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S1 Supplementary Text: Na onal mobility indicators during the pandemic

S1.1 Age-specific U.S. foot traffic

To characterise changes in human contact pa erns during the pandemic, Foursquare Labs Inc. provided longi-

tudinal U.S. foot traffic data across the 50 U.S. states, the District of Columbia, and New York City [1]. The data

are based on Foursquare’s US first-party panel that includes millions of opt-in, always-on ac ve users. Visits are

derived via Foursquare’s core loca on technology, Pilgrim [2], which leverages a variety of mobile device signals to

pinpoint the me, dura on, and loca on of panelists’ visits to loca ons such as shops, malls, restaurants, concert

venues, theaters, parks, beaches, or universi es. From operated and partner apps, Foursquare Labs Inc. collect

a variety of device signals against opted-in users. These include intermi ent device GPS coordinate pings, WiFi

signals, cell signal strength, device model, and opera ng system version. Addi onally, a smaller set of labeled ex-

plicit check-ins are captured from a por on of the user panel. Check-ins are explicit confirma ons that a user was

at a given venue at a given point of me. One example source of this is Foursquare’s Swarm app, where users can

“check in” to venues to keep a log of where their mobility history. These check-ins then serve as training labels for

a non-linear model that is used to predict visits among users with unlabeled visits in terms of probabili es as to

which venue users ul mately visited. For research and insights use cases, the probabili es are processed further,

projected and aggregated by state / metropolitan area, day, and age cohort. This projec on accounts for changes

in the number of individuals in the panel and the representa veness of panelists according to their home state or

metropolitan area, age band, and gender rela ve to latest US Census data.

Daily projected visit volumes were available at state / metropolitan area-level from February 1, 2020 to August

21, 2020 for individuals for 6 age groups

ã ∈ Ã =
{
[18− 24], [25− 34], [35− 44], [45− 54], [55− 64], [65+]

}
. (S1)

Daily projected visit volumes were standardised to projected per capita visits Vm,t,ã of individuals in state /

metropolitan area m and age band ã on day t by dividing the visit volumes with the number of individuals in

state / metropolitan area m and age band ã. Per capita visits appeared low for the first two days of the me

series, and were excluded. Data updates were obtained fromMay 26 onwards. Per capita visits appeared low for

May 25, and were replaced with the values from May 24.

Figure S11 illustrates the pre-processed me series of projected per capita visits Vm,t,ã. Individuals in New York

City, New York, and Hawai were projected to have considerably more per capita visits than other states and

metropolitan areas. Across states and metropolitan areas, projected per capita visits were highest for individ-
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uals aged 35− 44 years, both before and a er stay at home orders were issued. Individuals aged 65 or older had

lowest projected per capita visits across all states and metropolitan areas.

S1.2 Age-specific U.S. mobility trends

Age-specific mobility trends were derived from the U.S. foot traffic data described in Sec on S1.1. Our aim was to

quan fy changes in U.S. foot traffic during the pandemic rela ve to a baseline period for individuals in the 5-year

age bands (S10) in each of the U.S. states, the District of Columbia, and New York City. The baseline period was

defined from February 3 to February 9, 2020, which corresponded to the first week of the me series of projected

per capita visits. We first calculated average projected per capita visits during the baseline week,

V base
m,ã =

∑
t∈{Feb 3−Feb 9}

Vm,t,ã (S2)

and then derived the mobility trends

Xm,t,ã = Vm,t,ã/V
base
m,ã (S3)

for each state / metropolitan aream and the age bands ã available through the U.S. foot traffic data.

S1.3 Quan ta ve Analysis

To characterise different effects during the ini al phase of the pandemic, the me when stay at home orders were

introduced, and later me periods, we derived two par cular me points for each state or metropolitan area. The

first me point characterises the start of substan al declines inmobility across all age groups, and the second me

point characterises the me a er which mobility trends begin to rebound. To determine the two me points we

calculated the 15-days central moving average of projected per capita visits in each loca on (state or metropolitan

area)m,

Xm-avg
m,t =

1

30 + 1

1

Ã

15∑
s=−15

∑
ã

Xm,t+s,ã, (S4)

where Ã is the number of age groups in the mobility data specified in (S1), such that Ã = 6. The first me point,

which we refer to as the dip date, was determined as the first day when the 15-days moving-average had fallen

by over 10% compared to the one two weeks prior,

tdipm = min
{
t : Xm-avg

m,t /Xm-avg
m,t−14 < 0.9

}
. (S5)
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Figure S11: Projected per person foot traffic per day for the 50 US states, District of Columbia and New York

City. Data were obtained using Foursquare’s loca on technology Pilgrim that pinpoints the me, dura on, and

loca on of panelist’s visits.
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The second me point, which we refer to as the rebound date, was determined as the day with the smallest

15-days moving-average,

treboundm = argmint>tdipm
Xm-avg

m,t , (S6)

where tdipm < treboundm ,∀m. Using different me intervals in the central moving average calcula ons did not alter

the value of change points substan ally (not shown). Figure S12 shows the mobility trends (S3) for every U.S.

state, the District of Columbia, and New York City, along with the dip and rebound dates.

We then assessed differences in the age-specific mobility trends around the rebound date when compared to the

baseline week in early February, and similarly in the last observa on week when compared to the baseline week.

To do this, age-specific mobility trends were selected from the calendar week that included the rebound date.

Then, Gamma regression models with log link, and loca on and age category interac on terms were fi ed to the

selected daily mobility trends. Nega ve regression coefficients with a two-sided p-value below 0.05 were inter-

preted as age groups showing sta s cally significantly lower mobility compared to the baseline week. Similarly,

posi ve regression coefficients with a two-sided p-value below 0.05 were interpreted as age groups showing sta-

s cally significantly higher mobility compared to the baseline week, and regression coefficients with a two-sided

p-value above 0.05 were interpreted as age groups showing mobility trends that were not significantly different

compared to the baseline week. Figure S13 (le ) summarises the results. In the rebound week, mobility was

significantly lower when compared to the baseline week across all age groups and all loca ons.

We repeated the analysis for the last observed calendarweek (Aug 10-Aug 16). In the lastweek, therewas substan-

al varia on inmobility trendswhen compared to baseline. Among individuals aged 18-24, mobility had remained

significantly lower when compared to baseline in 42 (80.8%) states or metropolitan areas, was not significantly

different when compared to baseline in 6 (11.5%) states or metropolitan areas, and significantly above baseline

in 4 (7.7%) states or metropolitan areas. Among individuals aged 25-34, mobility had remained significantly lower

when compared to baseline in 29 (55.8%) states or metropolitan areas, was not significantly different when com-

pared to baseline in 17 (32.7%) states or metropolitan areas, and significantly above baseline in 6 (11.5%) states

or metropolitan areas. Among individuals aged 35-44, mobility had remained significantly lower when compared

to baseline in 25 (48.1%) states or metropolitan areas, was not significantly different when compared to baseline

in 20 (38.5%) states or metropolitan areas, and significantly above baseline in 7 (13.5%) states or metropolitan

areas. Among individuals aged 44-54, mobility had remained significantly lower when compared to baseline in

22 (42.3%) states or metropolitan areas, was not significantly different when compared to baseline in 23 (44.2%)

states ormetropolitan areas, and significantly above baseline in 7 (13.5%) states ormetropolitan areas. Among in-

dividuals aged 55-64, mobility had remained significantly lower when compared to baseline in 23 (44.2%) states or

metropolitan areas, was not significantly different when compared to baseline in 21 (40.4%) states or metropoli-
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Figure S12: Mobility trends per person per day for the 50 US states, District of Columbia and New York City

(part 1). Mobility trends quan fy change in projected visits rela ve to the baseline week February 3 to February

9, 2020. The two dashed lines indicate the dip and rebound me, defined respec vely in (S5) and (S6).
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Figure S12: Mobility trends per person per day for the 50 US states, District of Columbia and New York City

(part 2). Mobility trends quan fy change in projected visits rela ve to the baseline week February 3 to February

9, 2020. The two dashed lines indicate the dip and rebound me, defined respec vely in (S5) and (S6).

tan areas, and significantly above baseline in 8 (15.4%) states ormetropolitan areas. Among individuals aged 65+,

mobility had remained significantly lower when compared to baseline in 29 (55.8%) states or metropolitan areas,
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was not significantly different when compared to baseline in 14 (26.9%) states or metropolitan areas, and signif-

icantly above baseline in 9 (17.3%) states or metropolitan areas. This analysis suggests that overall, individuals

aged 18-24 con nue to limit their mobility substan ally when compared to early February. For individuals aged

25 and above, mobility trends are heterogeneous across the United States, with mobility levels remaining below

those seen in early February in approximately half of all states or metropolitan areas.

To obtain further insights into age-specific mobility trends between age groups, we repeated the regression analy-

sis using as predictors the contrasts between all age groups and the 35-44 age group. Figure S13 (right) summarises

the results. In the rebound week, individuals aged 18-24 had significantly lower mobility trends when compared

to individuals aged 35-44 in 49 (94.2%) states or metropolitan areas, similar mobility trends in 2 (3.8%) states or

metropolitan areas, and higher mobility trends in 1 (1.9%) states or metropolitan areas. Individuals aged 25-34,

45-54, 55-64 tended to have similar mobility trends when compared to individuals aged 35-44. Individuals aged

65+ tended to have overall significantly lower mobility trends when compared to individuals aged 35-44. Results

for the last observed calendar week (Aug 10-Aug 16) are summarised in the last column of Figure S13. In the last

week, individuals aged 18-24 had significantly lower mobility trends when compared to individuals aged 35-44

in 20 (38.5%) states, similar mobility trends in 31 (59.6%) states, and higher mobility trends in 1 (1.9%) trends.

Individuals aged 25-34, 45-54, 55-64, 65+ tended to have similar mobility trends when compared to individuals

aged 35-44. The Foursquare data suggest that

• individuals aged 18-24 reduced their mobility more strongly than individuals aged 35-44 in the ini al phase

of the pandemic, and con nue to be significantly less mobile than individuals aged 35-44 as of the last

observa on week;

• individuals aged 18-34 have lower or similar, but not significantly higher mobility when compared to indi-

viduals aged 35-44 as of the last observa on week;

• individuals aged 65+ showed different behaviour. In the ini al phase of the pandemic individuals aged 65+

appear to have reduced their mobility significantly more than individuals aged 35-44, however by the last

observa on week, individuals aged 65+ appear to be as mobile as individuals aged 35-44.

S1.4 Comparison to an independent U.S. mobility trend data set

To substan ate the trends observed in the na onal Foursquare data set, we evaluated an independent data set

of age-stra fied mobility indicators that was provided by Emodo. The Emodo data set quan fies the propor on
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Figure S13: Sta s cal analysis of mobility trends. (Le ) Mobility trends during the calendar week that includes

the rebound date were categorised as sta s cally significantly lower when compared to the baseline week, not

significantly different, and sta s cally higher. Analysis was repeated for mobility trends during the last complete

calendar week. (Right) Mobility trends during the calendar week that includes the rebound date were categorised

rela ve to trends among individuals aged 35 − 44 in the same week. Analysis was repeated for mobility trends

during the last complete calendar week.

of individuals with at least one observed ping outside the user’s home loca on, out of a panel of individuals

whose GPS enabled devices emi ed at least one ping on the corresponding day. The observed, age-specific, daily

mobility indicators within the panel were projected to loca on-level mobility indicators. The projec on accounts

for changes in the number of individuals in the panel, and the representa veness of panel members in their home

area, age band, and gender rela ve to the latest U.S. Census.

Daily projected mobility indicators V̆m,t,ă were available at state / metropolitan area-level m from Feb 01 to Jul

26 for individuals between the age groups

ă ∈ Ă =
{
[18− 24], [25− 34], [35− 44], [45− 54], [55+]

}
. (S7)
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To compare the data against the age-specific Foursquare mobility trends (S3), we derived mobility trends similarly

as for the Foursquare data. We first calculated average mobility trends during the baseline period,

V̆ base
m,ă =

∑
t∈{Feb 19−Mar 03}

V̆m,t,ă (S8)

and then derived the mobility trends

X̆m,t,ă = V̆m,t,ă/V̆
base
m,ă (S9)

for each loca on (states or metropolitan area)m and the age bands ă.

