𝐷𝐷𝑑𝑑𝑑𝑑 , 𝑒𝑒−𝛾𝛾𝑊𝑊𝐷𝐷𝑑𝑑𝑑𝑑�1 − 𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑��  (118) 

𝑑𝑑𝑊𝑊𝐷𝐷∗ ,𝐷𝐷
𝑖𝑖   ~ Binom �𝑊𝑊𝐷𝐷∗

𝑖𝑖 (𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝑊𝑊𝐷𝐷𝑑𝑑𝑑𝑑�  (119) 

�𝑑𝑑𝑊𝑊𝐷𝐷,𝐷𝐷
𝑖𝑖 ,𝑑𝑑𝑊𝑊𝐷𝐷,𝑊𝑊𝐷𝐷∗

𝑖𝑖 � ~ Multinom �𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝑊𝑊𝐷𝐷𝑑𝑑𝑑𝑑 , 𝑒𝑒−𝛾𝛾𝑊𝑊𝐷𝐷𝑑𝑑𝑑𝑑�1 − 𝑒𝑒−𝛾𝛾𝑈𝑈𝑑𝑑𝑑𝑑�� (120) 

𝑞𝑞𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖  =  𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝�1 − 𝑒𝑒−𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑� (121) 

𝑞𝑞𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖  =  �1 − 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝� �1 − 𝑒𝑒−𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑� (122) 

�𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 ,𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖  ~ Multinom �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡), 𝑞𝑞𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 ,𝑞𝑞𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖 � (123) 

𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖   ~ Binom �𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑�  (124) 

𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖   ~ Binom �𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡), 1 − 𝑒𝑒−𝛾𝛾𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑�  (125) 

   

 

Model compartments were then updated as follows: 

𝑆𝑆𝑖𝑖(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝑆𝑆𝑖𝑖(𝑡𝑡) − 𝑑𝑑𝑆𝑆,𝐸𝐸
𝑖𝑖   (126) 

𝐸𝐸𝑖𝑖,1(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐸𝐸𝑖𝑖,1(𝑡𝑡) + 𝑑𝑑𝑆𝑆,𝐸𝐸
𝑖𝑖 − 𝑑𝑑𝐸𝐸,𝐸𝐸

𝑖𝑖   (127) 

𝐸𝐸𝑖𝑖,2(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐸𝐸𝑖𝑖,2(𝑡𝑡) + 𝑑𝑑𝐸𝐸,𝐸𝐸
𝑖𝑖 − 𝑑𝑑𝐸𝐸,𝐼𝐼𝐴𝐴

𝑖𝑖 − 𝑑𝑑𝐸𝐸,𝐼𝐼𝐶𝐶
𝑖𝑖   (128) 

𝐼𝐼𝐴𝐴𝑖𝑖 (𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔ 𝐼𝐼𝐴𝐴𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐸𝐸,𝐼𝐼𝐴𝐴
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐴𝐴,𝑅𝑅

𝑖𝑖    (129) 

𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡 + 𝑑𝑑𝑑𝑑)  
≔ 𝐼𝐼𝐶𝐶𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐸𝐸,𝐼𝐼𝐶𝐶

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐶𝐶,𝐺𝐺𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐶𝐶,𝑅𝑅

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐶𝐶,𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐶𝐶,𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑒𝑒∗

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝑅𝑅
𝑖𝑖 −

𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝑅𝑅
∗  

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝐷𝐷∗

𝑖𝑖     

(130) 

𝐺𝐺𝐷𝐷
𝑖𝑖,1(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐺𝐺𝐷𝐷

𝑖𝑖,1(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐶𝐶,𝐺𝐺𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐺𝐺𝐷𝐷,𝐺𝐺𝐷𝐷

𝑖𝑖   (131) 

𝐺𝐺𝐷𝐷
𝑖𝑖,2(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐺𝐺𝐷𝐷

𝑖𝑖,2(𝑡𝑡) + 𝑑𝑑𝐺𝐺𝐷𝐷,𝐺𝐺𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐺𝐺𝐷𝐷,𝐷𝐷

𝑖𝑖   (132) 
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𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 (𝑡𝑡 +
𝑑𝑑𝑑𝑑)  

≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐶𝐶,𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷
𝑖𝑖 −

𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝∗

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅∗
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷∗

𝑖𝑖 −

𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗
𝑖𝑖   

(133) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑒𝑒∗
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  

≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑒𝑒∗
𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐶𝐶,𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑒𝑒∗

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷∗
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝∗ ,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅∗

𝑖𝑖 −

𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝∗ ,𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗
𝑖𝑖   

(134) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  

≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅
𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅 ,𝑊𝑊𝑅𝑅
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅 ,𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅∗

𝑖𝑖 −

𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅 ,𝑊𝑊𝑅𝑅∗
𝑖𝑖   

(135) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅∗
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  

≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅∗
𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝∗ ,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅∗

𝑖𝑖 + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅 ,𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅∗
𝑖𝑖 +𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅∗

𝑖𝑖 −

𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅∗
,𝑊𝑊𝑅𝑅∗

𝑖𝑖   

(136) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  

≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷 ,𝑊𝑊𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷 ,𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗

𝑖𝑖 −

𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷 ,𝑊𝑊𝐷𝐷∗
𝑖𝑖   

(137) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  

≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗
𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝∗ ,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷∗

𝑖𝑖 + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷 ,𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗
𝑖𝑖 +𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷∗

𝑖𝑖 −

𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗
,𝑊𝑊𝐷𝐷∗

𝑖𝑖   

(138) 

𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷
𝑖𝑖,1(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔ 𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷

𝑖𝑖,1(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
𝑖𝑖,1,1 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗

𝑖𝑖,1,2  (139) 

𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷
𝑖𝑖,2(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔ 𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷

𝑖𝑖,2(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐷𝐷

𝑖𝑖 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
𝑖𝑖,2,2  (140) 

𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗
𝑖𝑖,1(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  

≔ 𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗
𝑖𝑖,1(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝∗ ,𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗

𝑖𝑖 + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
𝑖𝑖,1,1 + 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗

𝑖𝑖

− 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗ ,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
𝑖𝑖  

(141) 

𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗
𝑖𝑖,2(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔ 𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗

𝑖𝑖,2(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗ ,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
𝑖𝑖 + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗

𝑖𝑖,1,2 + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
𝑖𝑖,2,2 − 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗ ,𝐷𝐷

𝑖𝑖  (142) 

𝑊𝑊𝑅𝑅
𝑖𝑖,1(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔𝑊𝑊𝑅𝑅

𝑖𝑖,1(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅 ,𝑊𝑊𝑅𝑅
𝑖𝑖 − 𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅

𝑖𝑖 −  𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗
𝑖𝑖,1,1  − 𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗

𝑖𝑖,1,2  (143) 

𝑊𝑊𝑅𝑅
𝑖𝑖,2(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔𝑊𝑊𝑅𝑅

𝑖𝑖,2(𝑡𝑡) + 𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅
𝑖𝑖 − 𝑑𝑑𝑊𝑊𝑅𝑅,𝑅𝑅

𝑖𝑖 −  𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗
𝑖𝑖,2,2   (144) 

𝑊𝑊𝑅𝑅∗
𝑖𝑖,1(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔𝑊𝑊𝑅𝑅∗

𝑖𝑖,1(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅∗
,𝑊𝑊𝑅𝑅∗

𝑖𝑖 +  𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗
𝑖𝑖,1,1 +𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅 ,𝑊𝑊𝑅𝑅∗

𝑖𝑖 − 𝑑𝑑𝑊𝑊𝑅𝑅∗ ,𝑊𝑊𝑅𝑅∗
𝑖𝑖  (145) 

𝑊𝑊𝑅𝑅∗
𝑖𝑖,2(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔𝑊𝑊𝑅𝑅∗

𝑖𝑖,2(𝑡𝑡) + 𝑑𝑑𝑊𝑊𝑅𝑅∗ ,𝑊𝑊𝑅𝑅∗
𝑖𝑖 + 𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗

𝑖𝑖,2,2  +  𝑑𝑑𝑊𝑊𝑅𝑅,𝑊𝑊𝑅𝑅∗
𝑖𝑖,1,2 −  𝑑𝑑𝑊𝑊𝑅𝑅∗ ,𝑅𝑅

𝑖𝑖  (146) 

𝑊𝑊𝐷𝐷
𝑖𝑖 (𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔𝑊𝑊𝐷𝐷

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷 ,𝑊𝑊𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝑊𝑊𝐷𝐷,𝐷𝐷

𝑖𝑖 −  𝑑𝑑𝑊𝑊𝐷𝐷,𝑊𝑊𝐷𝐷∗
𝑖𝑖   (147) 

𝑊𝑊𝐷𝐷∗
𝑖𝑖 (𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔𝑊𝑊𝐷𝐷∗

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗
,𝑊𝑊𝐷𝐷∗

𝑖𝑖 + 𝑑𝑑𝑊𝑊𝐷𝐷,𝑊𝑊𝐷𝐷∗
𝑖𝑖  +𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷 ,𝑊𝑊𝐷𝐷∗

