
20 May 2021  Imperial College COVID-19 response team 

DOI: https://doi.org/10.25561/88876  Page 1 of 36 
 

Report 44: Recent trends in SARS-CoV-2 variants of concern in 
England 

Swapnil Mishra*,1, Sören Mindermann*,2, Mrinank Sharma*,3,4,5, Charles Whittaker*,1, Thomas A 
Mellan1, Thomas Wilton6, Dimitra Klapsa6, Ryan Mate6, Martin Fritzsche6, Maria Zambon7, Janvi 
Ahuja5,8, Adam Howes9, Xenia Miscouridou9, Guy P Nason9, Oliver Ratmann9, Gavin Leech10, Julia 
Fabienne Sandkühler11, Charlie Rogers-Smith12, Michaela Vollmer1, H Juliette T Unwin1, The COVID-19 
Genomics UK (COG-UK) consortium+,  Yarin Gal2, Meera Chand7, Axel Gandy9, Javier Martin6, Erik Volz1, 
Neil M Ferguson*,1, Samir Bhatt*,1,13, Jan M Brauner*,2,5, Seth Flaxman*,9 

 
1. Medical Research Council (MRC) Centre for Global Infectious Disease Analysis,  Jameel Institute, 
School of Public Health, Imperial College London, UK 
2. Oxford Applied and Theoretical Machine Learning (OATML) Group, Department of Computer 
Science, University of Oxford, UK 
3. Department of Statistics, University of Oxford, UK 
4. Department of Engineering Science, University of Oxford, UK 
5. Future of Humanity Institute, University of Oxford, UK 
6. National Institute for Biological Standards and Control (NIBSC), UK 
7. Public Health England, London, UK 
8. Medical Sciences Division, University of Oxford, UK 
9. Department of Mathematics, Imperial College London, UK 
10. Department of Computer Science, University of Bristol, UK 
11. Department of Psychology, University of Bonn, Germany 
12. OATML Group (work done while at OATML as an external collaborator), Department of 
Computer Science, University of Oxford, UK 
13. Section of Epidemiology, Department of Public Health, University of Copenhagen, Denmark 

 
*: equal contribution  
Correspondence: s.mishra@imperial.ac.uk, s.bhatt@imperial.ac.uk  
+: Full list of consortium names and affiliations are in the appendix 

 

 

 

SUGGESTED CITATION 

S Mishra, S Mindermann, M Sharma, et al. Recent trends in SARS-CoV-2 variants of concern in England. 
Imperial College London (20-05-2021), doi: https://doi.org/10.25561/88876 
 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License. 



20 May 2021  Imperial College COVID-19 response team 

DOI: https://doi.org/10.25561/88876  Page 2 of 36 
 

Summary 

Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 rapidly became 
the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified 
globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune 
escape. Understanding when, whether, and how these additional VOCs pose a threat in settings where 
B.1.1.7 is currently dominant is vital. This is particularly true for England, which has high coverage from 
vaccines that are likely more protective against B.1.1.7 than some other VOCs. We examine trends in 
B.1.1.7’s prevalence in London and other English regions using passive-case detection PCR data, cross-
sectional community infection surveys, genomic surveillance, and wastewater monitoring. Our results 
suggest shifts in the composition of SARS-CoV-2 lineages driving transmission in England between 
March and April 2021. Local transmission of non-B.1.1.7 VOCs may be increasing; this warrants urgent 
further investigation. 
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1. Introduction 

Since its emergence in Autumn 2020 in South East England, the SARS-CoV-2 variant of concern (VOC) 
B.1.1.7 has become the dominant lineage across much of Europe.1 Characterised by several mutations 
in the spike protein receptor-binding domain (RBD), epidemiological studies suggest B.1.1.7 is 50-80% 
more transmissible2,3 and causes more severe disease4 than previously circulating lineages. B.1.1.7 
rose rapidly, from near 0% to over 50% in under two months, and soon made up >98% of sequenced 
samples in England. Its rapid spread necessitated a third English national lockdown in January 2021. 
Subsequent spread in Europe5 and North America6 has similarly highlighted the threat this variant 
poses to continued control of community transmission.   
 
