
The changing costs of technology and the 
optimal investment timing in the power sector

Introduction

Decarbonisation efforts in the UK, as well as in many countries 

around the world, are reshaping the structure, operation, 

and economics of electricity systems. Energy policies are 

aiming to shift power generation from dispatchable (where 

output is flexibly adjustable) carbon intense fossil fuel power 

plants, to variable low-carbon renewable energy technologies. 

Nuclear and bio-energy could regain importance as dispatchable 

near-zero carbon power supply options. The national and 

international electricity interconnectors play an increasingly 

important role in power supply and transportation1. This so-

called energy transition also includes a discernible trend 

towards modular, small scale, and distributed power generation. 

Changes on the power demand side involve a growing 

electrification of transport, buildings and industry2. 

Balancing services and increasing flexible or ‘smart’ power 

end use, are increasingly important. While most 20th century 

electricity systems in Europe were designed to follow electricity 

demand patterns, today the increasing share of intermittent 
power generation requires a portfolio of control mechanisms to 
balance supply and demand. Without such mechanisms in place, 
system operators might be forced to discard some of the wind or 
solar power – so-called curtailment. Tightening surplus capacity 
could increase the risk of power supply disruption and overall 
system reliability may go down3.

The differences between the supply and demand sides are 
blurring. Large power consumers are beginning to meet their 
requirements by onsite power production, while at the same 
time dispatchable power generators are forced – and often 
paid – to flexibly adjust their production to prevent supply-
demand imbalances.

The cost structure of power generation is also changing, 
with a shift from operational to capital cost. Power plants 
with high operational expenses (OPEX), including fuel and other 
operation and maintenance costs are being displaced by units 
with low OPEX but high upfront costs, such as wind and solar 
power plants4. 
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Headlines

•	 The value of a power technology depends on the system it is operating within and on the services it can provide such as 
capacity, flexibility, carbon mitigation, etc. 

•	 The right policies can bring down the cost of individual technologies and contribute significantly to a reduction in the overall 
system cost.

•	 Existing metrics for assessing the value of power generation technology, such as the levelised cost of electricity (LCOE), 
are insufficient for the 21st century power system.

•	 New metrics must take account of whole system integration and the dynamics of this system. 

•	 Starting investment in promising technologies earlier will make long-term decarbonisation easier and more cost-effective. 



Carefully designed policy instruments and market incentives 
are needed to pave the way to a low-carbon energy system. 
Power system services, such as balancing, backup reserve, 
or the provision of carbon negative poweri, will affect the role 
and value of power technologies. This paradigm shift has to be 
recognised to promote a cost optimal energy transition which 
balances carbon, cost, and security of supply.

Technology valuation

Power system operators and policy makers use a range of tools 
to assess and compare the value of power generation, storage, 
and transmission technologies when making investment 
decisions. The transformation of the traditional power system 
also requires a rethink of these assessment tools. Traditional 
technology valuation metrics, such as the levelised cost of 
electricity (LCOE), were appropriate for comparing technologies 
that provide similar levels of dispatchable power but are 
inadequate today. The LCOE assesses technologies in isolation 
and neglects the system they are operating within. The system 
conditions can have a significant impact on the profitability of 
an energy infrastructure project (see box 1). Where intermittent 
renewables generate a high proportion of electricity, investment 
in an additional wind power plant, for instance, is less valuable 
than in the context of a system composed of conventional 
thermal power generators. Conversely, the value of dispatchable 
power plants, due to their flexibility and firmness, is high in a 
situation where wind penetration levels are high. 

Two key ideas are shaping the debate on systemic technology 
valuation. The first aims at improving existing metrics such as 
the LCOE to properly account for additional cost components5. 

The second approach is based on whole energy system models. 
These range from global integrated assessment models (IAMs) 
to detailed sector specific tools, each appropriate depending 
on the scope of the analysis and area of application. The value 
of a certain technology is then based on the difference in total 
system cost with and without the observed technology6,7,8,9. 
This approach has been used to demonstrate how the 
technology value changes with increasing penetration into 
the system10. 

In the following sections, we refer to the whole system 
analysis approach as the system value metric11. See box 1 for 
a comparison of these approaches.

Technological change in power 
systems planning

In addition to supporting the valuation of individual 
technologies, power system models can guide decisions on 
the optimal mix of technologies and the timing of investments. 
Crucial model inputs are the costs associated with building and 
operating a power generation or storage unit, which vary from 
project to project and change as deployment increases.

The consideration of technological change, so-called 
technology learning, is crucial to determine how cost 
reductions are affected by policy decisions and vice versa12,13. 
The stimulation of innovation through public and private sector 
research, as well as economy wide policies (e.g. emission 
targets) have the potential to drive technological change14,15. 
Box 2 illustrates the phenomenon of technology cost reduction 

i.	 Power generation from bio-energy in combination with carbon capture and storage could provide electricity with negative emissions, i.e. CO
2
 is removed from 

the atmosphere.

Box 1: LCOE vs. system value
Scope of valuation metrics of power infrastructure 
project under different energy system environments

The core strengths (+) and weaknesses (–) of the traditional 
LCOE and the system value metric.