𝑖𝑖 −  𝑑𝑑𝑊𝑊𝐷𝐷∗ ,𝐷𝐷
𝑖𝑖  (148) 

𝐻𝐻𝐷𝐷
𝑖𝑖,1(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐻𝐻𝐷𝐷

𝑖𝑖,1(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐻𝐻𝐷𝐷,𝐻𝐻𝐷𝐷

𝑖𝑖 − 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷
∗

𝑖𝑖,1,1 − 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷
∗

𝑖𝑖,1,2   (149) 

𝐻𝐻𝐷𝐷
𝑖𝑖,2(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐻𝐻𝐷𝐷

𝑖𝑖,2(𝑡𝑡) + 𝑑𝑑𝐻𝐻𝐷𝐷,𝐻𝐻𝐷𝐷
𝑖𝑖 − 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐷𝐷

𝑖𝑖 − 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷
∗

𝑖𝑖,2,2   (150) 

𝐻𝐻𝐷𝐷∗
𝑖𝑖,1(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐻𝐻𝐷𝐷∗

𝑖𝑖,1(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝐷𝐷∗
𝑖𝑖 + 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷

∗
𝑖𝑖,1,1 − 𝑑𝑑𝐻𝐻𝐷𝐷∗ ,𝐻𝐻𝐷𝐷∗

𝑖𝑖   (151) 

𝐻𝐻𝐷𝐷∗
𝑖𝑖,2(𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐻𝐻𝐷𝐷∗

𝑖𝑖,2(𝑡𝑡) + 𝑑𝑑𝐻𝐻𝐷𝐷∗ ,𝐻𝐻𝐷𝐷∗
𝑖𝑖 + 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷

∗
𝑖𝑖,2,2 + 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷

∗
𝑖𝑖,1,2 − 𝑑𝑑𝐻𝐻𝐷𝐷∗ ,𝐷𝐷

𝑖𝑖   (152) 

𝐻𝐻𝑅𝑅𝑖𝑖 (𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐻𝐻𝑅𝑅𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝑅𝑅
𝑖𝑖 − 𝑑𝑑𝐻𝐻𝑅𝑅,𝑅𝑅

𝑖𝑖 − 𝑑𝑑𝐻𝐻𝑅𝑅 ,𝐻𝐻𝑅𝑅
∗

𝑖𝑖   (153) 
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𝐻𝐻𝑅𝑅∗
𝑖𝑖 (𝑡𝑡 + 𝑑𝑑𝑑𝑑)  ≔  𝐻𝐻𝑅𝑅∗

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐶𝐶,𝐻𝐻𝑅𝑅∗
𝑖𝑖 + 𝑑𝑑𝐻𝐻𝑅𝑅 ,𝐻𝐻𝑅𝑅

∗
𝑖𝑖 − 𝑑𝑑𝐻𝐻𝑅𝑅∗ ,𝑅𝑅

𝑖𝑖   (154) 

𝑅𝑅𝑖𝑖(𝑡𝑡 + 𝑑𝑑𝑑𝑑) ≔  𝑅𝑅𝑖𝑖(𝑡𝑡) + 𝑑𝑑𝐼𝐼𝐴𝐴,𝑅𝑅
𝑖𝑖 + 𝑑𝑑𝐼𝐼𝐶𝐶,𝑅𝑅

𝑖𝑖 + 𝑑𝑑𝐻𝐻𝑅𝑅,𝑅𝑅
𝑖𝑖 + 𝑑𝑑𝐻𝐻𝑅𝑅∗ ,𝑅𝑅

𝑖𝑖 + 𝑑𝑑𝑊𝑊𝑅𝑅,𝑅𝑅
𝑖𝑖 + 𝑑𝑑𝑊𝑊𝑅𝑅∗ ,𝑅𝑅

𝑖𝑖   (155) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  
≔ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝐸𝐸,𝐼𝐼𝐴𝐴
𝑖𝑖 + 𝑑𝑑𝐸𝐸,𝐼𝐼𝐶𝐶

𝑖𝑖 − 𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 − 𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖   
(156) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  
≔ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖   

(157) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  
≔ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖  

(158) 

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  
≔ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝑆𝑆,𝐸𝐸
𝑖𝑖 − 𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖  
(159) 

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  
≔ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 − 𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖   
(160) 

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖 (𝑡𝑡 +

𝑑𝑑𝑑𝑑)  
≔ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖 (𝑡𝑡) + 𝑑𝑑𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖  

(161) 

 

1.7 Observation process 

To describe the epidemic in each NHS region, we fitted our model to time series data on hospital 
admissions, hospital ward occupancy (both in general beds and in ICU beds), deaths in hospitals, 
deaths in care homes, population serological surveys and PCR testing data (section 1.1 and Table S 1).  

1.7.1 Notation for distributions used in this section  

If 𝑌𝑌 ∼ NegBinom(𝑚𝑚, 𝜅𝜅), then 𝑌𝑌 follows a negative binomial distribution with mean 𝑚𝑚 and shape 𝜅𝜅, 
such that 

 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦) =  
Γ(𝜅𝜅 + 𝑦𝑦)
𝑦𝑦! Γ(𝜅𝜅) �

𝜅𝜅
𝜅𝜅 + 𝑚𝑚

�
𝜅𝜅
�

𝑚𝑚
𝜅𝜅 + 𝑚𝑚

�
𝑦𝑦

 (162) 

 

where Γ(𝑥𝑥) is the gamma function. The variance of 𝑌𝑌 is 𝑚𝑚 + 𝑚𝑚2

𝜅𝜅
. 

If 𝑍𝑍 ∼ BetaBinom(𝑛𝑛,𝜔𝜔,𝜌𝜌), then 𝑍𝑍 follows a beta-binomial distribution with size 𝑛𝑛, mean probability 
𝜔𝜔 and overdispersion parameter 𝜌𝜌, such that 

 

𝑃𝑃(𝑍𝑍 = 𝑧𝑧) =  �
𝑛𝑛
𝑧𝑧
�

B(𝑧𝑧 + 𝑎𝑎,𝑛𝑛 − 𝑧𝑧 + 𝑏𝑏)
B(𝑎𝑎, 𝑏𝑏)  (163) 

 

where 𝑎𝑎 = 𝜔𝜔 �1−𝜌𝜌
𝜌𝜌
�, 𝑏𝑏 = (1 − 𝜔𝜔) �1−𝜌𝜌

𝜌𝜌
� and B(𝑎𝑎, 𝑏𝑏) is the beta function. The mean of 𝑍𝑍 is 𝑛𝑛𝑛𝑛 and the 

variance is 𝑛𝑛𝑛𝑛(1 −𝜔𝜔)[1 + (𝑛𝑛 − 1)𝜌𝜌]. 
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1.7.2 Hospital admissions and new diagnoses in hospital  

We represented the daily number of confirmed COVID-19 hospital admissions and new diagnoses for 
existing hospitalised cases, 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), as the observed realisations of an underlying hidden Markov 
process, 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), defined as: 

 

𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)  

≔ ∑ �∑ 𝑑𝑑𝐼𝐼𝐶𝐶,𝑗𝑗
𝑖𝑖 +𝑗𝑗∈�𝐻𝐻𝑅𝑅

∗ ,𝐻𝐻𝐷𝐷
∗ ,𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝∗ �𝑖𝑖

 ∑ 𝑑𝑑𝑗𝑗,𝑗𝑗∗
𝑖𝑖

𝑗𝑗∈�𝐻𝐻𝑅𝑅
 ,𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 ,𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅  ,𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷 ,𝑊𝑊𝐷𝐷� ) +𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷∗

 
𝑖𝑖,1,1 + 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷∗

 
𝑖𝑖,1,2 + 𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐻𝐻𝐷𝐷∗

 
𝑖𝑖,2,2 +

𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷 ,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
 

𝑖𝑖,1,1 + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷 ,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
 

𝑖𝑖,1,2 + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷 ,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗
 

𝑖𝑖,2,2 + 𝑑𝑑𝑊𝑊𝑅𝑅
 ,𝑊𝑊𝑅𝑅∗

 
𝑖𝑖,1,1 + 𝑑𝑑𝑊𝑊𝑅𝑅

 ,𝑊𝑊𝑅𝑅∗
 

𝑖𝑖,1,2 +

𝑑𝑑𝑊𝑊𝑅𝑅
 ,𝑊𝑊𝑅𝑅∗

 
𝑖𝑖,2,2 +𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 ,𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑅𝑅∗

𝑖𝑖 +𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 ,𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗
𝑖𝑖 +𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 ,𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗

𝑖𝑖 +𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝐷𝐷∗
,𝑊𝑊𝐷𝐷∗

𝑖𝑖 +𝑑𝑑𝐼𝐼𝐼𝐼𝑖𝑖   

(164) 

 

Which was related to the data via a reporting distribution: 

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)  ∼ NegBinom(𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), 𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎)  (165) 

 

We allow for overdispersion in the observation process to account for noise in the underlying data 
streams, for example due to day-of-week effects on data collection. We adopt 𝜅𝜅 = 2 for all NHSE 
data streams, so that they contribute equal weight to the overall likelihood. 
 

