5th Course on Optical Microscopy Imaging for Biosciences IBMC, Porto, Portugal

Molecular Imaging

FRAP, PA, PC, FRET, FLIM, FLIP, FLAP etc.

Martin Spitaler FILM - Facility for Imaging by Light Microscopy **Imperial College London, UK**

Flow cytometry

Label 1

Results:

- •Intensity distribution label 1
- •Intensity distribution label 2
- •Intensity distribution label 3
- •Forward scatter (size)
- •Sideward scatter (shape / granularity)

Label 3

•…

Unknownsample

> **Result:** •The full picture

one cell and millions of details

$$
r = 0.61^* \frac{\lambda}{NA}
$$

Molecular network in cell activation

Molecular scales

Molecular scales

Molecular imaging by correlative light–electron microscopy


```
Katia Cortese, Alberto Diaspro, Carlo Tacchetti
J Histochem Cytochem December 2009 vol. 57 no. 12 1103-1112
```


Nicola Hellen: Ca"+ signal in cardiomyocytes

$$
r = 0.61^* \frac{\lambda}{NA}
$$

Molecular imaging: Best possible image data!

deconvolved

Colocalisation analysis

Colocalisation analysis

Intensity green

Intensity green

Intensity red

Colocalisation analysis: Statistical analysis

Spearson's coefficient

linear correlation between two single (homogeneous) populations

non-linear correlation between two inhomogeneous populations

Overlap coefficient

coefficients M1 and M2 : fraction of total area in one channel coinciding with some intensity in the other channel

Manders' coefficient

coefficients M1 and M2 : fraction of total intensity in one channel coinciding with some intensity in the other channel

Co-localisation analysis: effects of various image content

P = Pearson

M = Manders O = Overlap

http://www.svi.nl/ColocalizationCoefficients

Single-molecule analysis by fluorescence calibration

Chiu CS, Kartalov E, Unger M, Quake S, Lester HA. J Neurosci Methods. 2001; 105(1): 55-63. Engl C, Jovanovic G, Lloyd LJ, Murray H, Spitaler M, Ying L, et al. Mol Microbiol. 2009.

Single-molecule analysis by step-wise photobleaching

Breitsprecher D, Jaiswal R, Bombardier JP, Gould CJ, Gelles J, Goode BL. Science. 2012; 336(6085): 1164-8.

Das et al., ChemBioChem Volume 8, Issue 9, pages 994–999, June 18, 2007

Measuring molecular motility: Fluorescence Recovery After Photo-bleaching (FRAP)

Measuring molecular motility: Fluorescence Recovery After Photo-bleaching (FRAP)

Spitaler M et al., Immunity. 2006; 24(5): 535-46.

Measuring molecular motility: Fluorescence Recovery After Photo-bleaching (FRAP)

Problems:

- high **phototoxicity**
- **slow** (sample movement)
- incomplete bleaching

0 **1min**

$$
N(t) = \frac{F(t) - F(0)}{F(\infty) - F(0)}
$$

- •N(t) = normalised signal
- F(t) = fluorescence at time t
- •F(0) = fluorescence before bleaching
- • \bullet F(∞) = fluorescence at full recovery

Measuring molecular motility: Fluorescence Loss In Photobleaching (FLIP) and **Fluorescence Localisation after Photobleaching (FLAP)**

FLIP:

- prevents recovery during bleaching
- measures motile vs. stationary fraction FLAP:
- measuring fast molecules (ratiometric rather than absolute intensities)
- can be applied to photo-switching and photo-conversion

Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPMolecules. 2012; 17(4): 4047-132

Measuring molecular motility: Photo-switchable proteins

Example: EOS-FP

Measuring molecular motility: Photo-switchable proteins

Measuring molecular motility: Photo-switchable proteins

Sophie Pageon: Molecular signalling in NK cell activation measured with EOS-FP

Measuring molecular motility: Fluorescence Correlation Spectroscopy

- *Observation volume: <1 femtoliter (confocal volume, ~ volume of an E.coli bacterial cell)*
- *nanomolar molecule concentrations*

$$
G(\tau) = \frac{\langle \delta F(t) \bullet \delta F(t + \tau) \rangle}{\langle F(t) \rangle^2}
$$

G (τ) = autocorrelation function

F(t) = fluorescence intensity at time t F(t+T) = intensity at (t + τ), where τ is a variable time interval

Measuring molecular motility: Fluorescence Correlation Spectroscopy

http://www.invitrogen.com

Capabilities of FCS:

- fluctuations quantified in strength and duration by temporally autocorrelating the recorded intensity signal
- high-resolution spatial and temporal analysis of extremely low concentrated biomolecules
- can measure any physical parameters that give rise to fluctuations in the fluorescence signal (local concentrations, mobility coefficients, inter- or intramolecular reactions)

Implications of molecular motility and clustering

Cebecauer M, Spitaler M, Sergé A, et al, J Cell Sci, 2010, Vol:123

Implications of molecular motility and clustering

Frederick R MaxfieldCurrent Opinion in Cell Biology, Volume 14, Issue 4, 1 August 2002, Pages 483–487

Measuring molecular motility: Fluorescence anisotropy

http://www.invitrogen.com

$$
r=\frac{I_{\parallel}-I_{\perp}}{I_{\parallel}+2I_{\perp}}
$$

- *I ║ = fluorescent intensity parallel to the excitation plane*
- *I ┴ = fluorescent intensity perpendicular to the excitation plane*