Ini al analysis indicated that the mobility trends (S9) were noisy for some loca ons. For this reason, analysis was

limited to loca on with an average of 20, 000 dis nct panelists per day per age band, and the baseline period in

(S8) was defined over 14 days. In total, data from 11 loca ons were used. Figure S14 compares the age-specific

mobility trends derived from the Foursquare data to those derived from the Emodo data set. Overall, the trends

observed in both data sets were very similar.

The primary aim of this analysis was to assess whether the Emodo data support the above observa on that young

individuals aged 18−24 and 25−34 con nue to havemobility trends significantly below or similar to the baseline

period, andmobility trends that are not significantly higher than those seen for older individuals. We repeated the

analyses presented in Sec on S1.2, with the last observa onweek set to the last completeweek of observa ons in

both data sets (July 20-July 26). Figure S15 summarises the results. The Emodo data substan ate that individuals

aged 18-24 con nue to have mobility trends below those seen in the baseline period, and that individuals aged

25 − 34 have mobility levels similar to those seen at baseline, and not higher than seen at baseline. We further

find the Emodo data support the conclusion that individuals aged 18-24 and 25−34 have lower or similar mobility

levels than individuals aged 34-45, and not higher mobility levels than individuals aged 34-45.
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Figure S14: Comparison of mobility trends derived with Foursquare’s loca on technology and Emodo’s mobility

data. The comparison was restricted to iden cal age bands in the two data sets, a common range of observa on

days, and states and metropolitan areas with an average of at least 20, 000 panelists per day.
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Figure S15: Sta s cal analysis of mobility trends in the Foursquare and Emodo data sets. (Le ) Considering

both data sets, mobility trends during the calendar week that includes the rebound date were categorised as

sta s cally significantly lower when compared to the baseline week, not significantly different, and sta s cally

higher. Analysiswas repeated formobility trends during the last complete calendarweek. (Right) Considering both

data sets, mobility trends during the calendar week that includes the rebound date were categorised rela ve to

trends among individuals aged 35 − 44 in the same week. Analysis was repeated for mobility trends during the

last complete calendar week.

S2 Supplementary Text: Age-specific COVID-19 mortality data

Daily COVID-19 death counts from February 01, 2020 un l September 02, 2020 regardless of age were obtained

from John Hopkins University (JHU) for all U.S. states and the District of Columbia [3], except New York State. For

New York State, daily COVID-19 death counts from February 01, 2020 un l September 02, 2020 were obtained

from the New York Times’ (NYT) data [4]. For New York City, daily COVID-19 deaths counts were obtained from

the GitHub Repository [5]. The overall death counts were used for sta s cal inference prior to when age-specific

death counts were reported for each loca on (state or metropolitan areas).

Age-specific COVID-19 cumula ve death counts were retrieved for 40 U.S. states, the District of Columbia and

New York City from city or state Department of Health (DoH) websites, data repositories or via data requests to

DoH. Table S8 lists our data sources for each loca on, the date since when age-specific mortality data used in this

study was recorded, and the frequency of data updates.
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The recorded death counts were processed to create a me series of daily deaths for every loca on. Some dates

hadmissing data, typically either because no updates were reported, or because reporters changed the age bands

inwhich themortality datawere reported. Missing daily death countswere imputed, assuming a constant increase

in daily deaths between two days with data. Some updates displayed a decreasing cumula ve death from one

day. When this was observed, the daily death count was set to zero and the previous daily death count was

reduced by the count difference. Finally, certain age bands declared by the Department of Health could not be

directly associated with the age bands used in the analysis, defined in (S10). In this case, the boundaries of these

problema c age bands were modified to reflect the closest age band from the analysis. Figure S16 illustrates the

age-specific COVID-19 mortality data that were retrieved. To assess the completeness of the age-specific death

data, we compared the me evolu on of the sumof the age-specific deaths thatwe retrieved to the me evolu on

of the overall number of COVID-19 deaths reported by JHU [3] and the New York City Github Repository [5].

Figure S17 confirms that the sum of the age-specific data that we retrieved closely matched the overall death

data.
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Loca on Date record start Frequency of updates Source

Alabama May 03, 2020 Daily [6]
Alaska June 09, 2020 Daily [7]
Arizona May 13, 2020 Daily [8]
Arkansas - - -
California May 13, 2020 Daily [9]
Colorado March 23, 2020 Daily [10]
Connec cut April 05, 2020 Daily [11]
Delaware May 12, 2020 Daily [12]
District of Columbia April 13, 2020 Daily [13]
Florida March 27, 2020 Daily [14]
Georgia May 06, 2020 Daily [15]
Hawaii - - -
Idaho May 13, 2020 Daily [16]
Illinois May 14, 2020 Daily [17]
Indiana May 13, 2020 Daily [18]
Iowa May 13, 2020 Daily [19]
Kansas May 13, 2020 Mon, Wed and Fri. [20]
Kentucky May 13, 2020 Daily [21]
Louisiana May 12, 2020 Daily except Sat. [22]
Maine March 12, 2020 Daily [23]
Maryland May 14, 2020 Daily [24]
Massachuse s April 20, 2020 Daily [25]
Michigan March 21, 2020 Daily [26], [27]
Minnesota - - -
Mississippi April 27, 2020 Daily [28]
Missouri May 13, 2020 Daily [29]
Montana - - -
Nebraska - - -
Nevada June 07, 2020 Daily [30]
New Hampshire June 07, 2020 Daily [31]
New Jersey May 25, 2020 Daily [32]
New Mexico March 25, 2020 Daily [33]
New York - - -
New York City July 01, 2020 Daily [34], [5]
North Carolina May 20, 2020 Daily [35]
North Dakota May 14, 2020 Daily [36]
Ohio - - -
Oklahoma May 13, 2020 Daily [37]
Oregon June 05, 2020 Mon-Fri., some mes Sat. [38]
Pennsylvania June 07, 2020 Daily [39]
Rhode Island June 01, 2020 Weekly [40]
South Carolina May 14, 2020 Tue and Fri. [41]
South Dakota - - -
Tennessee April 09, 2020 Daily [42]
Texas July 28, 2020 Daily [43]
Utah June 17, 2020 Daily [44]
Vermont June 16, 2020 Daily [45]
Virginia April 21, 2020 Daily [46]
Washington June 08, 2020 Daily [47]
West Virginia - - -
Wisconsin March 15, 2020 Daily [48]
Wyoming - - -

Table S8: Age-specific Mortality Data source, date of first availability and update frequency by loca on (state

and metropolitan area). The data are available in the GitHub repository [49].
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 1). COVID-19 related deaths were

recorded as reported by city or state DoH. Shown is the percent contribu on of age groups to cumulated deaths

(colours) from the first day on which the death by age was recorded.. The start of the x-axis is the same in every

figures and corresponds to the day with the first observa on of death by age across all loca ons (states and

metropolitan areas).
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 2). COVID-19 related deaths were

recorded as reported by city or state DoH. Shown is the percent contribu on of age groups to cumulated deaths

(colours) from the first day on which the death by age was recorded.. The start of the x-axis is the same in every

figures and corresponds to the day with the first observa on of death by age across all loca ons (states and

metropolitan areas).
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Figure S16: Age-specific COVID-19 mortality data in the United States (part 3). COVID-19 related deaths were

recorded as reported by city or state DoH. Shown is the percent contribu on of age groups to cumulated deaths

(colours) from the first day on which the death by age was recorded. The start of the x-axis is the same in every

figures and corresponds to the day with the first observa on of death by age across all loca ons (states and

metropolitan areas).
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Figure S17: Comparison of the Covid-19 overall death between the Department of Health death by age data

with the overall death from JHU [3], and the New York City Github repository (for NYC) [5].
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S3 Supplementary Text: Bayesian semi-mechanis c SARS-CoV-2 infec on

model

Figure S2, also reproduced here as Figure S18, summarises the main components of the age-specific contact and

infec on model. Sec on S3.1 describes the infec on component of the model, and Sec on S3.2 describes the

contact component of the model. Sec on S3.3 describes how the model is fi ed against age-specific mortality

data. Sec on S3.4 specifies input parameters and prior distribu ons. Table S9 gives an overview of the model

parameters and associated prior distribu ons. Sec on S3.6 describes the generated quan es of the contact and

infec on model. Finally, Sec on S3.5 provides details on computa onal inference.
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Figure S18: Overview of the age-specific contact and infec on model.
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Sec on

reference
Ini al number of infec ons yes log cm,t,[20−54] ∼ N (4.5, 0.622), infec ons seeded among individuals aged 20-54 Sec on S3.4.1

cm,t,a = 0, for a /∈ [20− 54], with log-normal prior with mean XX
where t = 1, . . . , 6.

Infec on parameters yes R0,m ∼ N (3.28, κ) Based on [50] Sec on S3.4.1
κ ∼ N[0,∞)(0, 0.5)

Suscep bility to infec on yes log ρS[0−14] ∼ N (−1.07, 0.222) Suscep bility was modelled rela ve to individuals aged 15-64, Sec on S3.4.1
log ρS[65+] ∼ N (0.38, 0.162) with lower suscep bility to infec on among individuals aged 0-14,

and higher suscep bility among individuals aged 65+.
Based on [51]

Discre zed genera on me distribu on no - Based on [52] Sec on S3.4.1
Baseline age-specific contact matrix no - Predicted based on loca ons’ age composi on and popula on density Sec on S3.4.2
before mobility decreased for weekdays and weekends
Mobility trend predictors no - Decomposed into 3 components to allow for varying effect sizes Sec on S3.4.2
Regression coefficients to describe yes βeased

m ∼ N (βeased, σ2
eased) Loca on-specific random effects to quan fy the effect of Sec on S3.4.2

me-varying contact intensi es βeased ∼ N (0, 1) rapid decreases in mobility between the dip date and the rebound date.
before the rebound date. σeased ∼ Exp(10) Effects are assumed to be constant across age groups.
Regression coefficients to describe yes βupswing

mt = βupswing
m × βupswing

t Loca on-specific and me-varying random effects to quan fy the effect of Sec on S3.4.2
me-varying contact intensi es βupswing

m ∼ N (βupswing, σ2
upswing) increasing mobility levels over the longer period a er the rebound date.

a er the rebound date. βupswing ∼ N (0, 1) Effects are assumed to be constant across age groups. Time-varying effects
σupswing ∼ Exp(10) are modelled with a bi-weekly AR(1) process that is the same across loca ons
βupswing
t = ε⌊c(t)/2⌋ and age groups.

ε1 ∼ N[0,∞)(0, 0.025)
εv ∼ N[0,∞)(εv−1, σε) for v > 1
σε ∼ Exp(10)

Loca on and age-specific yes πm,a = πa × δm,a The prior distribu on on age-specific fatality ra os πa is based on a Sec on S3.4.3
infec on fatality ra os logπa ∼ N (µa, σ

2
a) re-analysis of data from several sero-prevalence studies, and similar to

log δm,[20−49] ∼ N(0, σ2
[20−49]) the rela onship es mated in [53]. µa, σa are specified in Table S13.

log δm,[50−69] ∼ N(0, σ2
[50−69]) Loca on-specific random effects account for spa al heterogeneity.

log δm,[70+] ∼ Exp(λ[70+])
σ[20−49], σ[50−69] ∼ Exp(10)
λ[70+] ∼ Exp(0.05)

Infec on-to-death distribu on no - As in [54] Sec on S3.4.3
Overdispersion parameter yes ϕ ∼ N[0,∞)(0, 5) As in [54] Sec on S3.4.3

Table S9: List of inputs and model parameters.
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In the model, SARS-CoV-2 spreads via person-to-person contacts. Person-to-person contacts are described at

the popula on level with the expected number of contacts made by one individual, referred to as contact in-

tensi es. Contact intensi es are age-specific. Contact intensi es vary across loca ons (states and metropolitan

areas) according to each loca on’ age composi on and popula on density, and change over me. Data from

contact surveys before the pandemic are used to define baseline contact intensi es. Data from age-specific, cell

phone derived mobility trends are used to es mate changes in contact intensi es during the epidemic in each

loca on, among individuals aged 15+. Contact intensi es involving individuals aged 0-14 are defined based on

contact surveys conducted during the pandemic. Infec on dynamics in each loca on are modelled through age-

specific, discrete- me renewal equa ons over me-varying contact intensi es. Natural disease parameters such

as age-specific suscep bility to infec on, the genera on me distribu on, and symptom onset and onset to death

distribu ons are informed by epidemiologic analyses of contact tracing data. Age-specific infec on fatality ra o

es mates are informed by large-scale sero-prevalance surveys. Disease heterogeneity is modelled with random

effects in space and me on contact intensi es and disease parameters. The model returns the expected number

of COVID-19 deaths over me in each loca on, which is fi ed against age-specific, COVID-19 mortality data. New

data sources presented in this study are indicated in double-framed boxes.