1.7.3 Hospital bed occupancy by confirmed COVID-19 cases 

The model predicted general hospital bed occupancy by confirmed COVID-19 cases, 𝑋𝑋ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) as: 

𝑋𝑋ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)  ≔  ∑ �𝐼𝐼𝐻𝐻𝑅𝑅∗
𝑖𝑖 (𝑡𝑡) + 𝐼𝐼𝐻𝐻𝐷𝐷∗

𝑖𝑖 (𝑡𝑡) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝∗
𝑖𝑖 (𝑡𝑡) + 𝐼𝐼𝑊𝑊𝐷𝐷

∗
𝑖𝑖 (𝑡𝑡) + 𝐼𝐼𝑊𝑊𝑅𝑅

∗
𝑖𝑖 (𝑡𝑡)�𝑖𝑖    (166) 

Which was related to the observed daily general bed-occupancy via a reporting distribution: 

𝑌𝑌ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)  ∼ NegBinom�𝑋𝑋ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡), 𝜅𝜅ℎ𝑜𝑜𝑜𝑜𝑜𝑜�  (167) 

with 𝜅𝜅ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 2 as above. 

 

Similarly, the model predicted ICU bed occupancy by confirmed COVID-19 cases, 𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) as: 

𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡)  ≔  ∑ �𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅∗
𝑖𝑖 (𝑡𝑡) + 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷∗

𝑖𝑖 (𝑡𝑡) + 𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷∗
𝑖𝑖 (𝑡𝑡)�𝑖𝑖    (168) 

Which was related to the observed daily ICU bed-occupancy via a reporting distribution: 

𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡)  ∼ NegBinom(𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡), 𝜅𝜅𝐼𝐼𝐼𝐼𝐼𝐼)  (169) 

 

with 𝜅𝜅𝐼𝐼𝐼𝐼𝐼𝐼 = 2. 
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1.7.4 Hospital and care homes COVID-19 deaths 

The reported number of daily COVID-19 deaths in hospitals, 𝑌𝑌ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝐷𝐷(𝑡𝑡) was considered as the 
observed realisation of an underlying hidden Markov process, 𝑋𝑋ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝐷𝐷(𝑡𝑡), defined as: 

𝑋𝑋ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝐷𝐷(𝑡𝑡)  ≔  ∑ �𝑑𝑑𝐻𝐻𝐷𝐷 ,𝐷𝐷
𝑖𝑖 + 𝑑𝑑𝐻𝐻𝐷𝐷∗ ,𝐷𝐷

𝑖𝑖 + 𝑑𝑑𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷 ,𝐷𝐷
𝑖𝑖 + 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷∗ ,𝐷𝐷

𝑖𝑖 +𝑑𝑑𝑊𝑊𝐷𝐷
 ,𝐷𝐷

𝑖𝑖 + 𝑑𝑑𝑊𝑊𝐷𝐷
∗ ,𝐷𝐷

𝑖𝑖 �𝑖𝑖    (170) 

 

Which was related to the data via a reporting distribution: 

𝑌𝑌ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝐷𝐷(𝑡𝑡)  ∼ NegBinom �𝑋𝑋ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝐷𝐷(𝑡𝑡), 𝜅𝜅ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝐷𝐷�  (171) 

with 𝜅𝜅ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝐷𝐷 = 2. 

Similarly, we represented the reported number of daily COVID-19 deaths in care homes, 𝑌𝑌𝐺𝐺𝐷𝐷(𝑡𝑡), as 
the observed realisations of an underlying hidden Markov process, 𝑋𝑋𝐺𝐺𝐷𝐷(𝑡𝑡), defined as: 

𝑋𝑋𝐺𝐺𝐷𝐷(𝑡𝑡)  ≔  𝑑𝑑𝐺𝐺𝐷𝐷,𝐷𝐷
𝐶𝐶𝐶𝐶𝐶𝐶    (172) 

Which was related to the data via a reporting distribution: 

𝑌𝑌𝐺𝐺𝐷𝐷(𝑡𝑡)  ∼ NegBinom �𝑋𝑋𝐺𝐺𝐷𝐷(𝑡𝑡), 𝜅𝜅𝐺𝐺𝐷𝐷�  (173) 

with 𝜅𝜅𝐺𝐺𝐷𝐷 = 2. 

 

1.7.5 Serosurveys 

We model serological testing of all individuals aged 15-65, and define the resulting number of 
seropositive and seronegative individuals (were all individuals aged 15-65 to be tested), as:  

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  ≔ ∑ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡)[60,65)

𝑖𝑖=[15,20)   (174) 

 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)  ≔ �∑ 𝑁𝑁𝑖𝑖[60,65)
𝑖𝑖=[15,20) � − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  (175) 

We compared the observed number of seropositive results, 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡), with that predicted by our 
model, allowing for i) the sample size of each serological survey, 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) and ii) imperfect 
sensitivity (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and specificity (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) of the serological assay: 

𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  ∼ Binom �𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡),𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)�  (176) 

Where: 

𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  : =
𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  + �1 − 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  � 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  + 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)
 

(177) 
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1.7.6 PCR testing 

As described in the data section (1.1), we fitted the model to PCR testing data from two separate 
sources: 

• pillar 2: the government testing programme, which recommends that individuals with COVID-
19 symptoms are tested (34),  

• the REACT-1 study, which aims to quantify the prevalence of SARS-CoV-2 in a random sample 
of the England population on an ongoing basis (35).  

 

We only use Pillar 2 PCR test results for individuals aged 25 and over (we assume this includes all care 
home workers and residents). We assume that individuals who get tested through Pillar 2 PCR testing 
are either newly symptomatic SARS-CoV-2 cases (who will test positive): 

𝑋𝑋𝑃𝑃2𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  ≔� 𝑑𝑑𝐸𝐸,𝐼𝐼𝐶𝐶
𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶

𝑖𝑖=[25,30)
  

(178) 

 

or non-SARS-CoV-2 cases who have symptoms consistent with COVID-19 (who will test negative): 

𝑋𝑋𝑃𝑃2𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)  ≔  𝑝𝑝𝑁𝑁𝑁𝑁 ��∑ 𝑁𝑁𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶
𝑖𝑖=[25,30) � − 𝑋𝑋𝑃𝑃2𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)�  (179) 

 

where 𝑝𝑝𝑁𝑁𝑁𝑁  is the probability of non SARS-CoV-2 cases having symptoms consistent with COVID-19 
leading them to seek a PCR test.  

 

We compared the observed number of positive PCR tests, 𝑌𝑌𝑃𝑃2𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) with that predicted by our model, 
accounting for the number of PCR tests conducted each day under pillar 2, 𝑌𝑌𝑃𝑃2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡), by calculating 
the probability of a positive PCR result (assuming perfect sensitivity and specificity of the PCR test): 

𝜔𝜔𝑃𝑃2𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) ∶= �𝑋𝑋𝑃𝑃2𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)� / �𝑋𝑋𝑃𝑃2𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  + 𝑋𝑋𝑃𝑃2𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)� (180) 

 

People may seek PCR tests for many reasons and thus the pillar 2 data are subject to competing biases. 
We therefore allowed for an over-dispersion parameter 𝜌𝜌𝑃𝑃2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, which we fitted separately for each 
region in the modelling framework: 

𝑌𝑌𝑃𝑃2𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  ∼ BetaBinom �𝑌𝑌𝑃𝑃2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡),𝜔𝜔𝑃𝑃2𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡), 𝜌𝜌𝑃𝑃2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�  (181) 
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We incorporated the REACT-1 PCR testing data into the likelihood analogously to the serology data, 
by considering the model-predicted number of PCR-positives 𝑋𝑋𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) and PCR-negatives 𝑋𝑋𝑅𝑅1𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡), 
were all individuals aged over five and not resident in a care home to be tested:  

𝑋𝑋𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  ≔  ∑ 𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 (𝑡𝑡)𝑖𝑖=[5,10),…,[80+),𝐶𝐶𝐶𝐶𝐶𝐶   (182) 

𝑋𝑋𝑅𝑅1𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)  ≔  ∑ 𝑁𝑁𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)𝑖𝑖=[5,10),…,[80+),𝐶𝐶𝐶𝐶𝐶𝐶   (183) 

 

We compared the daily number of positive results observed in REACT-1, 𝑌𝑌𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡), given the number 
of people tested on that day, 𝑌𝑌𝑅𝑅1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡), to our model predictions, by calculating the probability of a 
positive result, assuming perfect sensitivity and specificity of the REACT-1 assay: 

𝜔𝜔𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  : = �𝑋𝑋𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) � / �𝑋𝑋𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  + 𝑋𝑋𝑅𝑅1𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)� (184) 

 

𝑌𝑌𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)  ∼ Binom �𝑌𝑌𝑅𝑅1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡),𝜔𝜔𝑅𝑅1𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)�  (185) 

 

The overall likelihood function was then calculated as the product of the likelihoods of the individual 
observations. 