Measuring molecular motility: Fluorescence anisotropy

Anisotropy images acquired 40 seconds (left) and 4 minutes (right) after mixing the enzyme protease k with sepharose beads containing albumin conjugated to the fluorophore Bodipy-FL

http://www.urmc.rochester.edu/smd/rad/foster

Capabilities of Fluorescence Anisotropy:

- binding constants and kinetics of reactions that cause a change in the rotational time of the molecules
- dynamics of protein folding
- local viscosity of the cytosol or membranes

Jablonksi diagram of fluorescence excitation

Time domain FLIM

- pulsed laser, e.g. diode laser or twophoton laser (80MHz, <psec pulses)
- single-photon counting detector (PMT + photon counting card)
- direct lifetime measurement
- acquisition speed:
	- ~10-60 sec per frame

Time domain FLIM

• pulsed laser, e.g. diode laser or twophoton laser (80MHz, <psec pulses)

- single-photon counting detector (PMT + photon counting card)
- direct lifetime measurement
- acquisition speed: ~10-60 sec per frame

Frequency domain FLIM

- Pulsed laser
- pulsed, synchronised detector (e.g. CCD camera)
- fast
- acquisition speed: ~0.1-10 sec per frame

Visualisation of membrane fluidity by FLIM of di-4-ANEPPDHQ

Spitaler M et al., Immunity. 2006; 24(5): 535-46.

Dylan Owen, Mark Neil , Paul French, Anthony Magee, Seminars in Cell & Developmental Biology 18 (2007) 591–598

FRET

FRET efficiency:
$$
E = \frac{1}{1 + (r/R_0 \Theta)}
$$

Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M. Nat Methods. 2009; 6(10): 737-40.

Methods to measure FRET:

• **1) Stimulated emission:**

excitation of **donor**, **visualisation** of **acceptor**

- <u>advantage</u>: technically simple (any fluorescent microscope)
- disadvantage: hard to quantify (spectral overlap, uneven staining, bleaching)
- <u>best used</u>: relative, fast changes (ratiometric, live)

Methods to measure FRET:

- **1) Stimulated emission: excitation** of **donor**, **visualisation** of **acceptor**
	- <u>advantage</u>: technically simple (any fluorescent microscope)
	- disadvantage: hard to quantify (spectral overlap, uneven staining, bleaching)
	- <u>best used</u>: relative, fast changes (ratiometric, live)

• **2) Acceptor photobleaching:**

visualisation of **donor** before and after **bleaching** of the **acceptor**

- advantage: relatively simple (any confocal microscope), less affected by bleaching, not affected by spectral overlap
- disadvantage: high phototoxicity, motion artefacts
- best used: additional control for (1) and (3)

Methods to measure FRET:

- **1) Stimulated emission: excitation** of **donor**, **visualisation** of **acceptor**
	- <u>advantage</u>: technically simple (any fluorescent microscope)
	- disadvantage: hard to quantify (spectral overlap, uneven staining, bleaching)
	- <u>best used</u>: relative, fast changes (ratiometric, live)
- **2) Acceptor photobleaching: visualisation** of **donor** before and after **bleaching** of the **acceptor**
	- advantage: relatively simple (any confocal microscope), less affected by bleaching, not affected by spectral overlap
	- disadvantage: high phototoxicity, motion artefacts
	- best used: additional control for (1) and (3)

• **3) FLIM-FRET**

(acceptor photobleaching can be used as a control)

- <u>advantage</u>: least affected by artefacts (independent of intensity, not affected by spectral overlap)
- •disadvantage: technically most demanding
- <u>best used</u>: quantitative, low-speed imaging

FRET measurement by FLIM-FRET

lifetime

Picoquant application notes

Applications of FRET:

- \bullet protein - protein interactions
- •protein cleavage (apoptosis)
- •protein modifications (e.g. phospho-specific antibodies)
- •ion sensors (e.g. Ca^{2+} , Zn^{2+} , ...)

BFP/GFP ratio images of BG-Src upon EGF (100 ng/ml) stimulation of HeLa cells

Biosensors and Bioelectronics Volume 46, 15 August 2013, Pages 97–101 Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKO ^κ fluorescent protein pairs Ting Sua, Shaotao Pana, Qingming Luoa, Zhihong Zhanga

INS-1(832/13) cells after Zn2+ stimulation

Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M. Nat Methods. 2009; 6(10): 737-40.

Limitations of FRET:

- the donor fluorophore needs to be excited by shorter wavelength:
	- difficult in vivo (intravital)
	- photobleaching
	- autofluorescence
	- fluorescence crosstalk

Visualising molecular interaction: Bioluminescence Resonant Energy Transfer (BRET)

- natural exciation of GFP in the jellyfish Aequorea victoria
- only emitted light needs to pass through tissue \rightarrow deeper penetration depth
- •no autofluorescence
- \bullet only one wavelength passes through the sample

Dragulescu-Andrasi A et al. PNAS 2011;108:12060-12065

Long-distance BRET-like fluorescence: "Fluorescence by Unbound Excitation from Luminescence" (FUEL)

Dragavon J, …, Spencer Shorte Proc Natl Acad Sci U S A 109: 8890-8895

Visualising molecular interaction: Bi-molecular Fluorescence Complementation (BiFC)

Kodama Y, Hu CD. Biotechniques. 2012; 53(5): 285-98 Kerppola TK. Annu Rev Biophys. 2008; 37: 465-87

Tools for molecular imaging BiFC FUEL BRET FRET FLIM Fluorescence Anisotropy FCS Photoswitching Photoconversion FRAP FLIP Co-localisation FLAP