The 𝚫69-70 deletion in B.1.1.7’s Spike gene causes PCR tests to return negative results for that gene 
target,3 allowing S-gene target failure (SGTF) to act as a proxy for genomic surveillance. Both 
community-based testing of symptomatic individuals (“Pillar 2”7) and a weekly survey of more than 
100,000 randomly sampled UK residents conducted by the Office for National Statistics (ONS)8 have 
shown trends in SGTF frequency which mirrored the pattern seen in sequenced samples. The 
frequency of SGTF increased from near 0% in October 2020 to 98.8% in March 2021.  
 
Concurrent to B.1.1.7’s emergence, additional VOCs have been identified globally, including B.1.351 
(first identified in South Africa9) and P.1 (first identified in Brazil10). Both have been associated with 
extensive transmission following emergence, leading to substantial infection and mortality rates even 
in settings where seroprevalence was high (for example in Manaus, Brazil11,12). Epidemiological 
analysis suggests that, like B.1.1.7, these VOCs are more transmissible than ancestral SARS-CoV-2 
lineages.10,13 Neither have the 𝚫69-70 deletion and so test positive in Spike target PCR tests, but both 
share the E484K mutation thought to contribute to partial immune escape.14,15,16  
 
The UK now has a high level of population immunity to SARS-CoV-2: at the beginning of April 2021, it 
was estimated that 55% (95% CI: 49%-60%) of the English population were seropositive, either due to 
prior infection or vaccination.17 However, such high levels of immunity also represent an evolutionary 
selection pressure on the virus and may give VOCs with even a partial degree of immune escape 
(relative to B.1.1.7) a transmission fitness advantage –especially at a time where control measures are 
being progressively relaxed in the UK. Understanding when, how and if these VOCs pose a threat in 
settings where B.1.1.7 is currently dominant is vital. It is especially relevant for the UK, where 
vaccination rollout has relied heavily on the AstraZeneca vaccine; a vaccine that has proven highly 
protective against B.1.1.7 and prior variants,18 but may possess reduced efficacy against other VOCs.16

  
Here, we use a combination of data from passive-case detection PCR data, cross-sectional community 
infection surveys, genomic sequencing surveillance, and wastewater monitoring to examine spatial 
and temporal trends in B.1.1.7’s prevalence in England. We focus on London, which has the clearest 
trends and most available data, but we observe similar patterns in other regions. Our results suggest 
dynamic shifts in the composition of SARS-CoV-2 lineages driving transmission across England in 
March and April 2021, and an expansion of non-B.1.1.7 VOCs that warrants urgent further 
investigation. 
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2. Methods  

2.1 Data and Statistical Analysis 

2.1.1 Pillar 2 symptomatic community testing 

Public Health England’s surveillance system assembles data from dozens of PCR testing laboratories, 
the largest of which are the three large “Lighthouse” laboratories developed specifically in response 
to the pandemic. Approximately 30% of the samples processed by the Lighthouse laboratories use the 
ThermoFisher TaqPath PCR assay, which includes Spike as a target. For tests that give a PCR cycle 
threshold (Ct) value for non-spike targets substantially below the positivity threshold of 40, SGTF is a 
highly accurate proxy for B.1.1.7. Thus we are able to categorise a substantial proportion of all lab-
confirmed community SARS-CoV cases as B.1.1.7 or non-B.1.1.7.2 SGTF becomes less reliable when Ct 
values for all targets are high since the Spike target is more likely to test negative by chance when 
sample viral load is low. Hence we estimate the frequency of SGTF only from cases with Ct values in 
non-Spike targets of 30 or less.  
 
We consider the period from 31st January 2021 to 15th May 2021. We only consider test results in 
self-reported symptomatic cases and exclude tests conducted following a lateral flow test (used, for 
instance, for asymptomatic screening for infection in schools and workplaces). Unlike the COG-UK data 
detailed below, we do not have metadata to exclude individuals with recent travel history. Over that 
period and with these exclusions applied, there was a total of 72,881 S-gene positive (S+), and 586,854 
S-gene negative (S-) cases in England processed by the Lighthouse laboratories and 4,246 S+ and 
79,207 S- cases in London. Given that SGTF results are only available for a subset of samples, we 
estimate total Spike-positive (S+) case incidence by multiplying the frequency of S+ among all cases 
with SGTF results by the total Pillar 2 case incidence. Uncertainty estimates are detailed in 
Supplementary Text.  
 