 

1.8 Bayesian inference and model fitting 

A closed-form expression of the likelihood of the observed data given the model and its parameters 
was not analytically tractable, so we used particle filtering methods to obtain an unbiased estimate of 
the likelihood which can be efficiently sampled from (36). Where appropriate, we used estimates from 
the literature to set model parameters at fixed values. We limited the parameters being inferred to 
just those with particular epidemiological interest, or with large uncertainty in existing literature. 

The model was fitted independently to each NHS region. For each NHS region, we aimed to infer the 
values of 26 model parameters:  

• the local epidemic start-date, 𝑡𝑡0;  

• thirteen transmission rates at different time points 𝛽𝛽1, … ,𝛽𝛽12; 

• three parameters governing transmission to and within care homes 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶,𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 , 𝜖𝜖; 

• the probability of symptomatic individuals developing serious disease requiring 
hospitalisation, 𝑝𝑝𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, for the group with the largest probability; 

• the probability of a care home resident dying in a care home if they have severe 
disease requiring hospitalisation,𝑝𝑝𝐺𝐺𝐷𝐷

𝐶𝐶𝐶𝐶𝐶𝐶; 

• the probability, at the start of the pandemic, of a patient being admitted to ICU after 
hospitalisation, 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚, for the group with the largest probability; 
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• the probabilities, at the start of the pandemic, of dying in a hospital general ward, 
𝑝𝑝𝐻𝐻𝐷𝐷
𝑚𝑚𝑚𝑚𝑚𝑚 , in the ICU, 𝑝𝑝𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷

𝑚𝑚𝑚𝑚𝑚𝑚 , and in a stepdown ward following ICU, 𝑝𝑝𝑊𝑊𝐷𝐷
𝑚𝑚𝑚𝑚𝑚𝑚, for the groups 

with the largest probability; 

• the multiplier for hospital mortality after improvement in care, 𝜇𝜇𝐻𝐻; 

• the multiplier for probability of admission to ICU after improvement in care, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼; 

• the daily proportion 𝑝𝑝𝑁𝑁𝑁𝑁 , of the population seeking to get tested for an infection of 
SARS-Cov-2 following COVID-19 like symptoms and the overdispersion of the 
corresponding observation distribution 𝜌𝜌𝑃𝑃2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 .  

 

We used particle Monte Carlo Markov Chain (pMCMC) methods (37), implementing a particle 
marginal Metropolis-Hastings algorithm with a bootstrap particle filter (38) with 96 particles (for 
sufficient variance in likelihood and a convenient multiple of number of available CPU cores for 
efficiency), to obtain a sample from the posterior distribution of the model parameters given the 
observed data. If the expected values of count distributions are zero when observed values are non-
zero, this results in particles of zero weight, which can lead to the particle filter estimating the marginal 
likelihood to be 0. Therefore, to get a small but non-zero weight for each particle at every observation, 
within our particle filter likelihood we add a small amount of noise (exponentially distributed with 
mean 10−6) to count values from the model. 
 
Within our particle filter we add small amounts of exponentially-distributed noise (with mean 10−6) 
to model outputs prior to calculating likelihood weights to avoid particles of zero weight, instead 
resulting in small but non-zero weights. 
 
We implemented our model and parameter inference in an R package, sircovid (39), available at 
https://mrc-ide.github.io/sircovid, which uses two further R packages, dust to run the model in 
efficient compiled code and mcstate to implement the pMCMC sampler using Metropolis-Hastings 
sampling (40). 

At each iteration, the sampler proposes an update to the joint distribution of parameters. These 
proposals are generated from multivariate Gaussian densities centred on the current parameter 
values, and with a covariance structure chosen to facilitate efficient mixing of the Markov chain. We 
specified reflecting boundaries for the proposal kernel to ensure that the proposed parameters are 
both epidemiologically and mathematically plausible and retain symmetry in the proposals. 

For each regional fit, eight parallel chains of the pMCMC were run for 11,000 iterations, with the first 
1,000 discarded as burn-in, and a 1/80 thinning. We assessed convergence visually. 

  

https://mrc-ide.github.io/sircovid
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1.9 Prior distributions and parameter calibration 

1.9.1 Risk of hospital admission  

In our Bayesian inference framework, we estimate 𝑝𝑝𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, the probability of hospital admission for 
symptomatic cases in the group (across all ages and CHW and CHR) with the largest probability of 
hospital admission. However, we fix the relative probability of hospital admission for the other age 
groups, 𝜓𝜓𝐻𝐻𝑖𝑖 , defined so that 𝑝𝑝𝐻𝐻𝑖𝑖 =  𝑝𝑝𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚  𝜓𝜓𝐻𝐻𝑖𝑖 , with 𝜓𝜓𝐻𝐻𝑖𝑖 = 1 in the group with largest probability of 
hospital admission. 

In this section we explain how the values of 𝜓𝜓𝐻𝐻𝑖𝑖  were chosen. We used two sources of information, an 
individual-level and an aggregated dataset. On the one hand, the COVID-19 Hospitalisation in England 
Surveillance System (CHESS) is a daily, confidential line list containing highly detailed information on 
patients admitted to hospital with confirmed COVID-19 (see following section 1.9.2 for further details). 
On the other hand, the Government’s Coronavirus Dashboard is an aggregated, publicly available 
situation report updated daily. Amongst other data, it provides updates on the number of daily 
admissions and hospital occupancy by devolved nation and, for England, by NHS region. We found the 
demography of hospitalisation in CHESS to be biased toward older patients compared to Dashboard 
data (Figure S3). We thus undertook a two-step approach to infer the demographic composition of 
COVID-19 hospitalisations across England.  

Firstly, we derived an initial approximation of 𝜓𝜓𝐻𝐻𝑖𝑖  by dividing the total number of hospital admissions 
for age group 𝑖𝑖 in CHESS over the total number of positive PCR tests (Pillar 2) for 𝑖𝑖. Both data sources 
were censored to include patients admitted to hospital or with a specimen data (i.e. the date the test 
was taken), respectively, between March 1 and December 2, 2020. We ran our full inference 
framework using this initial approximation for 𝜓𝜓𝐻𝐻𝑖𝑖  and observed its fit to the demographic 
composition of admissions from the data. 

As a second step, we refined our initial approximations of 𝜓𝜓𝐻𝐻𝑖𝑖  over a series of iterations of our 
inference framework, by drawing the modelled (𝑝𝑝𝐻𝐻𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) and observed (𝑝𝑝𝐻𝐻𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) proportion of 
admissions for each age group (i.e. admissions in age group 𝑖𝑖 divided by all admissions) and using it to 
derive a re-scaling factor for a new proposal for 𝜓𝜓𝐻𝐻𝑖𝑖  as follows: 

 

𝑁𝑁𝑁𝑁𝑁𝑁 𝜓𝜓𝐻𝐻𝑖𝑖  = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝜓𝜓𝐻𝐻𝑖𝑖  ∗
𝑝𝑝𝐻𝐻𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝𝐻𝐻𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 (186) 

 

This process was repeated to obtain a close approximation to the observed proportion of admissions 
by age and region (Figure S3). A key strength of our approach is that we did not overfitted demography 
by individual regions. Rather, by assuming 𝜓𝜓𝐻𝐻𝑖𝑖  to be independent of geographic region, we allowed 
our inference framework to derive the number of admissions for each five-year age band 𝑖𝑖 solely 
based on 𝜓𝜓𝐻𝐻𝑖𝑖 , the demographic composition of the NHS region and inferred epidemic parameters, 
such as 𝑅𝑅𝑡𝑡.  
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Figure S 3: Proportion of admissions by age. a) Comparison of model outputs to data from the Government’s 
Coronavirus Dashboard, aggregated to five broad age categories. b) Age spline fitted (red) to Government’s 
Coronavirus Dashboard, with age categories disaggregated to five-year bands. The fitted spline (red) was used 
as input parameters for the probability of hospitalisation by age.  

 

1.9.2 Severity and hospital progression 

We also performed extensive preliminary analysis to inform the age-structure of progression 
parameters within hospital. Data from the COVID-19 Hospitalisation in England Surveillance System 
(CHESS) were used to fit a simple model of patient clinical progression in hospital. The model structure 
was designed to mirror the within-hospital component of the wider mechanistic transmission model, 
but without the complexities arising from unknown admission dates and with greater detail on trends 
with age (Figure S 4). 
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Figure S 4: Directed Acyclic Graph of the hospital pathways fitted to CHESS data, which mirror the model 
structure described in described in Figure S 2, but with all parameters varying with age and not over time. 
  