S3.1 Infec on model

The me evolu on of SARS-CoV-2 infec ons is quan fied in terms of a discrete- me age-specific renewal model.

The discrete renewal model arises as the expected value of an age dependent branching process. The model

extends a previous version to age-specific disease dynamics [54]. In the renewal equa ons, wemodel popula ons

stra fied by the 5-year age bandsA, such that

a ∈ A =
{
[0− 4], [5− 9], . . . , [75− 79], [80− 84], [85+]

}
, (S10)

resul ng in A = 18 popula on strata. We denote the number of new infec ons, c, on day t, in age band a,

and loca on m as cm,t,a, with cm,t,a ≥ 0 for all t, m, a. Here infec ons are taken to be both symptoma c and

asymptoma c. We introduce a series of daily contact intensity matrices Cmt of dimension 18×18 in each loca on

m. The me changing contact intensi es Cm,t were modelled in a regression framework that uses as input pre-

pandemic contact intensi es, which will be presented in Sec on S3.4.2, as well as the age-specific mobility trends

Xm,t,a that are described in Supplementary Text S1. Entry Cm,t,a,a′ quan fies the expected number of contacts

that one person in age group a has with persons of another age a′ on day t in loca on m, which we refer to as

contact intensity. We further consider the probability ρa′ that a contactwith an infec ous person leads to infec on

of one person in a′. We interpret ρa′ as a natural disease parameter that is region and me independent. We
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model ρa′ as the product of a constant baseline parameter ρ0, and rela ve suscep bility parameters ρSa′ for a′ ∈ A

through

ρa′ = ρ0 × ρSa′ = exp(log ρ0 + log ρSa′). (S11)

To ensure a rela ve interpreta on of the suscep bility parameters, we set ρSa′ = 1 for some age bands. Details

are given in Supplement S3.4.1. This allows us to describe the me-varying reproduc on number on day t from

one infec ous person in a in loca onm with

Rm,t,a =
∑
a′

sm,t,a′ ρa′ Cm,t,a,a′ , (S12)

where sm,t,a′ is the propor on of the popula on in loca on m and in age band a′ that remains suscep ble to

SARS-CoV-2 infec on. It is given by

sm,t,a′ = 1−
∑t−1

s=1 cm,t,a′

Nm,a′
, (S13)

where Nm,a′ denotes the popula on count in age group a′ and loca onm. Extending the basic renewal model,

we obtain similarly

cm,t,a′ = sm,t,a′ρa′

∑
a

Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)

)
(S14)

where g is the discre zed genera on me distribu on as in [54]. This is because an individual of age a′ in country

m at me tmakes contacts with individuals of age a at rate Cm,t,a,a′ , and these are successful with probability ρa′

if and only if 1) the individual in a′ is suscep ble, which is the case with probability sm,t,a′ , and 2) the individual

in a is s ll infec ous, which is the case with probability g(t− s).

S3.2 Time-varying contact pa erns

S3.2.1 Overview.

Several studies have collected data on age-specific contact pa erns in various se ngs across the United States

prior to emergence of SARS-CoV-2 [55, 56, 57, 58]. However, li le data are available on how contact pa erns

changed during the pandemic. These considera ons prompted us to take a predic ve approach. First, we used

data from the Polymod study [59] to predict baseline contact matrices during the early part of the pandemic for

each loca on, which we denote by Cm. The pre-pandemic contact matrices quan fy the expected number of

contacts from one person in age band a with individuals in age band a′ per day in loca on m, also known as

contact intensi es. Popula ons were stra fied by 5-year age bands a ∈ A defined in (S10). Reflec ng differences

in contact pa erns during weekdays and on weekends, dis nct pre-pandemic contact matrices were generated
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for weekdays and weekends, Cwdaym and Cwendm . For simplicity we suppress the weekday and weekend nota on in

what follows, with all equa ons being analogous. Details are presented in Sec on S3.2.2.

Second, we used the age-specific mobility trend data available for individuals aged 18+ to predict me-varying

contact intensi es among individuals aged 15+. Overall, me changing contact intensi es on day t in loca onm

were modelled through

Cm,t,a,a′ = ηm,t,a Cm,a,a′ ηm,t,a′ , (S15)

where a ∈ {[15 − 19], [20 − 25], . . . , [85+] } and a′ ∈ {[15 − 19], [20 − 25], . . . , [85+]}. The mul pliers ηm,t,a

describe the es mated effect of the age-specific mobility trendsXm,t,a on changes in pre-pandemic contact ma-

trices for each loca on. Since both the index person and the contacted individuals are changing theirmobility over

me, the mul pliers are applied to the rows and columns of the contact intensity matrix. Details are presented in

Sec on S3.2.3.

Third, we used data from two contact surveys conducted a er school/nursery closures to specify contact intensi-

es from and to children aged 0-14. Details are presented in Sec on S3.2.4.

S3.2.2 Baseline contact intensity matrices prior to changes in mobility

Wefirst obtained es mates of weekday andweekend contactmatrices for 8 European countries from the Polymod

contact survey [60]. Briefly, survey par cipants were recruited in such a way as to be broadly representa ve of

the whole popula on in terms of geographical spread, age, and sex. Par cipants were asked to keep a diary of

their contacts. The study included 7,290 par cipants recruited between May 12, 2005 and September 05, 2006.

Contact intensi es were es mated for Belgium, Germany, Finland, Italy, Luxembourg, the Netherlands, Poland,

and the United Kingdom using the approach of [61], using code at the Github repository [62]. We index each

of the European countries with e. The posterior median es mates of the number of individuals in age ã′ that

were contacted per day by one individual in age ã were extracted. Using the available methodology, popula ons

were stra fied in 1-year age bands. Figure S19 illustrates the es mated weekend and weekday contact intensity

matrices for the 8 European countries.

To match the popula on stra fica on in the SARS-CoV-2 infec on model, the es mated contact intensi es at

1-year resolu on were aggregated to 5-year resolu on using

Ce,a,a′ =
∑

ã∈a,ã′∈a′

Ne,ã(∑
ã∈a Ne,ã

) Ce,ã,ã′ , (S16)

whereNe,ã denotes the number of individuals in 1-year age band ã in the corresponding European country e. The
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Figure S19: Es mated contact intensi es for the 8 Polymod countries by weekday and weekend.
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es mated contact intensi es Ce,a,a′ were real-valued and posi ve.

Next, we constructed a predic ve sta s cal model of contact intensi es based on popula on demographics in-

cluding the total popula on size, the number of individuals in age band a′, the propor on of individuals in age

band a′, and popula on density. Regression models were fi ed based on the 8 ∗ 18 ∗ 18 = 2, 592 es mates (S16)

from the European-wide Polymod survey, separately for weekdays and weekends. The chosen sta s cal model

was of the form

log Ce,a,a′ ∼ N (µe,a,a′ , σ2) (S17a)

µe,a,a′ = θa,a′ + θ1
Ne,a′

Ne
+ θ2 log

Ne,a′

Ae
, (S17b)

where θa,a′ are pairwise age-specific baseline terms,Ne,a′ is the number of individuals in age band a′ in loca on

e, andAe is the land area of loca on e in square kilometres. The least squares es mates of θ1 and θ2 were posi ve

and highly significant for both weekday and weekend contact intensi es, so that under model (S17) contact inten-

si es with individuals of age a′ increase as the propor on of the popula on of age a′ increases, and as popula on

density increases. The fits of model (S17) through the training data are illustrated in Figure S20. The leave-one-

out cross-valida on mean absolute error associated with model (S17) was 0.361 and 84.1% of the variance was

explained.

Baseline contact matrices for the 50 U.S states, the District of Columbia and New York City were then predicted

using (S17). Figure S21 shows the predicted baseline weekday contact matrices Cm for all loca ons. The pre-

dicted contact matrices are consistent with key characteris cs of human contact pa erns, including high number

of contacts between children and teenagers of same age, parent-child interac ons, broader workforce interac-

ons, and child/parent-grandparent interac ons. Figure S22 illustrates loca on-specific differences in predicted

contact intensi es rela ve to the na onal average. In loca ons with young popula ons such as Alaska, the Dis-

trict of Columbia, Texas or Utah, lower contact intensi es are predicted with individuals in young age groups when

compared to the na onal average. Similarly, in loca ons with older popula ons such as Maine, higher contact

intensi es are predicted with individuals in older age groups when compared to the na onal average. Figure S23

illustrates that loca ons with high popula on density such as the District of Columbia and New York City are pre-

dicted to have higher contact intensi es compared to the na onal average. Figure S24 compares predicted con-

tact intensi es on weekdays to those predicted for weekends. Predicted contact intensi es were higher between

children and the elderly individuals on weekends compared to weekdays for all loca ons.
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Figure S20: Predicted contact intensi es versus Polymod es mates. Median predic ons and 95% predic ve

intervals under model (S17) are shown in grey, and Polymod es mates are shown in blue.
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Figure S21: Predicted age-specific contact matrices for the 50 US states, District of Columbia and New York City

prior to the pandemic, on weekdays. Shown in colour are the predicted number of contacts made by one index

person of age a with individuals of age a′ per day. Loca ons ordered by popula on density.
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Figure S22: Difference in predicted age-specific contact matrices for the 50 US states, District of Columbia and

New York City prior to the pandemic rela ve to the na onal average, on weekdays. Shown in colour are the log

ra o of the contact intensi es in each loca on compared to the contact intensi es for the na onal popula on.
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Figure S24: Difference in contact intensi es at weekends compared to weekdays. Loca ons ordered by popula-

on density.
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S3.2.3 Time-varying contact intensi es among individuals aged 15+

The me changingmul pliers ηm,t,a to the rows and columns of the pre-pandemic contactmatriceswere obtained

through a regressionmodel using the age-specific mobility trends S3 as predictors. To age stra fica on (S10) used

in the model, we expanded the original mobility trends through

Xm,t,a =

{
Xm,t,ã if a ∈ ã
Xm,t,[18−24] if a ∈ {[15− 19], [20− 24]}. (S18)

This step assumed that themobility trends among individuals aged 15-18 are represented by the observedmobility

trends among individuals aged 18− 24.

To model different effects around the me of stay at home orders and later me periods, the mobility trends S18

were decomposed into three components. The three components are a baseline mobility trend denoted by

Xbase
m,t,a, an easedmobility trendwhichwedenote byXeased

m,t,a, and an upswingmul plier thatwedenote byXupswing
m,t,a .

The decomposi on sa sfies the rela on

Xm,t,a = Xbase
m,t,a ×Xeased

m,t,a ×Xupswing
m,t,a (S19)

for allm, t, and a ∈ {[15 − 19], [20 − 24], . . . , [85+]}. Specifically, the base mobility trends, the eased mobility

trends and mul pliers were defined as

Xbase
m,t,a =


Xm,t,a if t < tdipm ,

1 if t ≥ tdipm ,

(S20a)

Xeased
m,t,a =



1 if t < tdipm ,

Xm,t,a if tdipm ≤ t < treboundm ,

χwday
m,a if t ≥ treboundm and t is a weekday,

χwend
m,a if t ≥ treboundm and t is a weekend,

(S20b)

Xupswing
m,t,a =



1 if t < tdipm ,

1 if tdipm ≤ t < treboundm ,

Xm,t,a/χ
wday
m,a if t ≥ treboundm and t is a weekday,

Xm,t,a/χ
wend
m,a if t ≥ treboundm and t is a weekend,

(S20c)

where χwday
m,a is the average of the mobility trendXm,t,a over the 5weekdays before treboundm , and χwend

m,a is the aver-

age of the mobility trendXm,t,a over the 4 weekend days before treboundm . Figure S25 illustrates the decomposed

mobility trends for four loca ons.
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Figure S25: Decomposi on of mobility trends, shown for 4 US loca ons. For each loca on, the change point in

overall mobility trends was determined using a 10-day moving average. Age-specific mobility trends were then

decomposed into eased mobility trends and mul pliers as shown. The ver cal dash lines indicate the change

points when mobility dipped and began to rebound.

