5th Course on Optical Microscopy Imaging for Biosciences IBMC, Porto, Portugal

Molecular Imaging

FRAP, PA, PC, FRET, FLIM, FLIP, FLAP etc.

Martin Spitaler FILM - Facility for Imaging by Light Microscopy Imperial College London, UK

Flow cytometry

Results:

- Intensity distribution label 1
- Intensity distribution label 2
- Intensity distribution label 3
- Forward scatter (size)
- Sideward scatter (shape / granularity)

Label 1

Label 2 Label 3

• ...

Result: • The full picture

Source: Ursus Wehrl, www.kunstaufraeumen.ch

millions of details

one cell

$$r = 0.61*\frac{\lambda}{NA}$$

Molecular network in cell activation

Molecular scales

	Wide-field		Confocal		
	Lateral resolution dx, y	Axial resolution dx, z	Lateral resolution dx, y	Axial resolution dx, z	
Expression	$0.61 \lambda_{em}/NA$	$2 \lambda_{em}/NA^2$	$0.4 \lambda_{em}/NA$	$1.4 \lambda_{em}/NA^2$	
Limit resolution of a $63 \times oil$ immersion objective with NA = 1.32 at λ = 500 pm	232 nm	574 nm	152 nm	402 nm	
Minimal justified pixel size for this objective	101 nm	250 nm	66 nm	175 nm	

Molecular scales

Molecular imaging by correlative light-electron microscopy

Katia Cortese, Alberto Diaspro, Carlo Tacchetti J Histochem Cytochem December 2009 vol. 57 no. 12 1103-1112

Nicola Hellen: Ca"+ signal in cardiomyocytes

$$r = 0.61*\frac{\lambda}{NA}$$

Molecular imaging: Best possible image data!

	Wide-field		Confocal	Confocal	
	Lateral resolution dx, y	Axial resolution dx, z	Lateral resolution dx, y	Axial resolution	dx, z
Expression Limit resolution of a 63×0il immersion objective with	0.61 λ _{em} /NA 232 nm	2 λ _{em} /NA ² 574 nm	0.4λ _{em} /NA 152 nm	$\frac{1.4\lambda_{em}/\mathrm{NA^2}}{402\mathrm{nm}}$	
$NA = 1.32$ at $\lambda_{em} = 500$ nm Minimal justified pixel size for this objective	101 nm	250 nm	66 nm	175 nm	Nyquist

original

Colocalisation analysis

Colocalisation analysis

Colocalisation analysis: Statistical analysis

Spearson's coefficient

linear correlation between two single (homogeneous) populations non-linear correlation between two inhomogeneous populations

Overlap coefficient

coefficients M1 and M2 : <u>fraction of total area</u> in one channel coinciding with some intensity in the other channel

Manders' coefficient

coefficients M1 and M2 : <u>fraction of total intensity</u> in one channel coinciding with some intensity in the other channel

Co-localisation analysis: effects of various image content

P = Pearson

M = Manders

O = Overlap

Single-molecule analysis by fluorescence calibration

Chiu CS, Kartalov E, Unger M, Quake S, Lester HA. J Neurosci Methods. 2001; 105(1): 55-63. Engl C, Jovanovic G, Lloyd LJ, Murray H, Spitaler M, Ying L, et al. Mol Microbiol. 2009.

Single-molecule analysis by step-wise photobleaching

Breitsprecher D, Jaiswal R, Bombardier JP, Gould CJ, Gelles J, Goode BL. Science. 2012; 336(6085): 1164-8. Das et al., ChemBioChem Volume 8, Issue 9, pages 994–999, June 18, 2007

Measuring molecular motility: Fluorescence Recovery After Photo-bleaching (FRAP)

T cell

Measuring molecular motility: Fluorescence Recovery After Photo-bleaching (FRAP)

Spitaler M et al., Immunity. 2006; 24(5): 535-46.

Measuring molecular motility: Fluorescence Recovery After Photo-bleaching (FRAP)

Problems:

- high phototoxicity
- **slow** (sample movement)
- incomplete bleaching

0

1 min

$$N(t) = \frac{F(t) - F(0)}{F(\infty) - F(0)}$$

- N(t) = normalised signal
- F(t) = fluorescence at time t
- F(0) = fluorescence before bleaching
- $F(\infty)$ = fluorescence at full recovery

Measuring molecular motility: Fluorescence Loss In Photobleaching (FLIP) and Fluorescence Localisation after Photobleaching (FLAP)

<u>FLIP:</u>

- prevents recovery during bleaching
- measures motile vs. stationary fraction <u>FLAP:</u>
- measuring fast molecules (ratiometric rather than absolute intensities)
- can be applied to photo-switching and photo-conversion

Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP Molecules. 2012; 17(4): 4047-132

Measuring molecular motility: Photo-switchable proteins

Example: EOS-FP

Measuring molecular motility: Photo-switchable proteins

Protein	Switch	(emission)		Quaternary	Brightness
(Acronym)	from	to	Photostability	Structure	(% EGFP)
Photoactivat	able				
PS-CFP2	n/a	511	++	Monomer	32
PA-GFP	n/a	517	++	Monomer	41
Phamret	n/a	517	++	Monomer	41
PA-mCherry1	n/a	595	++	Monomer	25
PA-mRFP1	n/a	605	+	Monomer	3
Photoactivat	able (reversil	ble)			
mTFP0.7	n/a	488	+	Monomer	89
bsDronpa	n/a	504	++	Monomer	67
Dronpa-3	n/a	514	++	Monomer	56
Dronpa	n/a	517	+++	Monomer	240
rsFastLime	n/a	518	++	Monomer	89
Padron	n/a	522	++	Monomer	82
E2GFP	n/a	523	++	Monomer	79
KFP1	n/a	600	+++	Tetramer	12
rsCherryRev	n/a	608	++	Monomer	1
rs Cherry	n/a	610	++	Monomer	5
Photoconver	tible				
Dendra2 (G)	507	573	++	Monomer	67
mKikGR (G)	515	591	+	Monomer	101
wtEosFP (G)	516	581	++	Tetramer	150
dEos (G)	516	581	++	Dimer	165
tdEos (G)	516	581	++	Tandem Dimer	165
wtKikGR (G)	517	593	++	Tetramer	112
Kaede	518	580	++	Tetramer	259
mEos2 (G)	519	584	++	Monomer	140
Photoconver	tible (reversil	ble)			
IrisFP (G)	516	580	++	Tetramer	67
Fluorescent l	Protein Time	rs			
Slow-FT	465	604	++	Monomer	35
Medium-FT	464	600	++	Monomer	55
Fast-FT	466	606	++	Monomer	44
DsRed-E5	500	583	+++	Tetramer	ND*
Source: http://zeiss	-campus.magnet.fsi	ı.edu			

Measuring molecular motility: Photo-switchable proteins

Sophie Pageon: Molecular signalling in NK cell activation measured with EOS-FP

Measuring molecular motility: Fluorescence Correlation Spectroscopy

- Observation volume: <1 femtoliter (confocal volume, ~ volume of an E.coli bacterial cell)
- nanomolar molecule concentrations

$$G(\tau) = \frac{\langle \delta F(t) \bullet \delta F(t+\tau) \rangle}{\langle F(t) \rangle^2}$$

G (τ) = autocorrelation function

F(t) = fluorescence intensity at time t F(t+T) = intensity at (t + τ), where τ is a variable time interval

Measuring molecular motility: Fluorescence Correlation Spectroscopy

http://www.invitrogen.com

Capabilities of FCS:

- fluctuations quantified in strength and duration by temporally autocorrelating the recorded intensity signal
- high-resolution spatial and temporal analysis of extremely low concentrated biomolecules
- can measure any physical parameters that give rise to fluctuations in the fluorescence signal (local concentrations, mobility coefficients, inter- or intramolecular reactions)

Implications of molecular motility and clustering

Cebecauer M, Spitaler M, Sergé A, et al, J Cell Sci, 2010, Vol:123

Implications of molecular motility and clustering

Frederick R Maxfield Current Opinion in Cell Biology, Volume 14, Issue 4, 1 August 2002, Pages 483–487

Measuring molecular motility: Fluorescence anisotropy

http://www.invitrogen.com

$$r = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + 2I_{\perp}}$$

- I∥ = fluorescent intensity parallel to the excitation plane
- I_{\perp} = fluorescent intensity perpendicular to the excitation plane

Measuring molecular motility: Fluorescence anisotropy

Anisotropy images acquired 40 seconds (left) and 4 minutes (right) after mixing the enzyme protease k with sepharose beads containing albumin conjugated to the fluorophore Bodipy-FL

http://www.urmc.rochester.edu/smd/rad/foster

Capabilities of Fluorescence Anisotropy:

- binding constants and kinetics of reactions that cause a change in the rotational time of the molecules
- dynamics of protein folding
- local viscosity of the cytosol or membranes

Jablonksi diagram of fluorescence excitation

Time domain FLIM

- pulsed laser, e.g. diode laser or twophoton laser (80MHz, <psec pulses)
- single-photon counting detector (PMT + photon counting card)
- direct lifetime measurement
- acquisition speed:
 - ~10-60 sec per frame