CHESS data consists of a line list of daily individual patient-level data on COVID-19 infection in persons 
requiring hospitalisation, including demographic and clinical information on severity and outcomes. 
Data were filtered to patients admitted between 18th March and 31st May 2020 (inclusive), with 
subsequent progression events possible up until 25th Nov 2020. This gave >5 months for outcomes to 
complete, and hence justified filtering to patients with resolved outcomes only. The length of stay in 
each state was taken as the difference between the registered dates of entering and leaving each 
hospital ward. Lengths of stay were assumed to follow Erlang distributions, as in the wider model, 
with a distinct mean and shape parameter for each state. Specifically, the probability of being in state 
𝑋𝑋 ∈ {𝑝𝑝𝑝𝑝𝑝𝑝,𝐻𝐻𝐷𝐷 ,𝐻𝐻𝑅𝑅 , 𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷, 𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝑅𝑅 , 𝐼𝐼𝐼𝐼𝑈𝑈𝑊𝑊𝐷𝐷 ,𝑊𝑊𝑅𝑅 ,𝑊𝑊𝐷𝐷} for 𝑛𝑛 ∈ ℕ0 days was taken as the integral over day 
𝑛𝑛 of the Erlang distribution with mean 𝑚𝑚𝑋𝑋 and shape 𝑠𝑠𝑋𝑋: 

 

Pr(in state 𝑋𝑋 for 𝑛𝑛 days) =  �
� 𝑠𝑠𝑋𝑋𝑚𝑚𝑋𝑋

�
𝑠𝑠𝑋𝑋
𝑡𝑡𝑠𝑠𝑋𝑋−1𝑒𝑒

−𝑠𝑠𝑋𝑋𝑡𝑡
𝑚𝑚𝑋𝑋

(𝑠𝑠𝑋𝑋 − 1)!
 𝑑𝑑𝑑𝑑.

𝑛𝑛+1

𝑛𝑛

 (187) 

 

For a patient of age 𝑎𝑎, this was combined with the probability of their path through the hospital 
progression model, taken as the product of the individual transition probabilities at each bifurcation, 
i.e. values taken from 𝑝𝑝𝑍𝑍(𝑎𝑎) for 𝑍𝑍 ∈ {𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐷𝐷 , 𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷 ,𝑊𝑊𝐷𝐷}. Transition probabilities were modelled as 
functions of age using logistic-transformed cubic splines. Knots were defined at coordinates [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑍𝑍𝑖𝑖 ], 
where 𝑥𝑥𝑖𝑖  values were fixed at {0, 20, 40, 60, 80, 100, 120} and 𝑦𝑦𝑍𝑍𝑖𝑖  were free parameters to be 
estimated. The complete spline, 𝑦𝑦𝑍𝑍(𝑎𝑎) for 𝑎𝑎 ∈ 0: 120, was obtained from these knots using standard 
expressions for cubic spline interpolation. Finally, transition probabilities were obtained from the raw 
𝑦𝑦𝑍𝑍(𝑎𝑎) values using the logistic transformation: 𝑝𝑝𝑍𝑍(𝑎𝑎) = 1 (1 + 𝑒𝑒−𝑦𝑦𝑍𝑍(𝑎𝑎))⁄ . 
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In total there were 44 free parameters in the within-hospital progression model: 8 mean length of 
stay parameters, 8 length of stay shape parameters and 4 × 7 transition probability spline nodes 
(Figure S 4, Table S 4). 

 

Table S 4: Descriptions of all states and transitions in the simplified hospital progression model fitted to CHESS 
data. 

State (𝑿𝑿) Description 

𝒑𝒑𝒑𝒑𝒑𝒑  General admission before step-up to ICU 

𝑯𝑯𝑫𝑫  General ward before death in general ward 

𝑯𝑯𝑹𝑹  General ward before discharge from general ward 

𝑰𝑰𝑰𝑰𝑼𝑼𝑫𝑫  ICU before death in ICU 

𝑰𝑰𝑰𝑰𝑼𝑼𝑾𝑾𝑫𝑫   ICU before step-down and eventual death in step-down care 

𝑰𝑰𝑰𝑰𝑼𝑼𝑾𝑾𝑹𝑹   ICU before step-down and eventual discharge from step-down 
care 

𝑾𝑾𝑫𝑫  Step-down (general) ward before death 

𝑾𝑾𝑹𝑹  Step-down (general) ward before discharge 

Transition (𝐙𝐙) Description 

𝑰𝑰𝑰𝑰𝑰𝑰  Admission to ICU from general ward 

𝑯𝑯𝑫𝑫  Death in general ward 

𝑰𝑰𝑰𝑰𝑼𝑼𝑫𝑫  Death in ICU 

𝑾𝑾𝑫𝑫  Death in step-down care 

 

All parameters of the hospital progression model were given priors (Table S 5) and estimated within a 
Bayesian framework. All length of stay parameters were given uniform priors over a plausible range 
of values. For transition probabilities, the first spline node 𝑦𝑦𝑍𝑍1 was given a prior that corresponded to 
a uniform distribution after logistic transformation, and subsequent spline nodes were given a 
multivariate normal prior to apply a smoothing constraint to the spline. Parameters were estimated 
jointly via MCMC using the custom package markovid v1.5.0 (41), which uses the random-walk 
Metropolis-Hastings algorithm to draw from the joint posterior distribution. MCMC was run for 1000 
burn-in iterations and 100,000 sampling iterations replicated over 10 independent chains. 
Convergence was assessed via the Gelman-Rubin diagnostic (all parameters had potential scale 
reduction factor <1.1) and sampling sufficiency was assessed by visualising posterior distributions and 
by effective sample size (ESS) calculations (all parameters had ESS >100,000). 
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Table S 5: Priors on all length of stay distributions and transition probability splines. 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎, 𝑏𝑏) denotes 
the continuous uniform distribution, and 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) the discrete uniform distribution between 𝑎𝑎 and 𝑏𝑏 
(inclusive). 

Parameter Description Prior 

𝒎𝒎𝑿𝑿 = 𝟏𝟏
𝜸𝜸𝑿𝑿

 Mean of Erlang length of stay 
distribution 

𝑚𝑚𝑋𝑋 ~ Uniformcont(0,20)  

𝒌𝒌𝑿𝑿  Shape parameter of Erlang 
length of stay distribution 

𝑘𝑘𝑋𝑋 ~ Uniformdisc(1,10)  

 

𝒚𝒚𝒁𝒁𝟏𝟏   First spline node of 
(transformed) transition 
probability 

𝑓𝑓(𝑦𝑦𝑍𝑍1) ∝  𝑒𝑒−𝑦𝑦𝑍𝑍
1

(1+𝑒𝑒−𝑦𝑦𝑍𝑍
1

)2
 , 

for 𝑦𝑦𝑍𝑍! ∈ (−10, 10) 

𝒚𝒚𝒁𝒁
𝒋𝒋  for 𝒋𝒋 ∈ 𝟐𝟐:𝟕𝟕  Subsequent spline nodes of 

(transformed) transition 
probability 

𝑦𝑦𝑍𝑍
𝑗𝑗  ~ Normal(𝑦𝑦𝑍𝑍

𝑗𝑗−1, 0.25)  

 

Parameter estimates (posterior medians) were passed to the wider mechanistic transmission model 
as fixed values (Figure S 5). For transition probabilities, the full age-spline (Figure 3, main text) was 
aggregated to 5-year age groups and normalised by the largest value to define the relative risk with 
age. The absolute risk in the mechanistic transmission model was obtained by multiplying the relative 
risk by region-specific scaling factors that were fitted as free parameters in the pMCMC. Hence, the 
preliminary analysis of CHESS data was used to inform trends of severity with age, but not the absolute 
probability of progression through the hospital states, which was informed by the Government’s 
Coronavirus Dashboard data. 

For the wider mechanistic transmission model, we used Beta distributions for the priors of the various 
fitted probabilities regarding hospitalisation. The priors for 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚,  𝑝𝑝𝐻𝐻𝐷𝐷

𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷
𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑝𝑝𝑊𝑊𝐷𝐷

𝑚𝑚𝑚𝑚𝑚𝑚  were all 
informed by the fitting to CHESS data by taking the median fitted value for the prior mean, which we 
halve in the case of 𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  to account for CHESS being biased to more severe patients. The prior 
distributions are then calibrated so that the lower bound of the 95% confidence interval is 0.1 lower 
than the prior mean. For 𝑝𝑝𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑝𝑝𝐺𝐺𝐷𝐷

𝐶𝐶𝐶𝐶𝐶𝐶, we assume prior means of 0.75 and calibrate the prior so 
that the lower bound of the 95% confidence interval is 0.2 lower than the mean. For the multipliers 
for hospital mortality after improvement in care, 𝜇𝜇𝐻𝐻, and for probability of admission to ICU after 
improvement in care, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼, we used uninformative 𝑈𝑈[0,1] priors. 
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Figure S 5: Posterior 95% credible intervals of length of stay mean (left) and shape parameters 
(right). 