With the decomposed mobility trends, we modelled the mul pliers in (S15) that quan fy the me evolu on in

contact intensi es through

ηm,t,a = exp
(
logXbase

m,t,a + βeased
m logXeased

m,t,a+

βupswing
mt logXupswing

m,t,a

) (S21)

where βeased
m is varying across loca ons, and βupswing

mt is varying in space and me. The purpose of the eased

mobility regression coefficient βeased was to capture the effect of permanent reduc ons in contact pa erns in

the early phase of the pandemic. The purpose of the upswing regression coefficients βupswing
mt was to capture

longer-term effects a er the ini al reduc on in contact pa erns during the early phase of the pandemic. The
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longer-term effects were allowed to differ in me and across the United States. Within each loca on, the effect

of the age-specific mobility trends was assumed to be iden cal.

To illustrate the effect of the regression coefficients, consider the case that βeased
m = βupswing

mt = 0. In this case,

ηm,t,a = 1 and the contact intensi es on day t are the same as at baseline a er the dip date. If instead βeased
m =

βupswing
mt = 1, the contact intensi es on day t from index persons scale with the observed mobility trend Xm,t,a.

Finally, if βeased
m = 1 and βupswing

mt = 0, the contact intensi es on day t from index persons scale with the derived

eased mobility trendXeased
m,t,a a er the dip date.

S3.2.4 Time-varying contact intensi es from and to children aged 0-14

To avoid extrapola ng themobility trends to children aged 0-14, we used data from two contact surveys conducted

a er school/nursery closures in response to accelera ng COVID-19 epidemics in the UK and China [63, 51]. Fig-

ure S27 compares the es mated contact intensi es from one child aged 0-14 using the contact surveys in Wuhan

and Shanghai before and during lockdown. Figure S26 compares the es mated contact intensi es to individuals

aged 0-14. We plot the point es mates from the original report before lockdown to those during lockdown [51]

(top row) and the ra o of the contact intensi es during lockdown versus the corresponding contact intensi es

before lockdown (bo om row). During lockdown, the es mated, average number of daily peer-to-peer contacts

from one child aged 0-14 to children in the same age group was 0.03, corresponding to a contact intensity ra o

of 0.02 across both ci es. The total number of contacts from one child aged 0-14 during the outbreak was 2.07,

corresponding to a contact intensity ra o of 0.14 across both ci es. The average number of contacts from one

individual randomly chosen in the popula on to individuals in 0− 14 was 0.23 during lockdown, associated with

a contact intensity ra on of 0.29. The contact survey of Jarvis and colleagues [63] in the UK included individuals

aged 18+, but interviewed individuals were also asked to report contacts to children and teenagers aged 0-17.

During lockdown, the es mated, average number of daily peer-to-peer contacts from one individual older than

18 to children aged 0-17 was 0.78, corresponding to a contact intensity ra o of 0.25.

In the United States, school closures have been ordered at least to one level (elementary school, middle / junior

high school, or high school) in 13 states and theDistrict of Columbia, and to all levels in the remaining 38 states [64].

In addi on, 17 states have also ordered the closure of child-care centres, with the op on to provide care only for

children of parentsworking in essen al areas, and 11 states either limited the number of children that can be cared

for in child-care centres or encouraged families to stay at home with their children [65]. Figure S28 illustrates the

melines of school closure dates across the United States. In the model, we accounted for changes in contact

pa erns as a result of school and/or day care closures as follows. First, we obtained the average daily contact
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intensi es involving children aged 0-14 during lockdown in Wuhan and Shanghai, and denote these by

CCOV ID−0−14
a,a′ (S22)

where either a ∈ {[0 − 4], [5 − 9], [10 − 14]} and a′ is one of the 5-year age bands of the infec on-and-contact

model, or a is one of the 5-year age bands and a′ ∈ {[0−4], [5−9], [10−14]}. Next, we denoted the me indices

corresponding to school closures ordered or recommended in loca onm by tschool-closem , and set the me-varying

contact intensi es that involve children aged 0-14 as

Cm,t,a,a′ =

{
Cm,a,a′ if t < tschool-closem

CCOV ID−0−14
a,a′ if t ≥ tschool-closem

(S23)

where Cm,a,a′ is the baseline pre-COVID-19 contact matrix described in Sec on S3.2.2. School re-opening mes

fell in the forecast period, the subsequent changes on the contact intensi es (S23) during this period are described

in Sec on S3.7.
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Figure S26: Es mated changes in contact intensi es to children aged 0-14 during lockdown, Shanghai and

Wuhan, China. Data from [51]. (A) Average number of contacts fromone individual in 5-year age bands to children

aged 0-14 before (blue) and during (orange) lockdown. (B) Contact intensity ra o (grey).
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Figure S27: Es mated changes in contact intensi es from one child aged 0− 14 during lockdown, Shanghai and

Wuhan, China. Data from [51]. (A) Average number of contacts from one individual in 0 − 14 to individuals in

5-year age bands before (blue) and during (orange) lockdown. (B) Contact intensity ra o (grey).

DOI: https://doi.org/10.25561/82551 Page 38

https://doi.org/10.25561/82551


17 September 2020 Imperial College COVID-19 Response Team

Figure S28: School closure status in the 50 U.S states and the District of Columbia. Data were retrieved from [64]

for all U.S loca ons and were available un l August 31, 2020.
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S3.3 Likelihood

The self-renewal model is fi ed to overall death counts and/or age-specific death counts for each loca on m.

To establish a link between the data and the expected number of cases cm,t,a (S14), we model the probability

Hma(t − s) that a person in age band a dies from SARS-CoV-2 infec on before me t − s a er infec on at me

s in loca on (state or metropolitan area) m. We decompose the probability into the infec on fatality ra o in

loca on m and age band a, πm,a, and the infec on-to-death distribu on h that describes when a death occurs

condi onal on non-survival. We decompose Hma(t − s) in this manner because es mates of both terms are

available from the literature [66, 54]. Our model is

Hma(t− s) = πma

∫ t−s

0

h(u)du, (S24)

where t− s is in con nuous me and h integrates to 1. Using (S24), we can express the probability that a person

in loca onm and age band a dies on day s a er SARS-CoV-2 infec on as

hmsa =

∫ s+0.5

s−0.5

πmah(u)du = πma

∫ s+0.5

s−0.5

h(u)du ∀s = 2, 3, . . . , (S25)

and hm1a = πma

∫ 1.5

0
h(u)du for s = 1. Using (S25), the expected number of COVID-19 deaths on day t in age

band a in loca onm is

dmta =

t−1∑
s=1

cmsahm (t−s) a, (S26)

where cmsa is the expected number of new cases on day s in age band a in loca onm, (S14).

We link the expected number of death under the self-renewal model to the observed number deaths through

an over-dispersed count model. For each loca onm, the data consist of daily, overall reported COVID-19 related

deaths regardless of age un l day tage-startm . For each loca on, me was re-scaled to 30 days prior to the first day

when the cumula ve number of deaths was 10 or larger. We denote the overall number of deaths on day t in

loca onm by ymt for t < tage-startm . From day tage-startm onwards, COVID-19 related deaths are reported in loca on-

specific age bands b ∈ Bm. We denote the number of deaths on day t in loca onm in age band b ∈ Bm by ymtb

for t ≥ tage-startm . To match the loca on-specific death data, we aggregate the expected number of deaths under

the self-renewal model to

dmt =
∑
a∈A

dmta ∀t < tage-startm (S27)

dmtb =
∑
a∈b

dmta ∀t ≥ tage-startm ,∀b ∈ Bm. (S28)
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The log likelihood then consists of three parts,

ℓ(y|θ) =
∑
m

[ ∑
tstartm ≤ t<tage-startm

log NegBin
(
ymt

∣∣dmt, ϕ
)
+ (S29a)

∑
t=tage-startm

∑
b∈Bm

log NegBin
( tage-startm∑

s=1

ymsb

∣∣ tage-startm∑
s=1

dmsb, ϕ
)
+ (S29b)

∑
tage-startm < t ≤ tendm

∑
b∈Bm

log NegBin
(
ymtb

∣∣dmtb, ϕ
)]
, (S29c)

where tstartm is the first day onwhich at least 10 cumulated deathswere reported in loca onm, and tendm corresponds

to the last day with overall death, or death by age data, see Table S10.

S3.4 Inputs and prior distribu ons on model parameters

The COVID-19 age-specific transmission model has the following inputs, which we consider fixed, and model pa-

rameters, which we consider unknown and es mate (see Table S9). The total number of es mated parameters in

the model is 30+NV +7×M , whereM is the number of loca ons andNV is the number of bi-weekly intervals,

which for the central analysis amounted to 298 es mated parameters.

S3.4.1 Infec on dynamics

Ini al number of infec ons. For each loca on, the number of SARS-CoV-2 infec ons in the first 6 days of the

observa on period among individuals aged 20-54 are given the prior distribu on

log cm,t,[20−54] ∼ N (4.5, 0.622), t = 1, . . . , 6 (S30)

Recall that the observa on period starts 30 days prior to the first day when the cumula ve number of deaths

in loca on m was 10 or larger. A priori we thus expect 90 infec ons to have occurred in the first 6 days among

individuals aged 20-54 years. The new infec ons are then equally distributed across the corresponding age bands,

cm,t,a =

{
cm,t,[20−54]/7 if a ∈ A0

0 otherwise, (S31)

where A0 = {[20 − 24], [25 − 59], [30 − 34], [35 − 39], [40 − 44], [45 − 49], [50 − 54]} and t = 1, . . . , 6. This

prior specifica on is similar to the base model [54].
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Loca on
Dates with

overall data

Dates with

death by age data
Number of age groups

Alabama March 29, 2020 - May 02, 2020 May 03, 2020 - August 23, 2020 5
Alaska - - -
Arizona March 27, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 5
Arkansas - - -
California March 17, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 4
Colorado March 25, 2020 - March 25, 2020 March 26, 2020 - August 23, 2020 9
Connec cut March 23, 2020 - April 04, 2020 April 05, 2020 - August 23, 2020 9
Delaware March 31, 2020 - May 11, 2020 May 12, 2020 - August 23, 2020 6
District of Columbia April 02, 2020 - April 12, 2020 April 13, 2020 - August 23, 2020 8
Florida March 20, 2020 - March 26, 2020 March 27, 2020 - August 23, 2020 10
Georgia March 19, 2020 - May 05, 2020 May 06, 2020 - August 23, 2020 18
Hawaii - - -
Idaho April 04, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 8
Illinois March 23, 2020 - May 13, 2020 May 14, 2020 - August 23, 2020 8
Indiana March 24, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 8
Iowa April 02, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 5
Kansas - - -
Kentucky March 30, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 9
Louisiana March 19, 2020 - May 11, 2020 May 12, 2020 - August 23, 2020 7
Maine - - -
Maryland March 29, 2020 - May 13, 2020 May 14, 2020 - August 23, 2020 9
Massachuse s March 24, 2020 - April 19, 2020 April 20, 2020 - August 23, 2020 8
Michigan March 23, 2020 - March 23, 2020 March 24, 2020 - August 23, 2020 8
Minnesota - - -
Mississippi March 28, 2020 - April 26, 2020 April 27, 2020 - August 23, 2020 8
Missouri March 28, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 8
Montana - - -
Nebraska - - -
Nevada March 26, 2020 - June 06, 2020 June 07, 2020 - August 23, 2020 8
New Hampshire April 08, 2020 - June 06, 2020 June 07, 2020 - August 23, 2020 9
New Jersey March 20, 2020 - May 24, 2020 May 25, 2020 - August 23, 2020 7
New Mexico April 03, 2020 - April 03, 2020 April 04, 2020 - August 23, 2020 8
New York - - -
New York City March 16, 2020 - June 30, 2020 July 01, 2020 - August 23, 2020 5
North Carolina March 31, 2020 - May 19, 2020 May 20, 2020 - August 23, 2020 6
North Dakota - - -
Ohio - - -
Oklahoma March 28, 2020 - May 12, 2020 May 13, 2020 - August 23, 2020 6
Oregon March 25, 2020 - June 04, 2020 June 05, 2020 - August 23, 2020 9
Pennsylvania March 25, 2020 - June 06, 2020 June 07, 2020 - August 23, 2020 8
Rhode Island April 01, 2020 - May 31, 2020 June 01, 2020 - August 23, 2020 9
South Carolina March 27, 2020 - May 13, 2020 May 14, 2020 - August 23, 2020 9
South Dakota - - -
Tennessee March 30, 2020 - April 08, 2020 April 09, 2020 - August 23, 2020 9
Texas March 24, 2020 - July 27, 2020 July 28, 2020 - August 23, 2020 11
Utah April 06, 2020 - June 16, 2020 June 17, 2020 - August 23, 2020 6
Vermont - - -
Virginia March 26, 2020 - April 20, 2020 April 21, 2020 - August 23, 2020 9
Washington March 04, 2020 - June 07, 2020 June 08, 2020 - August 23, 2020 5
West Virginia - - -
Wisconsin March 26, 2020 - March 26, 2020 March 27, 2020 - August 23, 2020 9
Wyoming - - -

Table S10: Dates with overall and death by age data included in the likelihood. Our analysis include 37 loca ons

with death by age.
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Infec on parameters. The infec on parameters described in (S11) comprise the baseline infec on parameter

in loca onm, ρ0m (real-valued), as well as rela ve suscep bility (S) parameters ρS (vector-valued of length A).