2.1.2 ONS Infection Survey 

ONS conducts a fortnightly survey of randomly selected private households in the UK. In the two 
weeks prior to 16th April 2021, 139,948 participants from 73,328 households were tested using nose 
and throat self-swabs, analyzed with a PCR test. A Bayesian model was used to estimate the positivity 
rate for SARS-CoV-2 in the community, stratified by regions of England.19 We use the ONS estimates 
of the percentage of PCR-positive samples that are “not compatible with UK variant” (gene pattern S 
+ ORF1ab + N; indicated as S+ in Figure 1) and the estimates of samples that are “UK variant 
compatible” (gene pattern ORF1ab + N indicating likely infection with B.1.1.7). Uncertainty estimates 
are detailed in Supplementary Text.  
 
Each ONS release provides estimates for a 6 week period. We combine all the ONS releases from 26th 
February 2021 to 14th May 2021. For duplicated dates, we take the most recent estimate available in 
the combined data. To estimate total infection prevalence for each region (Figure 1A and Supp Figure 
A), we multiply the estimated S+ infection prevalence for that region by its population size as reported 
by ONS.20 
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2.1.3 Sewage water monitoring 

Sequencing of viral RNA from sewage water has been a valuable tool for tracking the distribution of 
SARS-CoV-2 variants in the UK, both during the first wave21 and the rise of B.1.1.7.22 In particular, a 
key advantage of this method is low sampling bias as it captures all people in the catchment area and 
not only those that receive COVID-19 tests. Here, we analysed fortnightly samples from the Beckton 
Sewage Treatment Works plant, which has a catchment area containing approximately 4 million 
people in North London. The catchment area does not include Heathrow Airport and adjacent 
quarantine hotels, which drain into the Mogden Sewage Treatment Works plant (as confirmed by 
Thames Water). Sample collection, processing, and analysis are described in detail in previous 
work;21,22 a short summary is given in Supplementary Text.  
 
2.1.4 COG-UK Genomic Sequencing 

We studied 5,277 sequences collected from Pillar 2 testing in the greater London area after March 1, 
2021 and provided by the COG-UK consortium.23  Sequence quality control, alignment, and lineage 
classification was carried out as described in previous work24 and computed with the MRC-CLIMB 
computational infrastructure.25  Lineage classification for novel variants under investigation B.1.617.1 
and B.1.617.2 were checked manually using the pangolin tool.26 Among the 5,277 sequences, 461 
were found to be from a lineage other than B.1.1.7 with 336 sequences in the set of VOCs and variants 
under investigation (VUIs) P.1 (n=21), B.1.1.318 (n=27), B.1.525 (n=69),  B.1.617.2 (n=27), B.1.617.1 
(n=52) and B.1.351 (n=140).  
 
We estimated the frequency over time for each lineage with more than 20 samples using a Gaussian 
process generalized additive model with a multinomial response for each lineage.  A large majority of 
the non-B.1.1.7 sequences (n=344) were found to be collected from managed quarantine facilities and 
individuals with recent travel history or surge testing. We repeated the analysis excluding this set.  
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3. Results 

Since the beginning of March 2021, S+ infection prevalence (ONS) and S+ case incidence (Pillar 2) have 
both started to increase against a background of falling overall case numbers. Figure 1 displays the 
data for London, where this trend is clearest, but there are signs of similar patterns in nearly every 
other region in England (Supplementary Figure 1). However, Pillar 2 is based on non-random testing 
and the ONS survey may suffer from sampling artifacts due to the low overall incidence in London in 
recent weeks.   
 
Examination of the Pillar 2 Ct values supports a qualitative change in S+ transmission patterns. Ct 
values in community testing are both inversely related to viral load and associated with transmission 
levels27–declining epidemics are correlated with lower mean Ct values, and vice-versa.  Figure 2 shows 
that until March 2021, S- samples (primarily B.1.1.7) had statistically significantly lower Ct values than 
S+ samples, especially for the N gene. This is as expected; reports suggest B.1.1.7 has higher viral loads, 
and thus lower Ct values, than prior lineages.28 Since the end of March 2021, however, mean Ct values 
for S+ samples have significantly decreased and are now comparable to values for S- samples. This 
suggests either a change in the genetic composition of S+ cases, with variants causing higher viral loads 
becoming more dominant, and/or an increase in transmission of S+ lineages.  
 