 

1.9.3 Serosurveys 

To keep serology parameters consistent between all regions we used estimates from the literature to 
fix the parameters of the seroconversion process. An alternative would have been to use these 
estimates as priors within a hierarchical model where some parameters would be shared between 
regions, but this would be much more involved computationally. 
 
As described in section 1.3.2, the time to seroconversion from leaving the 𝐸𝐸𝑖𝑖  compartment is modelled 
by an exponential distribution time spent in 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖  with a proportion 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝  ultimately 

seroconverting and moving to 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖  and the remaining staying negative and moving to 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖 . 

 
We fixed 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝  to 0.85 based on the estimate of 85% of infections becoming detectably seropositive 

with the EUROIMMUN assay used in the NHSBT serological surveys (42). The specificity of the serology 
test 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is fixed to 0.99 also from (42). Finally, the sensitivity of serology test 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is assumed 

to be 1 as it is non-distinguishable from the time varying seroconversion process (Table S7). 
 

1.9.4 PCR positivity 

As for other compartments, we modelled the duration of SARS-CoV-2 PCR-positivity after symptom 
onset using an Erlang distribution 𝜏𝜏~Erlang(𝑘𝑘, 𝛾𝛾), with k successive compartments and a total mean 

time spent of 𝑘𝑘
𝛾𝛾

 and variance 𝑘𝑘
𝛾𝛾2

. 

We estimated the parameters of this distribution from Omar et al. (16), which reported the cumulative 
distribution of duration of PCR positivity in 523 individuals with mild COVID-19 disease in home 
quarantine in a German region. We performed a survival analysis using a gamma-accelerated failure 
time model fitted to their data, from which we estimated the mean and variance of the time from 
symptom onset to PCR negativity. This was used to derive values of k and 𝛾𝛾 shown in Table S 2. 
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1.9.5 Local start date of the epidemic 

The start date of the epidemic for each region is assumed to have a uniform prior on the dates from 
1st January 2020 to 15th March 2020, inclusive – with the latter date corresponding to the last date 
before the data begin. 

1.9.6 Time-varying transmission rates 

We set priors for the transmission rates 𝛽𝛽1, … ,𝛽𝛽12 to reflect a Gamma distribution for the 
reproduction number 𝑅𝑅𝑡𝑡 with a reasonable 95% confidence interval a priori. To obtain a prior for the 
corresponding 𝛽𝛽𝑘𝑘, we then scale by a factor of 0.0241 (given other parameter values, 𝛽𝛽𝑘𝑘 = 0.0241 
would correspond approximately to 𝑅𝑅𝑡𝑡 = 1). The 95% ranges for 𝑅𝑅0 we used are (i) (2.5, 3.5) at the 
onset of the epidemic (corresponding to 𝛽𝛽1); and then 𝑅𝑅𝑡𝑡 (ii) (0.4, 3.5) at announcement of the first 
lockdown (corresponding to 𝛽𝛽2); and (iii) (0.4, 3) from the implementation of the first lockdown 
onwards (corresponding to 𝛽𝛽3, … ,𝛽𝛽12 ). The values are consistent with the values of the COMIX study 
(43). 

1.9.7 Transmission within care homes 

For the transmission between care home workers and residents, 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 , and transmission among care 
home residents, 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 , we used a prior distributions reflecting that these are person-to-person 
infectious contact rates and thus should be scaled according to regional care home demography. We 

then used a Gamma distribution with shape 5 and mean 0.1
𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶

 for both of these parameters (recall that 

we assume there is a 1-to-1 ratio of care home workers to residents in each region, so 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶). 

For the parameter governing the reduction in contacts between the general population and care home 
residents, 𝜖𝜖, we used an uninformative 𝑈𝑈[0,1] prior.  

1.9.8 Parameters relating to Pillar 2 testing 

For both the parameters 𝑝𝑝𝑁𝑁𝑁𝑁  and 𝜌𝜌𝑃𝑃2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , we used uninformative 𝑈𝑈[0,1] priors.



22 December 2020                                                                    Imperial College COVID-19 response team 

DOI: https://doi.org/10.25561/85146      Page 35 of 48 
 

Table S 6: Inferred model parameter notations, prior and posterior distributions. Note that Γ(a, b) here refers to a Gamma distribution with shape a and scale b (such that 
the mean is ab), and B(a, b) refers to a Beta distribution with shape parameters a and b (such that the mean is a/(a + b)). 

 

 Description 
Group 
scaling 

Prior 
Mean 

(95% CI) 
Posterior 

NW** 

Mean (95% 
CrI) 
NEY 

 
MID 

 
EE 

 
LON 

 
SW 

 
SE 

𝒕𝒕𝟎𝟎  
Start date of 

regional outbreak 
(dd/mm/2020) 

- 
𝑈𝑈[01
/01, 15
/03] 

- 
29-01 

(13/01, 
07/02) 

03-02 
(29/01, 
09/02) 

24-01 
(12/01, 
02/02) 

06-02 
(30/01, 
14/02) 

08-01 
(02/01, 
20/01) 

12-02 
(09/02, 
17/02) 

27-01 
(20/01, 
04/02) 

 
Transmission rate 

(pp) 
          

𝜷𝜷(𝐭𝐭)  𝛽𝛽1 - Γ(136,0.000    
0.07 

(0.06, 0.08) 
0.08 (0.06, 

0.09) 
0.08 (0.07, 

0.09) 
0.08 (0.07, 

0.09) 
0.08 (0.08, 

0.09) 
0.06 (0.06, 

0.07) 
0.09 (0.08, 

0.09) 
0.08 (0.07, 

0.09) 

 𝛽𝛽2 - Γ(21.9,0.00  
0.06  

(0.04, 0.08) 
0.09 (0.06, 

0.11) 
0.08 (0.05, 

0.1) 
0.07 (0.05, 

0.09) 
0.06 (0.04, 

0.07) 
0.04 (0.03, 

0.06) 
0.07 (0.04, 

0.09) 
0.05 (0.03, 

0.06) 

 𝛽𝛽3 - Γ(4.25,0.00    
0.03  

(0.01, 0.07) 
0.01 (0.01, 

0.02) 
0.02 (0.02, 

0.02) 
0.01 (0.01, 

0.01) 
0.02 (0.02, 

0.02) 
0.01 (0.01, 

0.01) 
0.02 (0.01, 

0.02) 
0.01 (0.01, 

0.01) 

 𝛽𝛽4 - Γ(4.25,0.00  
0.03 

(0.01, 0.07) 
0.02 (0.02, 

0.02) 
0.02 (0.01, 

0.02) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.02) 
0.02 (0.01, 

0.02) 

 𝛽𝛽5 - Γ(4.25,0.00  
0.03  

(0.01, 0.07) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.03) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.03) 
0.02 (0.01, 

0.02) 
0.02 (0.02, 

0.02) 

 𝛽𝛽6 - Γ(4.25,0.00  
0.03 

 (0.01, 0.07) 
0.02 (0.02, 

0.03) 
0.02 (0.01, 

0.02) 
0.02 (0.01, 

0.02) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.03) 
0.02 (0.02, 

0.03) 
0.02 (0.02, 

0.02) 

 𝛽𝛽7 - Γ(4.25,0.00  
0.03  

(0.01, 0.07) 
0.02 (0.02, 

0.03) 
0.02 (0.02, 

0.03) 
0.02 (0.02, 

0.03) 
0.02 (0.02, 

0.02) 
0.03 (0.02, 

0.03) 
0.02 (0.02, 

0.03) 
0.02 (0.02, 

0.03) 

 𝛽𝛽8 - Γ(4.25,0.00  
0.03  

(0.01, 0.07) 
0.05 (0.04, 

0.05) 
0.04 (0.04, 

0.05) 
0.05 (0.04, 

0.05) 
0.04 (0.03, 

0.04) 
0.04 (0.04, 

0.05) 
0.03 (0.02, 

0.04) 
0.04 (0.03, 

0.05) 

 𝛽𝛽9 - Γ(4.25,0.00  
0.03  

(0.01, 0.07) 
0.04 (0.04, 

0.05) 
0.04 (0.04, 

0.04) 
0.04 (0.03, 

0.04) 
0.04 (0.03, 

0.04) 
0.04 (0.03, 

0.04) 
0.04 (0.04, 

0.05) 
0.03 (0.03, 

0.04) 
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 𝛽𝛽10 - Γ(4.25,0.00  
0.03 