To place a prior density on ρ0,m, we consider prior es mates on the basic reproduc on number [50], and specify

the following prior distribu on on the basic reproduc on number R0,m in loca onm,

R0,m ∼ N (3.28, κ), (S32a)

κ ∼ N[0,∞)(0, 0.5). (S32b)

where N[a,b) denotes a truncated normal distribu on between a and b. A common prior standard devia on is

chosen to allow informa on to be shared between loca ons. This specifica on follows the base model [54]. To

obtain ρ0,m, we re-scaleR0,m by the average number of contacts of one person in loca onm at baseline,

ρ0,m = R0,m/C̄m (S33a)

C̄m =
∑
a

pm,a

∑
a′

Cwdaym,a,a′ , (S33b)

where Cwdaym is the baseline weekday contact matrix defined in S3.4.2 and pm,a is the propor on of the popula on

of loca onm in age band a.

To place prior densi es on the rela ve suscep bility parameters, we used available data from contact tracing and

tes ng in mainland China [51]. Based on the available data, we considered rela ve suscep bility parameters for

the age bands [0− 14], [15− 64] and [65+], and specified the prior densi es

log ρS[0−14] ∼ N (−1.0702, 0.21702) (S34a)

log ρS[65+] ∼ N (0.3828, 0.16382), (S34b)

were the hyperparameters were obtained by fi ng a lognormal distribu on to the reported 95% confidence in-

tervals in [51] with the lognorm R package, version 0.1.6 [67].

The log suscep bility parameters for age band [15−64]were set to 0, so that ρS is interpreted rela ve to infec on

dynamics from/to individuals in age band [15− 64]. Considering the 18 age bands of the COVID-19 transmission

model, the age-specific rela ve suscep bility parameters were set to

log ρSa =


log ρS[0−14] if a ∈ [0− 14]

log ρS[15−64] if a ∈ [15− 64]

log ρS[65+] if a ∈ [65+].

, (S35)

DOI: https://doi.org/10.25561/82551 Page 43

https://doi.org/10.25561/82551


17 September 2020 Imperial College COVID-19 Response Team

Discre sed genera on me distribu on. The genera on me distribu on (S14) was kept fixed. Using es mates

of [52], we specified the con nuous- me version

gCT (s) = Gamma(6.5, 0.62). (S36)

Equa on (S36) was then discre sed to units of days,

g(s) =

∫ s+0.5

s−0.5

gCT (u) du ∀s = 2, 3, . . . (S37)

and g(1) =
∫ 1.5

0
gCT (u) du for s = 1. This input specifica on is the same as in the base model [54].

S3.4.2 Time changing contact pa erns

Baseline age-specific contact matrices The pre-pandemic contact intensity matrices were constructed using S1

and are illustrated in Figures S21-S24.

Mobility trend predictors. Changes in contact intensi es were modelled through a regression on decomposed,

age- and loca on-specificmobility trends. Themobility trend data used in this study are described in Sec on S1.2.

The decomposi on into baseline mobility trends Xbase
m,t,a, eased mobility trends Xeased

m,t,a and upswing mul pliers

Xupswing
m,t,a on day t in loca onm and age band a is defined in (S20). The mobility predictors were kept fixed.

Mobility trend regression coefficients. Equa ons (S15) and (S21) describe our model of changing contact in-

tensi es, which depends on the regression coefficients βeased
m and βupswing

mt . We model the effect of the mobility

trends prior to the rebound me (S6) through a spa al random effect,

βeased
m ∼ N (βeased, σ2

eased)

βeased ∼ N (0, 1)

σeased ∼ Exponen al(5).

(S38)

The effect of the mobility trends a er the rebound me (S6) was allowed to vary in space and me to capture the

observed heterogeneity in the mobility and death data. We modelled βupswing
mt through the factorisa on

βupswing
mt = βupswing

m × βupswing
t (S39)
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where the spa al component was modelled as a random effect,

βupswing
m ∼ N (βupswing, σ2

upswing)

βupswing ∼ N (0, 1)

σupswing ∼ Exponen al(10),

(S40)

and the me component was modelled as a bi-weekly AR(1) process centered at zero,

βupswing
t = ε⌊c(t)/2⌋,

ε1 ∼ N[0,∞)(0, 0.025),

εv ∼ N[0,∞)(εv−1, σε) for v > 1,

σε ∼ Exponen al(10),

(S41)

and c(t) is a func on that maps the me indices in loca onm to calendar weeks.

S3.4.3 Likelihood

Loca on and age-specific infec on fatality ra o. The infec on fatality ra o in loca on m and age band a is

decomposed into

πm,a = exp(logπa + log δm,a), (S42)

where logπa are age-specific fixed effects, and log δm,a are random effects for each loca on on a subset of age

classes. To specify prior distribu ons on the age-specific fixed effects, we considered data from the meta-analysis

of Levin and colleagues [68], and then adapted the sta s cal analysis to be er reflect increasing uncertainty in

infec on fatality ra o es mates for young age groups. For the meta-analysis, we included data from Belgium,

Sweden, and Geneva as in the original analysis [68], but excluded Spain due to difficul es in retrieving count data

from the original sources cited in [68]. In addi on, we included in the meta-analysis data from Iceland, New

Zealand, and Korea, which were previously used for valida on purposes [68]. Tables S11 and S12 present the

sero-prevalence studies and comprehensive tracing programs data used in our re-analysis. Our meta-analysis is

based on the actual death counts dIFR
s,a and es mated ranges for the number of infected individuals cIFR

s,a reported

across 6 large scale studies s and various age bands, which are indexed in terms of the median age a of reported

age bands as in [68]. We modelled the count data with a Beta-Binomial observa on model, which allowed us to

include observa ons with no reported deaths, and to account for overdispersion in the data. We used a logit link

func on for simplicity; results using a log link func on were very similar. We allowed for non-linear departures
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from linear, age-specific trends using a zero-mean Gaussian process model. The full model is

dIFRs,a ∼ Beta-Binomial
(
cIFRs,a, p

IFR
s,aΦ, (1− pIFRs,a)Φ

)
logit pIFRs,a = βIFR

0 + βIFR
1 ∗ a+ fa + ν IFR

s,a,

(S43)

with prior densi es

βIFR
0 ∼ N (0, 20)

βIFR
1 ∼ N (0, 1)

ν IFR
s,a ∼ N (0, σ2

Meta)

σMeta ∼ Half-Cauchy(0, 1)

f ∼ GP
(
0,K(αGP, ρGP)

)
αGP ∼ N (0, 2)

ρGP ∼ Inverse-Gamma(11, 400)

1/Φ ∼ Half-Cauchy(0, 1),

(S44)

where the Gaussian process covariance func on is specified by the exponen al quadra c kernelK with marginal

variance parameter αGP and length scale ρGP. We sought to capture long-range non-linear age trends through

the GP, and for this reason specified for the length scale a prior density with 1% and 99% quan les of 20 and 84

years. The model was fi ed with CmdStan release 2.23.0 (22 April 2020), using 3 adap ve Hamiltonian Monte

Carlo Sampler [69] with 10,000 itera ons each, of which the first 5,000 itera ons are considered as a burn-in.

The chains mixed and converged, the minimum andmaximum effec ve sample sizes were respec vely 1, 961 and

34, 270. Moreover, the Rhat sta s cs range was 0.9998 and 1.001. Figure S29 shows the posterior predic ve

distribu on of the infec on fatality ra o on the log scale, along with the data used in the meta-analysis. We

es mate substan al uncertainty in predicted infec on fatality ra os among individuals below age 40, and this

uncertainty allows the model to explore the possibility of large case numbers among individuals below age 40.

We then fi ed log-normal distribu ons to the numerical es mates of the 95% credible intervals associated with

the posterior predic ve infec on fatality ra os using the lognorm R package, version 0.1.6 [67], and specified the

prior distribu on on the log infec on fatality ra o for each age band used in the model through

logπa ∼ N (µa, σ
2
a), (S45)

where µa and σa for the 18 increasing age bands in this study are reported in Table S13. Figure S29b compares

our prior distribu on (S45) to that obtained from the meta-analysis of Levin and colleagues [68].

The prior (S42) further included a loca on-specific random effect for adults aged [20 − 49], which we denote

by δm,[20−49], a loca on-specific random effect for adults aged [50 − 69], which we denote by δm,[50−69], and a
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loca on-specific random effect for individuals aged 70 or older, which we denote by δm,[70+]. The corresponding

prior distribu ons were

log δm,[20−49] ∼ N(0, σ2
[20−49]), (S46a)

log δm,[50−69] ∼ N(0, σ2
[50−69]), (S46b)

σ[20−49], σ[50−69] ∼ Exponen al(10), (S46c)

log δm,[70+] ∼ Exponen al(λ[70+]), (S46d)

λ[70+] ∼ Exponen al(0.05). (S46e)

The parameter log δm,[70+] was restricted to be posi ve in order reduce collinearity between model parameters.

Loca on Dates Age bands Popula on size

(Sero-)prevalence

es mates (in %) (mean and

95% confidence interval)

Deaths Source

Belgium March - April, 2020 / May 9, 2020

0− 24 3, 228, 894 6.00 [4.20, 8.60] 2

[70]

25− 44 2, 956, 684 5.90 [4.20, 8.30] 30
45− 64 3, 080, 528 6.20 [4.70, 8.30] 409
65− 74 1, 147, 009 4.10 [2.30, 7.20] 1, 061
75− 84 690, 685 7.00 [4.20, 11.70] 2, 144
85+ 326, 659 13.20 [8.90, 19.60] 5, 087

England June 20 - July 13, 2020 / July 17, 2020

18− 44 18, 1904, 73 7.13 [6.69, 7.64] 524 [71]†

45− 64 13, 449, 179 6.17 [5.77, 6.67] 4, 657 [72]†

65− 74 4, 552, 283 3.20 [2.80, 3.60] 7, 105 [73]†

75+ 3, 704, 429 3.30 [2.90, 3.80] 36, 341

Geneva May 6, 2020 / June 1, 2020

5− 9 26, 466 4.53 [1.51, 9.07] 0

[74]
10− 19 53, 180 11.47 [7.33, 16.55] 0
20− 49 219, 440 13.12 [9.75, 17.00] 2
50− 64 98, 528 10.45 [7.31, 14.11] 16
65+ 83, 574 6.82 [3.83, 10.53] 268

Spain March 20 - June 22, 2020 / July 15, 2020

0− 9 4, 283, 800 3.73 [2.28, 6.04] 5

[75]