LCOE System value

+ Widely used	
+ Easily calculated	
– �Does not account for 

integration effects
– �Does not consider 

temporal component of 
power supply/demand 
(electricity is treated as 
homogeneous product)

+ �Explicitly accounts for 
integration cost*

+ �Explicitly accounts for 
when/where supply/
demand occurs

+ �Quantifies individual cost 
components

– �Requires holistic energy 
system model

– �Complex interdependencies 
can be difficult to interpret

*e.g. back-up capacity, grid reinforcement, associated CO2 
emissions

➔	 Balancing issues	
➔	 �Need for grid 

reinforcement
➔	 Curtailment	
➔	 �(Carbon-intense) 

back-up capacity

➔	 Electricity price lower
➔	 �System wide carbon 

intensity lower
➔	 �Portfolio diversity 

increases
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for onshore wind and solar capacity, and compares the current 
approaches taken to modelling these learning effects. Learning 
rates for a wide range of power generation and storage 
technologies are available16,17,18.

Energy and power systems models have shown that:

•	 When considering technology learning effects, the optimal 
timing for investment in technologies with cost reduction 
potential moves to earlier planning years19. 

•	 Building an experience base early drives technology learning 
and reduces investment costs12.

•	 Total system cost for low-carbon and secure power supply can 
be reduced by early investment in promising technologies, 
e.g. offshore wind capacity or carbon capture and storage 
(CCS) technology20. 

•	 To achieve full decarbonisation of the power sector, the 
deployment of low-carbon renewables, bioenergy, CCS 
equipped power generation, and energy storage technologies 
must be accelerated. The associated cost can be reduced by 
driving technological learning through early investment20,21.

•	 In scenarios tested, decarbonisation via a carbon price 
alone did not lead to a decarbonisation of the power sector 
by 205022,23. 

Figure 2 highlights the impact of technology learning in a 
power system model24 when applied to the UK. To achieve a 
full decarbonisation of the power sector, the model estimates 
a significantly different optimal power generation mix for 2050 
and lower total investment cost, if technology learning effects 
are considered. The results of our analysis in the UK power 
system context indicate that:

•	 The consideration of technology cost reduction upon 
deployment increases the competitiveness of offshore wind 
capacity, CCS equipped power capacity, and energy storage 
(battery, pumped hydro) capacity most significantly.

•	 The deployment of cost competitive offshore wind capacity 
could increase by up to 75% when learning effects are taken 
into account. The optimal deployment level ranges from 5GW-
30GW, for partial or full decarbonisation, respectively.

•	 The optimal timing for offshore wind capacity additions 
moves five years earlier – to 2025 – if technology learning is 
taken into account.

•	 Combined cycle gas turbines with CCS remain the most valuable 
option among fossil fuel power plants as they can provide very 
low-carbon power as well as balancing and capacity reserve 
services. Coal with CCS benefits from the learning based cost 
reduction. The total optimal deployment level of CCS equipped 
power generation by 2050 is 16GW-25GW.

  Representing technology learning** in power system models 

Exogenous
Cost reduction as dependent
input parameter 
 
+ Easy modelling
– �Requires external cost 

reduction projections
– �Tend to predict investment 

timings late when 
technology cost are 
assumed to have reduced

Endogenous 
Cost reduction as in- 
function of technology 
deployment
– �Complex model 

integration, non-linear
– �Increases model size/

computational complexity
+ �More accurate 

representation of cost 
reduction effects

**technology learning typically refers to a reduction in 
capital cost. The theory can also be applied to operation 
and maintenance cost, or a change in other performace 
parameters.

Box 2: Technology learning and cost reduction
Historical observations have shown that with each doubling of cumulative installed capacity the capital cost of a technology 
reduces at a constant rate – the so-called learning rate (LR).
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Figure 1: Theoretical cost reduction curve (top) and historic 
empirical unit cost versus global cumulative installed 
capacity for onshore wind and solar power capacity26 

(bottom). Note the logarithmic scale.
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Conclusions

By analysing power technologies in a whole system framework, 
we can assess and determine their potential role and value 
to the future electricity system. Technology deployment 
contributes to technology learning and brings down unit 
cost. The consideration of these technology cost reductions 
influences the optimal investment timing and deployment level 
of technologies. Total system cost of the British power sector by 
2050 can be reduced by optimising the timing of investments in 
new power generation and storage capacity. 

Technology learning can be promoted by investment in research 
and development, demonstration projects, feed-in tariffs, 
and other policy instruments.

It is important that technology specific policy support 
mechanisms are designed to focus on valuable system services 
(e.g. reserves, balancing, flexibility). The ability to assess 
technologies in an integrated system can help support policy 
makers by identifying key technology specific features and 
evaluating the system wide implications of their promotion.

In the case of offshore wind capacity and CCS equipped 
power generation, dedicated policy support and continuous 
development increases their competitiveness and reduces 
total system cost by mid-century. Proactive investment can 
accelerate and enable deployment of low-carbon power 
technologies at the lowest cost. 
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Figure 2: Total cumulative investment cost for a cost optimal capacity expansion of the UK power system from 2015 to 2050 in 
the case of considering no learning or global learning effects (left), mix of power generation in 2050 in the case of considering no 
learning or global learning effects (right). The presented scenario enforces a complete decarbonisation of the power sector by 2050 
as extrapolation of the UK carbon budget25. Interconn.: high-voltage direct current interconnector, CCGT: comined cycle gas turbine, 
PostCCS: post-combustion CCS, OCGT: open cycle gas turbine, IGCC: integrated gasification combined cycle. 
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