(0.01, 0.07) 
0.03 (0.03, 

0.03) 
0.03 (0.03, 

0.04) 
0.04 (0.04, 

0.04) 
0.04 (0.03, 

0.04) 
0.04 (0.04, 

0.04) 
0.04 (0.03, 

0.04) 
0.04 (0.04, 

0.04) 

 𝛽𝛽11 - Γ(4.25,0.00  
0.03 

(0.01, 0.07) 
0.02 (0.02, 

0.02) 
0.03 (0.02, 

0.03) 
0.03 (0.02, 

0.03) 
0.03 (0.02, 

0.03) 
0.03 (0.02, 

0.03) 
0.03 (0.02, 

0.03) 
0.03 (0.03, 

0.03) 

 𝛽𝛽12 - Γ(4.25,0.00  
0.03  

(0.01, 0.07) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.03) 
0.03 (0.03, 

0.03) 
0.02 (0.02, 

0.02) 
0.02 (0.02, 

0.03) 

𝝐𝝐 

Relative reduction 
in contacts 

between CHR and 
the general 
population 

- 𝑈𝑈[0,1]  
0.5  

(0.03, 0.98) 
0.43 (0.03, 

0.95) 
0.75 (0.51, 

0.98) 
0.77 (0.37, 

0.97) 
0.79 (0.51, 

0.96) 
0.28 (0.03, 

0.49) 
0.82 (0.74, 

0.91) 
0.89 (0.77, 

0.99) 

𝒎𝒎𝑪𝑪𝑪𝑪𝑪𝑪  

Transmission rate 
between care 

home residents 
and staff 

- 
Regional 

Prior 
 

Γ(5, 4.3 ×
10−7)  

2.2 × 10−6 
(7.0 × 10−7, 
4.4 × 10−6) 

Γ(5, 3.7 ×
10−7)  

1.8 × 10−6 
(5.9 × 10−7, 
3.7 × 10−6) 

Γ(5, 2.9 ×
10−7)  

1.5 × 10−6 
(4.7 × 10−7, 
2.9 × 10−6) 

Γ(5, 5.2 ×
10−7)  

2.6 × 10−6 
(8.4 × 10−7, 
5.3 × 10−6) 

Γ(5, 7.6 ×
10−7)  

3.8 × 10−6 
(1.2 × 10−6, 
7.8 × 10−6) 

Γ(5, 4.9 ×
10−7)  

2.5 × 10−6 
(8.0 × 10−7, 
5.0 × 10−6) 

Γ(5, 3.1 ×
10−7)  

1.6 × 10−6 
(5.1 × 10−7, 
3.2 × 10−6) 

 Posterior:  
2.1e-06 

(1.4e-06, 
2.7e-06) 

1.7e-06 
(1.3e-06, 
2.2e-06) 

1.5e-06 
(1.1e-06, 
1.9e-06) 

2.7e-06 
(2.1e-06, 
3.1e-06) 

3.8e-06 
(3.1e-06, 
4.7e-06) 

1.8e-06 
(1.3e-06, 
2.2e-06) 

1.5e-06 
(1.1e-06, 
1.8e-06) 

𝒎𝒎𝑪𝑪𝑪𝑪𝑪𝑪  
Transmission rate 
among care home 

residents 

- 
Regional 

Prior 
 

Γ(5, 4.3 ×
10−7)  

2.2 × 10−6 
(7.0 × 10−7, 
4.4 × 10−6) 

Γ(5, 3.7 ×
10−7)  

1.8 × 10−6 
(5.9 × 10−7, 
3.7 × 10−6) 

Γ(5, 2.9 ×
10−7)  

1.5 × 10−6 
(4.7 × 10−7, 
2.9 × 10−6) 

Γ(5, 5.2 ×
10−7)  

2.6 × 10−6 
(8.4 × 10−7, 
5.3 × 10−6) 

Γ(5, 7.6 ×
10−7)  

3.8 × 10−6 
(1.2 × 10−6, 
7.8 × 10−6) 

Γ(5, 4.9 ×
10−7)  

2.5 × 10−6 
(8.0 × 10−7, 
5.0 × 10−6) 

Γ(5, 3.1 ×
10−7)  

1.6 × 10−6 
(5.1 × 10−7, 
3.2 × 10−6) 

 Posterior:  
2.2e-06 

(1e-06, 3.4e-
06) 

2.5e-06 
(1.4e-06, 
3.6e-06) 

1.6e-06 (7e-
07, 2.4e-06) 

3.4e-06 
(2.1e-06, 
4.3e-06) 

2.8e-06 (5e-
07, 4.8e-06) 

4.2e-06 
(3.8e-06, 
4.6e-06) 

3.3e-06 
(2.9e-06, 
3.6e-06) 

𝒑𝒑𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎  
Probability of 

hospitalisation if 
symptomatic 

𝜓𝜓𝐻𝐻𝑖𝑖   
B(15.8,

5.28)  
0.75 (0.55, 

0.91) 
0.87 (0.8, 

0.92) 
0.9 (0.85, 

0.94) 
0.89 (0.83, 

0.95) 
0.78 (0.73, 

0.84) 
0.85 (0.79, 

0.9) 
0.86 (0.81, 

0.93) 
0.73 (0.68, 

0.79) 
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𝒑𝒑𝑮𝑮𝑫𝑫
𝒎𝒎𝒎𝒎𝒎𝒎  

Probability of 
death in care home 

if requiring 
hospitalisation 

𝜓𝜓𝐺𝐺𝐷𝐷
𝑖𝑖   B(15.8,

5.28)  
0.75 (0.55, 

0.91) 
0.66 (0.37, 

0.85) 
0.77 (0.64, 

0.88) 
0.53 (0.41, 

0.69) 
0.58 (0.52, 

0.63) 
0.66 (0.5, 

0.91) 
0.64 (0.6, 

0.69) 
0.36 (0.32, 

0.43) 

𝒑𝒑𝑰𝑰𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎  

Probability of 
triage to ICU for 

new hospital 
admissions 

𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖   
B(13.9,

43.9)  
0.24 (0.14, 

0.36) 
0.15 (0.11, 

0.18) 
0.15 (0.11, 

0.18) 
0.17 (0.13, 

0.21) 
0.25 (0.21, 

0.31) 
0.31 (0.26, 

0.37) 
0.12 (0.11, 

0.13) 
0.23 (0.2, 

0.25) 

𝒑𝒑𝑯𝑯𝑫𝑫
𝒎𝒎𝒎𝒎𝒎𝒎  

Initial probability of 
death for general 

inpatients  
𝜓𝜓𝐻𝐻𝐷𝐷
𝑖𝑖   B(42.1,

50.1)  
0.46 (0.36, 

0.56) 
0.42 (0.35, 

0.5) 
0.46 (0.39, 

0.53) 
0.43 (0.38, 

0.47) 
0.47 (0.44, 

0.51) 
0.37 (0.32, 

0.46) 
0.5 (0.47, 

0.53) 
0.41 (0.35, 

0.46) 

𝒑𝒑𝑰𝑰𝑰𝑰𝑼𝑼𝑫𝑫
𝒎𝒎𝒎𝒎𝒎𝒎   

Initial probability of 
death for ICU 

inpatients 
𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷
𝑖𝑖   B(60.2,

29.3)  
0.67 (0.57, 

0.77) 
0.66 (0.6, 

0.72) 
0.71 (0.66, 

0.77) 
0.69 (0.58, 

0.77) 
0.69 (0.62, 

0.75) 
0.61 (0.51, 

0.69) 
0.71 (0.64, 

0.77) 
0.63 (0.54, 

0.75) 

𝒑𝒑𝑾𝑾𝑫𝑫
𝒎𝒎𝒎𝒎𝒎𝒎  

Initial probability of 
death for 

stepdown 
inpatients 

𝜓𝜓𝑊𝑊𝐷𝐷
𝑖𝑖   B(28.7,

52.1)  
0.35 (0.25, 

0.46) 
0.35 (0.25, 

0.46) 
0.35 (0.3, 

0.4) 
0.36 (0.3, 

0.5) 
0.37 (0.3, 

0.43) 
0.34 (0.24, 

0.43) 
0.51 (0.44, 

0.59) 
0.37 (0.29, 

0.45) 

𝝁𝝁𝑰𝑰𝑰𝑰𝑰𝑰  

ICU admission 
multiplier after 

improvement in 
care 

- 𝑈𝑈[0,1] 0.5 (0.03, 0.98) 
0.79 (0.59, 

0.93) 
0.76 (0.62, 

0.93) 
0.72 (0.56, 

0.94) 
0.51 (0.37, 

0.64) 
0.62 (0.51, 

0.75) 
0.83 (0.73, 

0.99) 
0.44 (0.3, 

0.54) 