Figure 3 shows the frequency of mutations in SARS-CoV-2 viral RNA found in sewage water21,22 from 
North London. This data source includes all people living in the sewage plant’s catchment area, not 
just those that are tested. Figure 3 confirms that the increase in the proportion of S+ observed in other 
data sources is due to a decrease in the proportion of B.1.1.7. Mutations HV69-70del, Y144del, and 
A570D are relatively unique to B.1.1.7 (Supplementary Table 1).22 All three mutations were detected 
at a stable frequency >95% from early January22 to mid-March 2021 and then decreased to mean 
frequencies of 67% - 75% by April 13th (Figure 3). Conversely, the frequency of the E484K mutation – 
absent in B.1.1.7 but present in many other variants of concern/interest – has increased to over 30% 
by April 13th. Analysis of independent subsamples further reveals that E484K is indeed only present 
in non-B.1.1.7 viruses (Supplementary Text). These data suggest that variants with E484K are replacing 
B.1.1.7 in North London. This non-B.1.1.7 population can be further differentiated by analysing 
additional mutations (Supplementary Text), albeit with considerable uncertainty due to low viral 
loads. The non-B.1.1.7 population likely contains B.1.351 and B.1.525, while P.1 and B.1.617.1 were 
not found.  
 
Figure 4 shows results from COG-UK sequencing of SARS-CoV-2 samples from London since March 1st 
2021, also indicating recent growth in non-B.1.1.7 lineages. This trend is largely driven by increases in 
non-B.1.1.7 infections from travel-linked cases and surge testing (Figure 4 A-B). Smaller increases are 
observed in a subset which excludes such cases (Figure 4 C-D). The rise of non-B.1.1.7 lineages after 
April 1 is largely driven by imports of the B.1.617 lineages associated with the current epidemic wave 
in India.29 
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4. Discussion 

Experiences across the globe to date have highlighted the significant public health threat that new 
SARS-CoV-2 VOCs can pose, even in settings where transmission is currently under control or where 
population-level immunity should preclude resurgence. They have also highlighted the importance of 
early detection and identification of emerging viral threats, which provides the opportunity for prompt 
implementation of measures to control spread. Here, using four independent data sources, we 
present evidence supporting recent increases in the proportion of COVID-19 infections that are S+; an 
increase possibly driven by B.1.351, B.1.525, and B.1.617.   
 
A key question is whether these trends reflect local transmission of those variants, or imported 
infections detected on the background of very low overall incidence (Pillar 2 incidence was below 0.5 
cases/1000/week in London at the end of April 2020). In a context of high and sometimes rising 
incidence in many origin countries for international travellers and low and declining incidence in the 
UK, importations would be expected to represent an increasing proportion of detected cases, and this 
alone might explain the observed increase over time in S+ lineage frequency.  
 
While frequency of non-B.1.1.7 lineages has trended upwards since mid-March, genomic sequencing 
data suggest a majority of these cases may be linked directly or indirectly to overseas travel. While 
>20% of sequenced cases were from non-B.1.1.7 lineages as of mid-April (Figure 4B), the fraction is 
smaller in cases not known to be associated with travel or surge testing (Figure 4D). An upward trend 
in non-B.1.1.7 lineages could suggest that local transmission of such lineages is occurring, consistent 
with detected clusters in London and elsewhere9,30,31, though we do not yet know the extent to which 
this transmission is self-sustaining or is associated with typically short chains of transmission initiated 
by individual importation events. In addition, VOCs such as B.1.351 are subject to enhanced public 
health interventions, and thus the patterns we observe may deviate substantially from what would be 
observed otherwise.  
 
