Imperial College London

Special Techniques 1

Mark Scott FILM Facility

SPECIAL TECHNIQUES

- Multi-photon microscopy
- Second Harmonic Generation
- FRAP
- FRET
- FLIM
- In-vivo imaging

- Alternative to confocal and deconvolution microscopy
- Two photons of half the energy combine
- Emission equivalent to being excited with a single photon laser

Leica SP5 Upright

Leica SP5 Inverted

Newport Spectra-Physics Mai Tai Laser

690-1040nm

Fluorophore Excitation in Multiphoton Microscopy

- Much higher energy required
 - ~1,000,000x greater
- Pulsed laser
- Femtosecond pulses
 - High power per pulse
 - Low average power
- Wave-form power output (2.7W peak)

- No pinhole required (no out of focus light excited)
 - NDD detectors higher sensitivity (less light path = less light lost)
- Less photo-bleaching/photo-toxicity (lack of excitation above and below the focal plane)
- Less scattering of light (Red vs Blue)
- Deeper penetration
- Protein uncaging specialist application
- Image resolution/Thin specimens

TWO-PHOTON STAIN SELECTION

• Spectral profile differs (peak may change)

Dye	Single Photon Ex/Em	Two Photon Ex
GFP	488/507nm	860<960nm
DsRed	543/580nm	900<1064nm
DAPI	350/470nm	780>820nm
FITC	490/525nm	780>820nm
CY3	550/570nm	780nm
CY5	649/670nm	780>820nm

THREE-PHOTON EXCITATION

- Only 10x more power needed from 2-photon, not the million-fold increase going from 1-photon to 2-photon excitation.
- Requires 3 photons
 - ~1/3 of normal excitation
- $1020\text{nm} \rightarrow 340\text{nm}$
 - (510nm)

SECOND HARMONIC GENERATION

- (Frequency Doubling)
- Photon's interact to form single photons (double the wavelength)
- Only non-centrosymmetric structures

SECOND HARMONIC GENERATION

- Gives structural information without staining
- Useful for morphological information in whole tissue
 - Gain structural information of surrounding when tracking cells in-vivo without needing staining (live specimens)
- Can be combined with other microscopy techniques (Anisotropic imaging, Autofluorescence, Lifetime imaging)

SECOND HARMONIC GENERATION

- Wavelength dependency for different structures
- Useful to distinguish between tissue composition without staining (with other techniques)
- Commonly imaged structures:
 - Collagen I/III(840/930nm)
 - Elastin (740nm)
 - NAD(P)H (680nm)

930nm

SHG 840nm

Collagen I antibody staining

Pancreatic Islets showing two-photon SHG generation of intracellular NAD(P)H

SECOND HARMONIC DYES

- SHRIMPS (Second Harmonic Radiation Imaging Probes)
- Development of structurally significant molecules
- Specific wavelengths of SHG generation used to excite
- Structural interference/amplification
- Excellent possibilities for extreme long term imaging

PHOTO-BLEACHING

- Photochemical destruction of fluorescent molecules
- Differs between fluorophores
- 2P excitation reduces this bleaching by limiting exposure

FLUORESCENCE RECOVERY AFTER PHOTO-BLEACHING

- FRAP
- Bleaching of specific areas
- Diffusion/transport experiments

FORSTER RESONANCE ENERGY TRANSFER

- FRET
- Transfer of energy between fluorophores
- Typically under 15nm
- Quantitative measure of co-localisation
 - Only molecules within strict distances will FRET
 - FRET efficiency determined by distance between molecules

FRET Detection of in vivo Protein-Protein Interactions

Figure 2 Intermolecular Association

- Specific fluorophore pairings
 - Based on spectral overlap
 - Emission of Donor must overlap Excitation of Acceptor
 - FRET efficiency determines Forster distance

Common Donor-Acceptor Pairs:

- FITC Rhodamine (4.9nm)
- CY3 CY5 (>5.0 nm)
- PE -CY5 (7.2nm)
- CY5-CY5.5 (>8.0nm)

- Photobleaching effects the FRET transfer
- Ratio-metric analysis
- Acceptor bleached, Donor emission increases
- Two-photon bleaching more precise
 - Only bleaches in plane of focus so able to specify the 3D area of bleaching much more precisely

FLUORESCENCE LIFETIME IMAGING MICROSCOPY

- FLIM
- Pulsed mode-locked laser (2P – FILM Confocal 3 and 4)
- Measure of excitation decay

FLIM FOR FRET

- Lifetime of fluorophores effected by energy transfer
- Lifetime also changes with conditions of sample

- Confocal 3
- Imaging whole tissue or animals
- Problematic due to light scatter, movement...

- High quality lens
 - 25x water immersion lens
 - 0.95 N.A.
- High confocal zoom possible
- Allows low power rapid scanning and high power area imaging

63x Objective – No zoom

25x Objective - 6x zoom

- Ensure specimen does not move
- Longer scan time possible
- Reproducibility increased

- 2P laser excitation deeper penetration, less scatter, less damage...
- Steady specimen holder increased scan time possible
- Multiple imaging techniques able to be combined

Thank You...