𝝁𝝁𝑫𝑫  

Hospital mortality 
multiplier after 

improvement in 
care 

- 𝑈𝑈[0,1] 0.5 (0.03, 0.98) 
0.58 (0.45, 

0.69) 
0.47 (0.41, 

0.53) 
0.49 (0.42, 

0.61) 
0.47 (0.42, 

0.56) 
0.32 (0.27, 

0.38) 
0.35 (0.28, 

0.43) 
0.53 (0.44, 

0.63) 

𝒑𝒑𝑵𝑵𝑵𝑵 

Prevalence of non-
COVID 

symptomatic 
leading to test 

- 𝑈𝑈[0,1] 0.5 (0.03, 0.98) 
0.0031 

(0.0029, 
0.0033) 

0.0022 
(0.0021, 
0.0024) 

0.0025 
(0.0023, 
0.0027) 

0.0028 
(0.0026, 
0.0031) 

0.0028 
(0.0027, 

0.003) 

0.0019 
(0.0018, 

0.002) 

0.003 
(0.0028, 
0.0031) 
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𝝆𝝆𝑷𝑷𝟐𝟐𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕    Overdispersion of 
PCR positivity 

- 𝑈𝑈[0,1] 0.5 (0.03, 0.98) 
0.0052 

(0.0042, 
0.0062) 

0.0076 
(0.0064, 
0.0086) 

0.0072 
(0.0058, 
0.0088) 

0.0033 
(0.0029, 
0.0037) 

0.0026 
(0.0021, 
0.0031) 

0.0091 
(0.0079, 
0.0103) 

0.0032 
(0.0027, 
0.0037) 

Age-specific scaling factors for each parameter are set out in Table S 8.** Region codes: NW = North West, NEY = North East and Yorkshire, MID = Midlands, EE = East of 
England, LON = London, SW = South West, SE = South East. N.B. when the prior is region specific the prior is shown in the same columns as the posterior distributions 
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Table S 7: Fixed model parameters (age / care home scaling factors are shown separately in Table S 8).  

Parameter Description Value Source 

𝒑𝒑𝑪𝑪  Probability of 
developing 
symptoms after 
becoming 
infectious 

0.6 Lavezzo et al. (44) 

𝒑𝒑∗ Probability of 
arriving at hospital 
with a confirmed 
diagnosis 

0.25 NHS (45) 

𝟏𝟏/𝜸𝜸𝑼𝑼 Mean time to 
confirmation of 
diagnosis within 
hospital (days) 

2 days CHESS (5) 

𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔𝒐𝒐𝒑𝒑𝒑𝒑𝒑𝒑  Probability of 
seroconversion 

0.85 Brazeau et al. (42)  

𝟏𝟏/𝜸𝜸𝒔𝒔𝒔𝒔𝒔𝒔𝒐𝒐𝒑𝒑𝒑𝒑𝒑𝒑  
 Mean time to 

seroconversion 
from infectiousness 
(days) 

13 Benny et al. (17)  

𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  
  Specificity of 

serology test 
0.99 Brazeau et al. (42) 

𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  
  Sensitivity of 

serology test 
1 Assumption as non-

distinguishable from time 
varying seroconversion 
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Table S 8: Age / care-home scaling factors 

   Age / care home -stratified scaling to probability of: 

 

Hospitalisation  

if symptomatic  
(𝑝𝑝𝐻𝐻) 

Triage to 
ICU  

(𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼) 

Death for general 
inpatients  

(𝑝𝑝𝐻𝐻𝐷𝐷) 

Death in ICU 
(𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷) 

Death in stepdown 
(𝑝𝑝𝑊𝑊𝐷𝐷) 

Death in the community 
(𝑝𝑝𝐺𝐺𝐷𝐷) 

Population group 𝜓𝜓𝐻𝐻𝑖𝑖  𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖  𝜓𝜓𝐻𝐻𝐷𝐷
𝑖𝑖  𝜓𝜓𝐼𝐼𝐼𝐼𝑈𝑈𝐷𝐷 

𝑖𝑖  𝜓𝜓𝑊𝑊𝑖𝑖 𝐷𝐷 𝜓𝜓𝐺𝐺𝐷𝐷
𝑖𝑖  

Age       

[0, 5) 0.039 0.243 0.039 0.282 0.091 0 

[5, 10) 0.001 0.289 0.037 0.286 0.083 0 

[10, 15) 0.006 0.338 0.035 0.291 0.077 0 

[15, 20) 0.009 0.389 0.035 0.299 0.074 0 

[20, 25) 0.026 0.443 0.036 0.310 0.074 0 

[25, 30) 0.040 0.503 0.039 0.328 0.076 0 

[30, 35) 0.042 0.570 0.045 0.353 0.080 0 

[35, 40) 0.045 0.653 0.055 0.390 0.086 0 

[40, 45) 0.050 0.756 0.074 0.446 0.093 0 

[45, 50) 0.074 0.866 0.107 0.520 0.102 0 

[50, 55) 0.138 0.954 0.157 0.604 0.117 0 

[55, 60) 0.198 1.000 0.238 0.705 0.148 0 

[60, 65) 0.247 0.972 0.353 0.806 0.211 0 

[65, 70) 0.414 0.854 0.502 0.899 0.332 0 

[70, 75) 0.638 0.645 0.675 0.969 0.526 0 
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[75, 80) 1.000 0.402 0.832 1.000 0.753 0 

80+ 0.873 0.107 1.000 0.918 1.000 0 

Care home       

CHW 0.104 0.784 0.134 0.519 0.114 0 

CHR 0.873 0.107 1.000 0.918 1.000 1 
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2 Supplementary Results 
 

2.1 Model fitting  

 
Figure S 6: Model fits by region to PCR positivity for individuals aged >25 years (top row) and PCR positivity from 
the REACT-1 study (bottom row). The points show the data and bars the 95% CI. The solid line the median model 
fit and the shaded area the 95% CrI. 

 

 
Figure S 7: Model fits to daily hospital deaths (top row), daily care home deaths (second row), ICU bed occupancy 
(third row), general bed occupancy (fourth row), all hospital beds (fifth row), and all daily admissions (bottom 
row) by region (columns). The points show the data, the solid line the median model fit and the shaded area the 
95% CrI. 
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2.2 Severity estimates 

 
Figure S 8: Fits to CHESS data broken down into one-year age bands. Blue ribbons show the 95% CrI of the fitted 
spline, black circles and vertical segments give the raw mean and 95% CI from the data (exact binomial). 
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Table S 9: Age-stratified estimates of disease severity (*to 2sf, ^to 3dp) 

 Age stratified estimate of:  

Age group Proportion of infections who 
were hospitalised* 

Proportion of infections who 
died^ 

[0, 5) 3.0% (2.8%, 3.2%)  0.031% (0.027%, 0.034%) 

[5, 10) 0.26% (0.24%, 0.28%) 0.003% (0.002%, 0.003%) 

[10, 15) 0.084% (0.078%, 0.089%) 0.001% (0.001%, 0.001%) 

[15, 20) 0.042% (0.039%, 0.045%) 0.000% (0.000%, 0.001%) 

[20, 25) 0.080% (0.075%, 0.085%) 0.001% (0.001%, 0.001%) 

[25, 30) 0.26% (0.24%, 0.28%) 0.004% (0.003%, 0.004%) 

[30, 35) 0.40% (0.37%, 0.42%) 0.006% (0.006%, 0.007%) 

[35, 40) 0.63% (0.58%, 0.67%) 0.013% (0.011%, 0.014%) 

[40, 45) 1.2% (1.1%, 1.2%) 0.031% (0.026%, 0.035%) 

[45, 50) 1.9% (1.8%, 2.1%) 0.070% (0.061%, 0.080%) 

[50, 55) 2.3% (2.2%, 2.5%) 0.116% (0.101%, 0.133%) 

[55, 60) 4.0% (3.8%, 4.3%) 0.276% (0.242%, 0.315%) 

[60, 65) 9.6% (8.9%, 10%) 0.867% (0.762%, 0.971%) 

[65, 70) 10% (9.6%, 11%) 1.215% (1.070%, 1.352%) 

[70, 75) 24% (22%, 26 %) 3.512% (3.083%, 3.900%) 

[75, 80) 50% (46%, 53%) 8.430% (7.407%, 9.338%) 

80+ 50% (47%, 54%) 9.696% (8.501%, 10.640%) 

Combined 20% (13%, 27%) 34.132% (28.020%, 41.359%) 
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2.3 Supplementary counterfactual analysis 

 
Figure S 9: Counterfactual intervention scenarios in each England NHS Region: Panel A1-7 impact of locking 
down one-week earlier Panel B1-7 impact of locking down one week later; Panel C1-7 impact of relaxing 
lockdown restrictions two weeks earlier. Panel D1-7 impact of relaxing lockdown restrictions two weeks later; 
Panel E1-7 impact of 50% less contact between care home residents and the general population; Panel F1-7 
impact of 50% more contact between care home residents and the general population. 
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