However, further lines of evidence suggest that local transmission of non-B.1.1.7 VOCs may be 
increasing. The recent uptick in E484K14,15,16 frequency in wastewater sequencing in North London is a 
particular concern, given the large catchment of this data stream and that it is not subject to the same 
surveillance biases as symptomatic case testing. Less directly, the observation of recent decreases in 
the average Ct values for S+ cases also provides support for ongoing community transmission. Recent 
work has shown that population-level average Ct values can provide an indication about the 
epidemic’s dynamics, with average Ct values declining when epidemics are growing and increasing 
when epidemics are declining.27 Trends in mean Ct values could be consistent with a change in the 
transmission patterns of S+ lineages. However, multiple VOC/non-VOCs are nested within the S+ 
classification; it is therefore not possible to disentangle the comparative contributions of each lineage 
with confidence. As shown in Supplementary Figures 1 and 2, trends similar to those we have 
described in London may be occurring in other regions of England, though overall S+ cases are so far 
at lower levels. Last, the detection of several clusters of VOC B.1.35129–31 in London and the rest of 
England also suggest community transmission.  
 
We note that it is not inevitable that E484K/Q-carrying variants will outcompete B.1.1.7. Variants 
under investigation such as B.1.525 and A.23.1 have undergone periods of rapid expansion in January-



20 May 2021  Imperial College COVID-19 response team 

DOI: https://doi.org/10.25561/88876  Page 8 of 36 
 

March 2021 associated with travel-related importation and limited local spread,  only to subside in 
the most recent period. The outcome of competition between two variants depends on their relative 
transmission fitness, which is determined by the intrinsic transmissibility of each strain, the extent 
each can evade prior immunity and any targeted non-pharmaceutical interventions in place.  
 
Several studies suggest that B.1.1.7,2,3 P.1,10 and B.1.35113 are more transmissible than previously 
circulating lineages, but precise estimates of their relative transmissibility are not yet available. 
However, even if B.1.351 and P.1 are less intrinsically transmissible than B.1.1.7, any substantive 
ability to evade prior immunity may give those VOCs an overall transmission advantage over B.1.1.7 
in the context of a highly immunised population such as the UK’s. Mounting evidence from in vitro,14,32 
epidemiological,10,13 and vaccine studies15,16,33,34 suggests that variants with E484K or E484Q mutations 
may partially evade prior immunity – indeed, rapid resurgences followed variant emergence in both 
Manaus, Brazil (where P.1 was first identified) despite potential evidence of high levels of immunity 
in the population.11,35 The extent of evasion against vaccine-based and natural immunity remains 
uncertain, though trials and observational studies suggest reduced efficacy of a number of vaccines 
against B.1.35115,16,36. There have been suggestions however that residual protection against severe 
disease may be higher37.  
 
Events following the emergence of novel SARS-CoV-2 variants have emphasised the value of 
identifying and responding to changes in lineage frequency early. Overall, our analysis provides a still 
ambiguous but potentially concerning early signal of current transmission of non-B.1.1.7 VOCs in 
England which suggest a need for intensified monitoring.  Rapid increases in such VOCs may threaten 
the success to date of the UK vaccination programme. More generally, our results underscore the 
value of utilising a diverse array of data sources in community surveillance and underscore the value 
of timely genomic surveillance to provide real-time information on the highly dynamic composition 
and trajectory of different SARS-CoV-2 lineages in the country. Such information is critical to the 
epidemic’s immediate control and to future vaccine development and deployment - both in the UK 
and other countries where the potential emergence of other novel SARS-CoV-2 variants remains a 
serious public health threat.   
 
 

5. Data Availability 

Data underlying the figures, source code, and links to publicly available data sources can be found 
at  https://github.com/ImperialCollegeLondon/SARS_CoV_2_variants_uk.  
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6. Figures 

 