10− 19 4, 954, 600 4.01 [3.09, 5.19] 6
20− 29 4, 883, 200 5.74 [4.66, 6.97] 35
30− 39 5, 990, 500 4.95 [4.11, 5.95] 77
40− 49 7, 794, 500 5.33 [4.59, 6.19] 295
50− 59 7, 057, 300 5.22 [4.49, 6.07] 1, 023
60− 69 5, 401, 600 4.95 [4.12, 5.95] 2, 653
70− 79 3, 921, 800 4.66 [3.68, 5.87] 6, 131
80+ 2, 599, 100 4.84 [3.48, 6.69] 9, 003

Sweden
May 18 - May 24, 2020 /

June 1 - June 7, 2020

0− 19 2, 297, 477 5.30 [3.31, 7.93] 1 [76]†

20− 64 5, 711, 699 7.60 [5.14, 10.81] 604 [77]†

65+ 2, 008, 354 3.89 [2.06, 6.52] 4, 433 [78]†

Table S11: Summary of the sero-prevalence studies used to formulate the infec on fatality rate prior. Dates

presented are the seroprevalence study date / deaths data date. †: England and Sweden’s references are, in

order, for the popula on size, seroprevalence es mates and mortality counts.
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Loca on Dates Age bands Popula on size

Prevalence

es mates (in %) (mean and

95% confidence interval)

Deaths Source

Iceland Feb 1-Jun 15

0− 29 135, 576 0.41 [0.30, 0.50] 0

[68]

30− 39 46, 871 1.10 [0.80, 1.60] 1
40− 49 42, 966 1.50 [1.10, 2.00] 0
50− 59 42, 111 0.80 [0.50, 1.30] 0
60− 69 37, 536 0.50 [0.30, 1.00] 2
70− 79 23, 415 0.30 [0.20, 1.30] 3
80+ 12, 775 0.20 [0.10, 2.50] 4

Korea Feb 1-May 17

0− 29 15, 623, 365 0.06 [0.03, 0.08] 0

[68]

30− 39 7, 079, 839 0.04 [0.02, 0.07] 2
40− 49 8, 218, 844 0.04 [0.02, 0.06] 3
50− 59 8, 476, 699 0.06 [0.03, 0.08] 15
60− 69 6, 453, 706 0.05 [0.03, 0.08] 41
70− 79 3, 560, 646 0.05 [0.03, 0.07] 84
80+ 1, 856, 084 0.06 [0.03, 0.09] 144

New Zealand Feb 1-Jul 9

0− 29 1, 911, 472 0.06 [0.03, 0.08] 0

[68]

30− 39 619, 066 0.08 [0.04, 0.12] 0
40− 49 591, 874 0.07 [0.04, 0.11] 0
50− 59 628, 691 0.08 [0.04, 0.12] 0
60− 69 522, 312 0.07 [0.04, 0.10] 3
70− 79 361, 832 0.04 [0.02, 0.07] 7
80+ 186, 985 0.04 [0.02, 0.06] 12

Table S12: Summary of the countries with a comprehensive tracing program used to formulate the infec on

fatality ra o prior. Dates presented are the period of cases and deaths observa on. In countries with a com-

prehensive tracing program, the number of cases detected is considered representa ve of the actual number of

cases.
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(a) Comparison to data (b) Comparison to analysis in [68]

Figure S29: Predicted infec on fatality ra os. (a) Comparison of the posterior predic ve infec on fatality ra os

against the data used to fitmodel (S43). Shown are the posterior predic vemedian (line), 95%posterior predic ve

credible interval, and ra os of observed deaths over expected number of cases on the log scale (points). (b)

Comparison of the posterior predic ve infec on fatality ra oswith the predic on intervals from themeta-analysis

of Levin and colleagues [68] (provided in their Supplementary Material).

The age-specific random effects log δm,a for each of the 18 age bands in this study were then set to

log δm,a =


log δm,[20−49] if a ∈ [20− 49]
log δm,[50−69] if a ∈ [50− 69]
log δm,[70+] if a ∈ [70+]
0 otherwise.

(S47)

Infec on-to-death distribu on. The infec on-to-death distribu on h in (S24) was kept fixed. Following [79,

66], we first specified the infec on-to-onset-of-symptoms distribu on and the onset-to-death, and modelled the

infec on-to-death distribu on as the sum of both components through

h(s) = Gamma(s; 5.1, 0.86) + Gamma(s; 17.8, 0.45), (S48)

where s is in con nuous me. This input specifica on is the same as in the base model [80].
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[0− 4] [5− 9] [10− 14] [15− 19] [20− 24] [25− 29]
µa −12.4045236 −11.8276362 −11.2128209 −10.5612676 −9.9547808 −9.3553661
σa 1.2848842 1.1614624 1.017873 0.8757987 0.7785512 0.6912288

[30− 34] [35− 39] [40− 44] [45− 49] [50− 54] [55− 59]
µa −8.7522828 −8.15568 −7.5638957 −6.9594171 −6.3526927 −5.7362489
σa 0.6404053 0.6055523 0.582907 0.5704648 0.5636325 0.562268

[60− 64] [65− 69] [70− 74] [75− 79] [80− 84] [85+]
µa −5.1077053 −4.4738832 −3.848234 −3.229631 −2.6304859 −1.3551168
σa 0.5588437 0.5518728 0.5418635 0.5229684 0.4969032 0.3616957

Table S13: Hyperparameters of the prior density on age-specific infec on fatality ra os, equa on (S45).

Overdispersion parameter. The prior distribu on on the overdispersion parameter ϕ in the Nega ve Binomial

observa on model (S29) was given by the prior density

ϕ ∼ N[0,∞)(0, 5). (S49)

S3.5 Computa onal inference

The Bayesian hierarchical model was fit with CmdStan release 2.23.0 (22 April 2020), using an adap ve Hamilto-

nian Monte Carlo (HMC) sampler [69]. 8 HMC chains were run in parallel for 2, 000 itera ons, of which the first

1, 500 itera ons were specified as warm-up. Calcula ons for each HMC chain were distributed over 1 processor

per U.S loca on (state or metropolitan area) with CmdStan’s reduce_sum func onality. Posterior convergence

was assessed using the Rhat sta s cs and by diagnosing divergent transi ons of the sampler. There are 4,000

itera ons a er burn-in across 8 chains, and 10 parameters with the lowest effec ve sample sizes were assessed.

Those effec ve sample sizes of are from 589 to 781, and Rhats are from 1.0034 to 1.0159. There were 4092 diver-

gent transi ons, and that the average posterior step size was around 0.004. The pair plot of parameters for New

York City is in Figure S30.
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Figure S30: Pair plots of the joint posterior distribu on of the model parameters for New York City.
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S3.6 Generated quan es

Age stra fica on for repor ng purposes. In themanuscript results are reported using the following 8 age bands

d ∈ D =
{
[0− 9], [10− 19], [20− 34], [35− 49], [50− 64], [65− 79], [80+]

}
. (S50)

Posterior samples were recorded in the 18 age bands used in the model ([0 − 4], [5 − 9], . . . , [85+]) and then

aggregated to the stra fica onD using

Rm,t,d =
∑
a∈d

c∗m,t,a∑
k∈d c

∗
m,t,k

Rm,t,a,

cm,t,d =
∑
a∈d

cm,t,a,

dm,t,d =
∑
a∈d

dm,t,a,

(S51)

where c∗m,t,a is the number of infec ous individuals in loca onm and me t that is in age band a defined in (S54),

Rm,t,a is defined in (S12), cm,t,a is defined in (S14) and dm,t,a is defined in (S8).

Es mated cumulated COVID-19 a ack rates by age and over me. We calculate the percentage of the popula-

on inm and in age band d that has been infected up to day t through

Am,t,d =

∑t
s=1 cm,s,d

Nm,d
, (S52)

where Nm,d is the number of individuals in loca on m and age band d, and cm,s,d is defined in (S51). We also

refer to (S52) as the age-specific cumula ve a ack rate. Similarly, we calculate the percentage of the popula on

inm that has been infected up to day t through

Am,t =

∑
d

∑t
s=1 cm,s,d∑
d Nm,d

=
∑
d

Nm,d

Nm
Am,t,d, (S53)

whereNm is the number of individuals in loca onm. We also refer to (S53) as the cumula ve a ack rate.

Es mated number of infec ous individuals by age and over me. The effec ve number of infec ous individuals

c∗ in loca onm and age band d on day t is calculated by weighing how infec ous a previously infected individual

is on day t,

c∗m,t,d =

t−1∑
s=1

cm,s,d g(t− s), (S54)
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where g appears in (S14). Similarly, the effec ve number of infec ous individuals c∗ in loca on m on day t is

calculated by

c∗m,t =
∑
d

t−1∑
s=1

cm,s,d g(t− s) =

t−1∑
s=1

cm,s g(t− s). (S55)

Es mated me-varying reproduc on number of COVID-19 over me. The overall me-varying reproduc on

number on day t in loca onm is given by

Rm,t = cm,t/c
∗
m,t (S56)

where cm,t is the number of new cases on day t in loca onm, and c∗m,t is the number of infec ous individuals on

day t in loca onm [81]. Equa on (S56) can be re-arranged to

Rm,t =
∑
a

c∗m,t,a/c
∗
m,tRm,t,a, (S57)

whereRm,t,a is defined in (S12).

Es mated age-specific SARS-CoV-2 transmission flows. Following on from Equa on (S14), the transmission

flows from age group a to age group a′ at me t in loca onm are,

Fm,t,a,a′ = sm,t,a′ ρa′ Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)

)
, (S58)

where sm,t,a′ is defined in (S13), ρa,a′ is defined in (S11), and Cm,t,a,a′ is defined in (S15). In terms of the age

bands reported in the main text, the transmission flows by aggregated age groups are

Fm,t,d,d′ =
∑

a∈d,a′∈d′

Fm,t,a,a′ . (S59)

Es mated contribu on of age groups to SARS-CoV-2 transmission. Following on from Equa on (S58), the age-

specific contribu on of infec ons from age band a in loca onm on day t is

Sm,t,a =

(∑
a′

Fm,t,a,a′

)/(∑
a

∑
a′

Fm,t,a,a′

)
. (S60)

The age-specific contribu on of infec ons are propor ons, such that
∑

a Sm,t,a = 1 for all a. In terms of the age

bands reported in the main text, the aggregated contribu on of infec ons in age band d in loca on m on day t

are equal to

Sm,t,d =

(∑
d′

Fm,t,d,d′

)/(∑
d

∑
d′

Fm,t,d,d′

)
. (S61)
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Na onal averages. Several quan es are reported at the na onal level by age,

Rt,d =
∑
m

c∗m,t,d∑
l c

∗
l,t,d

Rm,t,d, (S62)

ct,d =
∑
m

cm,t,d, (S63)

dt,d =
∑
m

dm,t,d, (S64)

where c∗m,t,d is the number of infec ous individuals at me t in loca onm and age band d, defined in (S54), and

Rm,t,d, cm,t,d and dm,t,a are defined in (S51). Finally, for repor ng at the na onal level regardless of age, we

calculated

Rt =
∑
m

∑
d∈D

c∗m,t,d∑
l

∑
k∈D c∗l,t,k

Rm,t,d, (S65)

ct =
∑
d

ct,d, (S66)

dt =
∑
d

dt,d. (S67)

S3.7 Forecasts

Forecast period. School re-opening scenarios were generated for 90 days, for the me period August 24, 2020

to November 24, 2020.

Contact and transmission intensi es during school re-opening scenarios. In the school re-opening scenarios,

children aged 0-11were modelled to resume their typical contact intensi es. As the contact-and-infec on model

is specified in terms of the 5-year age bands (S10), the contact intensi es for children aged 10-14 were modelled

through a mixture approach,

Cm,t,a,a′ =


Cm,a,a′ if t < tschool-closem

CCOV ID−0−14
a,a′ if t ∈ [tschool-closem , tschool-reopenm − 1]

Cm,a,a′ if t ≥ tschool-reopenm and a < 10 or a′ < 10
2
5Cm,a,a′ + 3

5C
COV ID−0−14
a,a′ if t ≥ tschool-reopenm and a = 10− 14 or a′ = 10− 14

(S68)

where the school re-opening date tschool-reopenm was set to August 24, 2020 in all loca ons, Cm,a,a′ is the baseline

pre-COVID-19 contact matrix described in Sec on S3.2.2, and CCOV ID−0−14
a,a′ is the average contact matrix during

lockdown of [51] described in Sec on S3.2.4, and a or a′ are one of [0− 4], [5− 9], [10− 14].