Time domain FLIM

• pulsed laser, e.g. diode laser or twophoton laser (80MHz, <psec pulses)

- single-photon counting detector (PMT + photon counting card)
- direct lifetime measurement
- acquisition speed:
 - ~10-60 sec per frame

Frequency domain FLIM

- Pulsed laser
- pulsed, synchronised detector (e.g. CCD camera)
- fast
- acquisition speed:
 ~0.1-10 sec per frame

High order

Visualisation of membrane fluidity by FLIM of di-4-ANEPPDHQ

Spitaler M et al., Immunity. 2006; 24(5): 535-46. Dylan Owen, Mark Neil , Paul French, Anthony Magee, Seminars in Cell & Developmental Biology 18 (2007) 591–598

FRET

FRET efficiency:
$$E = \frac{1}{1 + (r/R_0)^6}$$

Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M. Nat Methods. 2009; 6(10): 737-40.

Methods to measure FRET:

• 1) Stimulated emission: excitation of donor, visualisation of acceptor

- <u>advantage</u>: technically simple (any fluorescent microscope)
- <u>disadvantage</u>: hard to quantify (spectral overlap, uneven staining, bleaching)
- <u>best used</u>: relative, fast changes (ratiometric, live)

Methods to measure FRET:

- 1) Stimulated emission: excitation of donor, visualisation of acceptor
 - <u>advantage</u>: technically simple (any fluorescent microscope)
 - <u>disadvantage</u>: hard to quantify (spectral overlap, uneven staining, bleaching)
 - <u>best used</u>: relative, fast changes (ratiometric, live)

• 2) Acceptor photobleaching:

visualisation of donor before and after bleaching of the acceptor

- <u>advantage</u>: relatively simple (any confocal microscope), less affected by bleaching, not affected by spectral overlap
- <u>disadvantage</u>: high phototoxicity, motion artefacts
- best used: additional control for (1) and (3)

Methods to measure FRET:

- 1) Stimulated emission: excitation of donor, visualisation of acceptor
 - <u>advantage</u>: technically simple (any fluorescent microscope)
 - <u>disadvantage</u>: hard to quantify (spectral overlap, uneven staining, bleaching)
 - <u>best used</u>: relative, fast changes (ratiometric, live)
- 2) Acceptor photobleaching:

visualisation of donor before and after bleaching of the acceptor

- <u>advantage</u>: relatively simple (any confocal microscope), less affected by bleaching, not affected by spectral overlap
- <u>disadvantage</u>: high phototoxicity, motion artefacts
- best used: additional control for (1) and (3)

• 3) FLIM-FRET

(acceptor photobleaching can be used as a control)

- <u>advantage</u>: least affected by artefacts (independent of intensity, not affected by spectral overlap)
- disadvantage: technically most demanding
- best used: quantitative, low-speed imaging

FRET measurement by FLIM-FRET

lifetime τ

Picoquant application notes

Applications of FRET:

- protein protein interactions
- protein cleavage (apoptosis)
- protein modifications (e.g. phospho-specific antibodies)
- ion sensors (e.g. Ca²⁺, Zn²⁺, ...)

BFP/GFP ratio images of BG-Src upon EGF (100 ng/ml) stimulation of HeLa cells

Biosensors and Bioelectronics Volume 46, 15 August 2013, Pages 97–101 Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKOκ fluorescent protein pairs Ting Sua, Shaotao Pana, Qingming Luoa, Zhihong Zhanga

INS-1(832/13) cells after Zn2+ stimulation

Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M. Nat Methods. 2009; 6(10): 737-40.

Limitations of FRET:

- the donor fluorophore needs to be excited by shorter wavelength:
 - difficult in vivo (intravital)
 - photobleaching
 - autofluorescence
 - fluorescence crosstalk

Visualising molecular interaction: Bioluminescence Resonant Energy Transfer (BRET)

- natural exciation of GFP in the jellyfish Aequorea victoria
- only emitted light needs to pass through tissue → deeper penetration depth
- no autofluorescence
- only one wavelength passes through the sample

Dragulescu-Andrasi A et al. PNAS 2011;108:12060-12065

Long-distance BRET-like fluorescence: "Fluorescence by Unbound Excitation from Luminescence" (FUEL)

Dragavon J, ..., Spencer Shorte Proc Natl Acad Sci U S A 109: 8890-8895

Visualising molecular interaction: Bi-molecular Fluorescence Complementation (BiFC)

Kodama Y, Hu CD. Biotechniques. 2012; 53(5): 285-98 Kerppola TK. Annu Rev Biophys. 2008; 37: 465-87

Tools for molecular imaging