Figure 1: Trends in S+ infections in London, February-May 2021. A) Estimated aggregated weekly 
incidence (log scale) of symptomatic S+ cases diagnosed via community testing (Pillar 2), S+ infections 
estimated from the ONS infection survey38, and non-B.1.1.7 SARS-CoV-2 sequences (COG-UK public 
data, which may include travelers and surge testing. B) Temporal trends in the proportion of cases and 
infections that are S+, estimated from symptomatic community testing (Pillar 2), the ONS infection 
survey, and from SARS-CoV-2 sequence data (non-B.1.17 fraction is shown). Results for other regions 
of England can be found in Supplementary Figures 1 and 2. Details on uncertainty intervals can be 
found in Supplementary Text. 
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Figure 2: Mean Cycle threshold (Ct) values by week for Pillar 2 symptomatic community testing 
in  London. Shaded ribbons show 95% confidence intervals for the mean. Ct values for ORF1ab gene 
and N gene are shown, with S+ in blue and S- in red. MS2 control indicates the mean Ct value of 
Bacteriophage MS2, which is added to samples for calibration purposes. Results for other regions of 
England can be found in Supplementary Figure 3. 
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Figure 3: Fraction of viral RNA showing mutations at key spike protein amino acid positions, 
identified in sewage samples from North London. Mean values from replicate sequences (n=8-12) for 
each sampling date are shown. Error bars indicate standard error of the mean. HV69-70del, Y144del, 
and A570D are relatively uniquely found in B.1.1.7 (Supplementary Table 1). E484K is absent in B.1.1.7. 
but present in several other variants of interest/concern. 
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Figure 4. The sample frequency of non-B.1.1.7 lineages in Greater London in community testing. Bar 
charts show the sample proportion of lineages with at least 20 samples after 31 March 2021. Error 
bars show 95% confidence intervals based on binomial sampling. Stacked area charts show estimates 
over time of the frequency of lineages in the period 1 March to 17 April.  Panels A-B show results for 
all Pillar 2 tests (n=461). Panels C-D show results excluding samples from managed quarantine facilities 
(travel associated) and surge testing (n=117). 
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12. Appendix 

Supplementary Figure 1. Time trend of S-gene positive PCR results and count of non-B.1.1.7 
sequences in regions of England in early 2021. Figure 1 has details on data sources. 
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Supplementary Figure 2. Time trend of fraction of S+ PCR results divided by PCR results which were 
identified as either S+ or S- in regions of England in early 2021. Figure 1 has details on data sources. 
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Supplementary Figure 3. Mean Cycle threshold (Ct) values for regions of England. See Figure 2 for 
data sources and processing. 
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Supplementary Figure 4. Fraction of viral RNA showing mutations at key spike protein amino acid 
positions, identified in sewage samples from North London. Mean values from replicate sequences 
(n=8-12) for each sampling date are shown. Error bars indicate standard error of the mean. See 
Supplementary Text 2 and Supplementary Table 1 for conclusions. D138Y and E484Q, which are 
characteristic of variants P.1 and B.1.617.1, were not detected. 
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Supplementary Table 1. Main SARS-CoV-2 variants and their associated mutations. The last two 
columns describe the trend observed in the fraction of these mutations in North London sewage water 
(Fig. 3 and Suppl. Fig. 4) and the conclusions that can be drawn from these trends. Sources: Public 
Health England investigation of novel SARS-CoV-2 variants of concern, Technical Briefings 1, 6, 7, 9. 

Mutation 

Wuhan-Hu-1 
strain (orig. 
wild type) B.1.1.7 P.1 B.1.351 B.1.525 B.1.617.1 

Observed 
trend in 
sewage 
water  

Conclusion from 
observed trend 

HV69-
70del no yes no no yes no 

Large 
decrease 

Decrease in 
fraction of B.1.1.7. Y144del no yes no no yes no 

Large 
decrease 

A570D no yes no no no no 
Large 
decrease 

E484K no no yes yes yes no Large increase 

The variants that 
replace B.1.1.7 
carry E484K. 

D80A no no no yes no no Small increase 
Increase in fraction 
of B.1.351. 

N501Y no yes yes yes no no 
Moderate 
decrease 

At least one other 
variant, besides 
B.1.351, is growing. 

Q52R no rare no no yes no 
Moderate 
increase 

Increase in fraction 
of B.1.525. A67V no rate no no yes no 

Moderate 
increase 

D138Y no no yes no no no Not found P.1 not found. 

E484Q no no no no no yes Not found 
B.1.617.1 not 
found. 
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Supplementary Text: Methods 

Sewage water monitoring 

Sample collection, processing, and analysis are described in detail in previous work.21,22 In short, one-
litre inlet wastewater composite samples were collected during a 24-hours window on each sampling 
day. Samples were pre-processed by centrifugation, molecular-weight cut-off filtration, and 
concentration. Viral RNA was purified from sewage concentrates using the High Pure viral RNA kit 
(Roche). 