We further considered that due to other preventa ve interven ons, transmissions rates involving children aged
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0-11 are modulated by a factor βfc-0-11, and we considered school re-opening scenarios using the values

βfc-0-11 = 0.2, 0.33, 0.5, 1.0, (S69)

which were mo vated by the effect sizes reported in [82]. Due to the mixture approach in (S68), we incorporated

the preven on effect parameter βfc-0-11 on the contact intensi es rather than the transmission intensi es in the

renewal equa on (S14),

Cm,t,a,a′ =



Cm,a,a′ if t < tschool-closem

CCOV ID−0−14
a,a′ if t ∈ [tschool-closem , tschool-reopenm − 1]

βfc-0-11Cm,a,a′ if t ≥ tschool-reopenm and a < 10 or a′ < 10
2
5β

fc-0-11Cm,a,a′ + 3
5C

COV ID−0−14
a,a′ if t ≥ tschool-reopenm and a = 10− 14,

or a′ = 10− 14

(S70)

where a or a′ are one of [0− 4], [5− 9], [10− 14].

Contact intensi es among individuals aged 15+ were modelled as before based on the mobility trends in equa-

ons (S15) and (S21) where the required mobility trend predictors were imputed, and for weekdays set to the

average over the last 5 weekdays, and for weekends set to the average over the last 4 weekend days.

Contact and transmission intensi es during school re-opening scenarios. In the school closure scenarios, con-

tact intensi es remained unchanged, and corresponded to (S70)with tschool-reopenm = ∞. Contact intensi es among

individuals aged 15+weremodelled as before based on themobility trends in equa ons (S15) and (S21)where the

required mobility trend predictors were imputed, and for weekdays set to the average over the last 5 weekdays,

and for weekends set to the average over the last 4 weekend days.

Age stra fica on for school re-opening forecas ng scenarios. To inves gate the impact of re-opening day care,

kindergartens, and elementary schools, we used the age bands

d̃ ∈ D̃ =
{
[0− 11], [12− 19], [20− 34], [35− 49], [50− 64], [65− 79], [80+]

}
. (S71)

and then aggregated to the stra fica on D̃ analogously to (S51). We introduce the superscript x to denote the

various scenarios, e.g. re-opening of kindergartens and elementary schools, or con nued closure of kindergartens

and elementary schools. Then, the me-varying reproduc on numbers in the forecast period/scenarios were

calculated through

Rx
m,t,d̃

=


pm,[0−4]R

x
m,t,[0−4]+pm,[5−9]R

x
m,t,[5−9]+

2
5pm,[10−14]R

x
m,t,[10−14]

pm,[0−4]+pm,[5−9]+
2
5pm,[10−14]

if d̃ = [0− 11]
3
5pm,[10−14]R

x
m,t,[10−14]+pm,[15−19]R

x
m,t,[15−19]

3
5pm,[10−14]+pm,[15−19]

if d̃ = [12− 19]∑
a∈d̃

pm,a∑
k∈d pm,k

Rx
m,t,a if d̃ > 19,

(S72)
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and the number of daily new cases through

cx
m,t,d̃

=


cxm,t,[0−4] + cxm,t,[5−9] +

2
5c

x
m,t,[10−14] if d̃ = [0− 11]

3
5c

x
m,t,[10−14] + cxm,t,[15−19] if d̃ = [12− 19]∑
a∈d̃ c

x
m,t,a if d̃ > 19,

(S73)

and the number of daily deaths through

dx
m,t,d̃

=


dxm,t,[0−4] + dxm,t,[5−9] +

2
5d

x
m,t,[10−14] if d̃ = [0− 11]

3
5d

x
m,t,[10−14] + dxm,t,[15−19] if d̃ = [12− 19]∑
a∈d̃ d

x
m,t,a if d̃ > 19,

(S74)

and the contribu on of age group d̃ to onward spread on day t in loca onm and scenario x through

Sx
m,t,d̃

=


Sx
m,t,[0−9] +

2
10S

x
m,t,[10−19] if d̃ = [0− 11]

8
10S

x
m,t,[10−19] if d̃ = [12− 19]

Sx
m,t,d if d̃ > 19.

(S75)

Predicted excess infec ons and deaths, percent increases in infec ons and deaths. Based on (S72-S75), the

excess number of cases in the re-opening scenarios versus the con nued closure scenario was calculated as

cexcess
m,t,d̃

= creopen
m,t,d̃

− cclose
m,t,d̃

, (S76)

and the percent increase in cases was calculated as

cpc-increase
m,t,d̃

= creopen
m,t,d̃

/cclose
m,t,d̃

− 1. (S77)

Predicted excess deaths and percent increases in deaths were calculated analogously. Predicted percent increase

in the me varying reproduc on number were also calculated analogously.
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S4 Supplementary Text: Comparison ofmodel outputs to es mated contact

intensi es during the pandemic

The SARS-CoV-2 transmission model presented in Sec on S3.1 makes detailed predic ons on the me evolu on

of age-specific contact pa erns during the pandemic. As a form of external model valida on, we here compare

the model predic ons against data from contact survey studies.

In the United States, the Berkeley Interpersonal Contact Study (BICS) was designed tomeasure the effects of social

distancing on contact pa erns during the pandemic, and began in spring 2020 [83]. Their study included adults

aged 18+ and wave 0 was conducted between March 22 to April 08, 2020. In this wave, approximately half the

study par cipants were from five ci es (New York, San Francisco Bay Area, Atlanta, Phoenix, Boston) with the rest

from around the rest of the US. In their ini al analyses, the study authors found that individuals had a mean of

2.7 conversa onal contacts with similar IQR when compared to the study of Jarvis et al. [63] in the UK: 85% of

respondents reported four or fewer contacts. Despite wide confidence intervals, these figures indicate substan al

reduc ons in the overall number of contacts in the early phase of the pandemic, and early a er lockdown or stay

at home orders were issued.

We compared the es mates from the two contact surveys to the average number of contacts at the midpoint

of the wave 0 period of the BICS study, March 28, 2020 (Table S14). To match the study sample of the BICS

study, we report es mates for two metropolitan areas included in the model analysis (New York City and District

of Columbia), and an overall es mate for the United States obtained by averaging across all states evaluated,

New York City, and the District of Columbia. Overall, the COVID-19 contact and infec on model es mates similar

strong reduc ons in the number of daily contacts, with a probability of one that overall, the average number of

daily contacts by individuals of all ages was at most four.

Number of daily contacts [95% credible intervals] Posterior probability of at most 4 daily contacts
District of Columbia 2.56 [1.8 - 3.75] 100%
New York City 2.75 [2.13 - 3.59] 100%
United States 2.75 [2.56 - 2.94] 100%

Table S14: Es mated number of contacts on March 28, 2020 (midpoint of BICS wave0 study). Posterior median

and 95% credible intervals in brackets. We include a weighted average across the United States and two ci es

which were included in the BICS study.

We also compared the age breakdown of daily number of conversa onal contacts from the BICS study with our

model es mates for New York City, District of Columbia and a na onal average. Figure S31 indicates good agree-
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Figure S31: Es mated daily number of contacts per age band onMarch 28, 2020 (midpoint of BICSwave0 study).

ment between the es mates of the BICS study and model fits.
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S5 Supplementary Text: Comparison of model outputs to seroprevalence

es mates

To further assess model fit, we reviewed data from several large-scale COVID-19 seroprevalence surveys in the

United States, and qualita vely compared the sero-prevalence es mates from the an body surveys to the es -

mates under the contact and infec on model at loca on (state or metropolitan area) level.

We included 14 COVID-19 an body surveys from across the United States in this comparison (Table S15). 13

studies were conducted by the U.S. Centers for Disease Control & Preven on (CDC) in 7 loca ons, Connec cut,

Florida, Louisiana, Missouri, New York City, Utah, and Washington. Two rounds of seroprevalence surveys were

done in each loca on, except Louisiana where one seroprevalence survey was performed. The surveys included

individuals who had blood specimens tested for reasons unrelated to COVID-19 [84], and thus the study samples

may not be representa ve of the underlying popula ons. For instance, the CDC compared the predicted number

of total infec ons obtained under the COVID-19 sero-prevalence es mates to the number of reported cases, and

found that inmost loca ons, approximately one in ten caseswere reported. However for the study in Connec cut,

the ra o was one in six, and for the study in Missouri, the ra o was one in 24, sugges ng that the study samples

in these loca ons may not be representa ve. The final survey included in the comparison was also from New York

City [85], and included par cipants recruited through flyers at the entrances of grocery stores. Individuals who are

less likely to visit grocery stores may have lower infec on risk (e.g. because of self-isola on) or higher infec on

risk (e.g. quaran ne a er infec on), and es mates from this study may also be subject to unknown biases.

In all studies, IgM and IgG enzyme-linked immunosorbent assays (ELISA) were used to test for COVID-19 an -

bodies. Common limita ons of these tests are that infected individuals with an bodies may test nega ve (false

nega ves), uninfected individuals without an bodies may test posi ve (false posi ves), that infected individuals

may not yet have developed an bodies (an body eclipse phase), and that infected individuals may have already

lost an bodies (sero-reversion). The above studies adjusted sero-prevalence es mates for false posi ve and false

nega ve rates, however re-analyses of manufacturer sensi vity and specificity figures suggest that these num-

bers may have to be considered with cau on [53]. To account for the an body eclipse phase, we calculated as

part of the infec on model the number of expected infected individuals with an bodies. Specifically, COVID-19

symptoms are es mated to develop on average 6 days a er infec on (es mated range 2 to 14 days) [87] and

individuals are es mated to develop IgG an bodies on average 14 days a er symptom onset (es mated range 7

to 21 days) [88, 89]. Based on these es mates, we specified the infec on-to-onset-of-symptoms distribu on and
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the onset-to-an body distribu on as the sum of both components through

k(s) = Gamma(s; 5.1, 0.86) + Normal(s; 14, 3.57) (S78)

where s is in con nuous me. We then express the probability that a person in loca onm and age band a develops

an bodies on day s a er SARS-CoV-2 infec on as

ks =

∫ s+0.5

s−0.5

k(u)du =

∫ s+0.5

s−0.5

k(u)du ∀s = 2, 3, . . . , (S79)

and ks =
∫ 1.5

0
k(u)du for s = 1. Using (S79), the expected number of infected individuals that develop COVID-19

an bodies on day t in age band a in loca onm is

bm,t,a =

t−1∑
s=1

cm,s,a kt−s, (S80)

where cm,s,a is the expected number of new cases on day s in age band a in loca on m, (S14). With regards to

sero-reversion, we note that the above studies were completed by early June. Based on the resul ng short me

frame since onset of the pandemic, we assumed that infected individuals did not serorevert. We thus calculated

the expected propor on of individuals with COVID-19 an bodies on day t in loca onm as

sm,t =
(∑

a

t∑
s=1

bm,s,a

)
/Nm, (S81)

Study Round Period Number of par cipants

Connec cut
1 Apr 26 - May 3 1431
2 May 21 - May 26 1800

Louisiana
1 Apr 1 - Apr 8 1184
2 - -

Minnesota
1 Apr 30 - May 12 860
2 May 25 - Jun 7 1323

Missouri
1 Apr 20 - Apr 26 1882
2 May 25 - May 30 1831

New York City Metro Area
1 Mar 23 - Apr 1 2482
2 Apr 25 - May 6 1116

Philadelphia Metro Area
1 Apr 13 - Apr 25 824
2 May 26 - May 30 1743

San Francisco Bay Area
1 Apr 23 - Apr 27 1224
2 - -

South Florida
1 Apr 6 - Apr 10 1742
2 Apr 20 - Apr 24 1280

Utah
1 Apr 20 - May 3 1132
2 May 25 - Jun 5 1940

Western Washington Region
1 Mar 23 - Apr 1 3264
2 Apr 27 - May 11 1719

Table S15: Characteris cs of large-scale an body studies used for the comparison. All dates are for the year

2020. Data were retrieved from the CDC dashboard [86].
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whereNm is the number of individuals in loca onm. The day of comparison was set to the last day of the study

period. For the New York City study [85], the Utah study, and the second round of the Florida study, individuals

up to age 18were excluded from calcula on of the sero-prevalence es mate (S81), because of small sample sizes

in the surveys.