RNA aliquots were amplified using a two-step nested reverse-transcription PCR (RT-PCR) process. 
Because of the length of the spike protein gene, two different primer sets were used, targeting 
different regions of the gene. The resulting PCR fragments contain the positions of the most relevant 
mutations (for example, on PCR fragment A: HV69-70del, D80A, D138Y, Y144del; and on PCR fragment 
B: E484K, N501Y, A570D). Good laboratory practices were ensured in all assays to reduce the 
possibility of cross-contamination. RNA extraction and negative template controls were included in 
every assay. 

PCR products were analysed with next-generation sequencing to quantify single nucleotide 
polymorphisms (SNPs) at each nucleotide position. Sequencing was performed with 250 base pair 
paired-end reads on MiSeq v2 (500 cycles) kits (Illumina). The resulting sequence data were further 
processed and analysed using Geneious 10.2.3 software. After filtering the reads, paired-end reads 
were combined and sequence contigs were built by reference-guided assembly. SNPs were identified 
using Geneious default settings, with the original SARS-CoV-2 Wuhan-Hu-1 strain (GenBank accession 
number MN908947) as reference. 

To reduce sampling effects, we PCR-amplified 12 independent aliquots of RNA concentrate per 
sampling date, and sequenced all samples with positive PCR results (n=8-12). The results of individual 
aliquots can reveal which mutations co-occur. For example, positions 484 and 570 map to the same 
PCR fragment (fragment B) and the detected fractions of E484K and A570D sum to approximately 1 in 
each of the 8 PCR-positive RNA aliquots. We can thus conclude that the mutation E484K is only present 
in non-B.1.1.7 viruses. 

 
Further analysis of the non-B.1.1.7 population found in sewage water. 

Mutations D138Y and E484Q were not found, indicating the absence of P.1 and B.1.617.1 variants at 
detectable levels. Mutation D80A, characteristic of B.1.351, however, has increased in frequency to 
4% (Suppl. Figure 4). This suggests that a part, but not all, of the non-B.1.1.7 viruses belong to the 
B.1.351 lineage. Mutation N501Y is present in B.1.1.7 and B.1.351, but not some other variants 
(Supplementary Table 1). N501Y’s frequency decreased to 87% in April, a decrease less pronounced 
than that of mutations unique to B.1.1.7 (Figure 3). This further implies that some, but not all, of the 
non-B.1.1.7 viruses belong to the B.1.351 lineage. Mutations Q52R and A67V are unique to B.1.525 
and increased to 12% in April, suggesting that B.1.525 might be one of the other lineages contained in 
the non-B.1.1.7 population. This further matches the observation that the decrease of A570D (present 
in only B.1.1.7) was more pronounced than that of HV69-70del and Y144del (present in both B.1.1.7 
and B.1.525) (Figure 3). 
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To summarise, sewage water samples suggest that >25% of the North London viral population on 13th 
April 2021 did not belong to the B.1.1.7 lineage. The non-B.1.1.7 population is likely composed of 
B.1.351, B.1.525, and possibly other lineages with E484K. P.1 and B.1.617 were not detected.  
 
Statistical analysis of Pillar 2 data. 

We use a bootstrap approach to quantify the uncertainty in estimates of Pillar 2 S+ and S- counts. For 
each week and region, we sample with replacement the counts of S+/S- of local areas as a pair  and 
use these samples to calculate confidence intervals of the regional estimates. The purpose of the 
bootstrap approach is to account for clustering within local areas and randomness in the amount of 
PCR tests being sent for SGTF within a local area.  
 

Statistical analysis of ONS Infection Survey data 

The ONS Infection Survey reports posterior mean and 95% Bayesian credible intervals (bCI) for the 
daily positivity rate of infections consistent with B.1.1.7 (positive on ORF1ab and N genes) and 
separately  posterior mean and 95% bCI for the daily positive rate of infections inconsistent with 
B.1.1.7 (positive on ORF1ab, N, and S genes). 

Due to limited information released with the public ONS Infection Survey our ONS confidence intervals 
should only be seen as pseudo-intervals that give an approximate understanding of the uncertainty 
around a classical random sampled proportion estimate conditioned on the ONS estimate. 
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