Figure S32: Comparison between es mates of COVID-19 seroprevalence under the contact and infec onmodel

with those from large-scale an body studies. Shown are posterior medians and 95% credible intervals for model

output, and es mates as reported from the an body studies, for the dates reported by the studies.

Figure S32 compares the expected propor on of individuals with COVID-19 an bodies (S81) to study es mates.
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For Connec cut, themodel es mates considerably higher seroprevalence levels than the CDC study. However un-

der the es mates of the CDC study, the ra o of expected to observed cases was unusually low at 6:1, sugges ng

that seroprevalence was likely underes mated in that study by a factor of two. For Florida, survey samples were

collected in South Florida, which experienced higher numbers of reported cases and contributed dispropor on-

ately towards total deaths within the state. This suggests that survey es mates likely overstated seroprevalence

compared to the state as a whole, and the implica ons on our comparison are unclear. For the round 1 study

in Missouri, we note the ra o of expected to observed cases was unusually high at 24:1, sugges ng that sero-

prevalence was likely overes mated in the study by a factor of two. For the New York metropolitan area, the

catchment area increased from round 1 to round 2 to include Long Island, sugges ng that the survey es mates

could understate seroprevalence compared to New York City in early May. For Utah, the round 2 point es mate

is significantly lower than that of round 1. For Washington, survey samples were collected in the Western region,

which also experienced higher case and death numbers than the Eastern part ofWashington state, sugges ng that

survey es mates could have overstated state-level seroprevalence. The second New York City study [85] found

considerably higher seroprevalence es mates at a me point before the first CDC study in New York City. Our

model es mates appear to bemore in line with the sero-prevalence es mates of the two CDC studies in New York

City. Based on these considera ons, we focus on a broad, more qualita ve comparison between the model and

seroprevalence es mates. Using previous version of the contact-and-infec on model with infec on fatality ra o

priors based on [66] and on [53], the model es mates were consistently 30% to 50% below the survey es mates.

This prompted us to revisit previous infec on fatality ra o es mates as described in Supplementary Text S3, sug-

ges ng greater uncertainty in infec on fatality ra o es mates among individuals aged 40 and below. In turn, this

uncertainty allowed the model to explore the possibility of more cases among individuals aged 40 and below,

and lead to inferences that appear to be overall more consistent with available sero-prevalence es mates. The

corresponding cumula ve a ack rates es mates are presented in Table S3.
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S6 Supplementary Text: Sensi vity analyses

S6.1 Alterna ve assump ons on age-specific infec on fatality ra os

The central analysis is based on the prior density (S45) on infec on fatality ra os (IFR). The contact and infec on

model is sensi ve to the assumed IFR prior, as any model that infers disease dynamics from COVID-19 a ributable

deaths [54]. In sensi vity analyses, we considered an alterna ve IFR prior density using the predicted mean and

95% predic on intervals of age-specific IFRs derived in the meta-analysis of Levin and colleagues [68]. The meta-

analysis es mated age-specific IFRs for ages 35 and above, however for the model analysis es mates for younger

age groups are required. We thus extrapolated the predicted mean and 95% predic on intervals in [68] under

their linearmodel as shown in Figure S33. We refer to the resul ng IFR prior density as the log IFR prior constructed

from the Levin et al meta-analysis.

Then, we refi ed the contact-and-infec on model using the log IFR prior constructed from the Levin et al meta-

analysis. Figure S35 compares the cumula ve a ack rates es mated under the central model to those under the

model with log IFR prior constructed from the Levin et al. meta-analysis. The greater uncertainty in IFR values

for young individuals translates into greater uncertainty on cumula ve a ack rates, with the central model less

certain about how many individuals have been infected to date in several states. In addi on, the posterior me-

dian es mates of cumula ve a ack rates are higher under the central model, when the IFR prior density allows

exploring the possibility of more infec ons among young individuals. Figure S36 compares the seroprevalence

es mates under both models to the es mates of the an body study described in Supplementary Text S5. Sero-

prevalence es mates are lower when the model is used in conjunc on with the log IFR prior constructed from

the Levin et al. meta-analysis, sugges ng larger differences rela ve to the es mates of the CDC an body studies

when seroprevalence is low, and smaller differences rela ve to the es mates of the CDC an body studies when

seroprevalence is high. On this basis we chose the infec on fatality ra o prior with larger uncertainty for the

central analysis.

Figure S37 compares es mates of age-specific reproduc on numbers, and the contribu on of age groups to on-

ward spread under the central and alterna vemodel. Bothmodelsmake similar inferences on age-specific disease

spread, with larger uncertainty es mates under the central model.
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Figure S33: Comparison of the IFR prior used in the central analysis to the log IFR prior constructed from the

Levin et al meta-analysis. Mean and 95% uncertainty ranges of the two prior densi es are shown as lines and

ribbons, with the IFR prior used in the central analysis (S45) shown in grey, and the log IFR prior constructed from

the Levin et al meta-analysis shown in orange.
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Figure S34: Overall cumula ve a ack rate es mates under the central model and under themodel using the log

IFR prior constructed from the Levin et al meta-analysis, as of August 23, 2020. Dots and error bars indicate the

median posterior and the 95% confidence intervals, respec vely. Central model in yellow and alterna ve model

in black.
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Figure S35: Age-specific cumula ve a ack rate es mates under the centralmodel andunder themodel using the

log IFR prior constructed from the Levin et al. meta-analysis, as of August 23, 2020. Dots and error bars indicate

the median posterior and the 95% confidence intervals, respec vely. Central model in yellow and alterna ve

model in black.
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Figure S36: Comparison of large-scale seroprevalence studies es mates with the expected seroprevalence un-

der the central model and the model using the log IFR prior constructed from the Levin et al. meta-analysis.

Shown are posterior medians and 95% credible intervals for model output, and es mates as reported from sero-

prevalence studies, for the dates reported by the studies and assuming a 0-day lag.
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Figure S37: Age-specific weekly reproduc on numbers and contribu on of age groups to onward spread under

the central model and under the model using the log IFR prior constructed from the Levin et al meta-analysis.

(Top) Es mated weekly age-specific reproduc on numbers for the week star ng on August 17, 2020 under the

central model (yellow) and themodel using the log IFR prior constructed from the Levin et al meta-analysis (black).

Dots and error bars indicate the median posterior and the 95% confidence intervals, respec vely. (Bo om) Es -

mated cumula ve contribu on of age groups to onward spread as of August 24, 2020.

DOI: https://doi.org/10.25561/82551 Page 68

https://doi.org/10.25561/82551


17 September 2020 Imperial College COVID-19 Response Team

S6.2 Alterna ve assump ons on contact intensi es from and to children aged 0-14 during

the pandemic

The cell-phone derived popula on-level mobility data used in this study were only available for individuals aged

18+. We rely on limited data from two contact surveys performed in the United Kingdom and China [63, 51] as

described in Sec on S3.2 to characterise contact pa erns from and to younger individuals during the pandemic.

Specifically, in the central analysis, the 3 ∗ 3 + (18 − 3) ∗ 3 + 3 ∗ (18 − 3) = 99 contact intensi es from or to

children aged 0-14 were set to the corresponding, average contact intensi es observed during lockdown in the

study of Zhang and colleagues [51], as specified in (S23).

In sensi vity analyses we explored the impact of lower or higher contact intensi es from or to children aged 0-14

during school closures. We approached this by reformula ng (S23) to the following form,

Cm,t,a,a′ =

{
Cm,a,a′ if t < tschool-closem

τCCOV ID−0−14
a,a′ if t ≥ tschool-closem ,

(S82)

where a ∈ {[0− 4], [5− 9], [10− 14]} and a′ is one of the 5-year age bands of the infec on-and-contact model,

or a is one of the 5-year age bands and a′ ∈ {[0− 4], [5− 9], [10− 14]}, tschool-closem is the me index when school

closures were ordered or recommended in loca onm, Cm,a,a′ are the baseline pre-COVID-19 contact intensi es

described in loca on m in Sec on S3.2.2, CCOV ID−0−14
a,a′ are the average contact intensi es derived from [51],

and τ is a new scaling factor that we introduce for the purpose of sensi vity analyses.

To gauge a reasonable range of τ values, we first calculated the contact intensity ra os between the city-level

contact matrices in [51] with the contact intensi es CCOV ID−0−14
a,a′ that were used in the central analysis. The

maximum contact intensity ra o was 2.00 and the minimum was 0.15. Using data from the UK post lockdown

contact survey of Jarvis and colleagues [63], we also computed themean contact intensi es from individuals aged

18+ with children aged 0− 4 and children age 5− 17. We repeated calcula ons for the average post-lock down

contact matrix CCOV ID−0−14 of Zhang [51]. The minimum and maximum ra o in the corresponding contact

intensi es were 1.15 and 1.82. We thus performed two sensi vity analyses using τ = 0.5 and 2, subject to the

constraint that the resul ng contact intensi es during lockdown were not larger than those at baseline.

Further, we undertook a fourth sensi vity analysis in which themobility trends seen among individuals 18-24were

extrapolated to younger individuals aged 0-17. In this analysis, me-varying contact intensi es were es mated

based on Equa on (S15) for all age groups, and the data from the Zhang et al. contact surveys were not used.

Figure S38 compares, for one loca on, the implied contact intensi es used in the sensi vity analyses to those in

the central analysis, which are shown as τ = 1.
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Figure S38: Comparison of contact intensi es from and to children aged 0-14 during periods of school closures

in the sensi vity analyses. (A) Rescaled contact intensi es based on es mates of Zhang and colleagues [51].

Shown are contact intensi es from and to children under Equa on (S82) for different values of τ . The value τ = 1

corresponds to the central model. (B) Inferred contact intensi es from and to children based on extrapola ng

mobility trends of individuals aged 18-24 to younger individuals. Shown are the es mated contact intensi es in

California on April 15, 2020. Parts of the me varying contact matrices that are the same in the central model and

the sensi vity analyses are plo ed in grey.

Then, we re-fi ed the contact-and-infec on model. Figure S39 compares es mates of age-specific reproduc on

numbers, and the contribu on of age groups to onward spread under the central and alterna ve models. The

alterna vemodel assump ons lead to considerable differences in es mated reproduc on numbers by age groups.

For children aged 0−9, we es mate reproduc on numbers ranged from 0.30 [0.26, 0.34] to 0.75 [0.66, 0.86] as τ
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Figure S39: Age-specific weekly reproduc on numbers and contribu on of age groups to onward spread under

the central model and under the alterna ve models using different assump on on contact intensi es from and

to children aged 0-14. Shown are on top the es mated age-specific weekly reproduc on numbers for the week

star ng on August 17, 2020 under the central model (yellow) and the alterna ve models (black), and below the

es mated cumula ve contribu on of age groups to onward spread as of August 24, 2020. (A) Results for contact

intensi es from and to children aged 0-14 under different τ parameters, see (S82). The value τ = 1 corresponds

to the central model. (B) Results for contact and intensi es from and to children aged 0-14 that are obtained by

extrapola ng the mobility trends from individuals 18-24 to younger individuals. Dots and error bars indicate the

median posterior and the 95% confidence intervals, respec vely.
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increased from 0.5 to 2, and for individuals aged 10-19we es mate reproduc on numbers ranged from 0.89 [0.79,

1.01] to 0.91 [0.82, 1.02] as τ increased from 0.5 to 2. Reproduc on numbers were similar to those obtained

under the central model under the alterna ve model in which mobility trends for individuals aged 18-24 were

extrapolated to younger individuals. However these differences had li le impact on the es mated contribu on of

different age groups to onward spread. For children aged 0 − 9, we es mate the contribu on to onward spread

increased from 0.59% [0.38%-0.93%] to 2.23% [1.50%-3.38%] as τ increased from 0.5 to 2. For individuals aged

10-19, we es mate the contribu on to onward spread increased from 9.76% [8.96%-10.56%] to 10.13% [9.39%-

10.90%] as τ increased from 0.5 to 2. In the alterna ve model in which mobility trends for individuals aged 18-24

were extrapolated to younger individuals, the es mated contribu on to onward spread from children aged 0-9

was 1.74% [1.03%-3.06%], and the es mated contribu on to onward spread from individuals aged 10-19 was

11.90% [11.03%-13.25%].
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