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a b s t r a c t

We establish the connection between a paper by Kartner et al. [F.X. Kartner, D.M. Zumbuhl, N. Matuschek,
Phys. Rev. Lett. 82 (1999) 4428] entitled ‘‘Turbulence in mode-locked lasers”, and earlier work on the role
of noise in mode-locked laser systems. We present numerical results that broadly support the analytical
results of Kartner et al.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In 1999, Kartner et al. [1] examined the relationship between
fluid turbulence and the dynamics of actively mode-locked (AML)
lasers detuned from resonance. These authors derived a norma-
lised detuning parameter that (they argued) plays the same role
in AML lasers as Reynolds’ number in hydrodynamics. In the pres-
ent paper, we highlight the link between the phenomenon investi-
gated in [1], and earlier work on noise-induced fluctuations in
lasers and laser amplifiers. In addition, we present the results of
numerical simulations that broadly support the analytical results
of Kartner et al.

In 1979, Hopf and Overman [2] showed that an optical pulse
propagating in a nonlinear swept-gain amplifier (NLSGA) is highly
sensitive to random perturbations originating in the background
noise far out on its leading edge. Since the pulse envelope in an
NLSGA travels faster than the noise background, it overtakes the
noise, picking up stochastic features in the process. These move
progressively up the leading edge, over the peak, and down the
trailing edge to be lost in the noise to the rear. Although the noise
itself is weak, the perturbations to the pulse profiles can be severe.
The fluctuations (especially phase fluctuations) in the noise seri-

ously disturb the integrity of the pulse, and strong macroscopic
disturbances in pulse shape and energy are created.

Effects of this kind are not confined to swept-gain amplifiers,
but occur equally in actively mode-locked lasers when these are
detuned from resonance. Detuning forces the mode-locked pulse
envelope to travel at a different speed to the fluctuations in noise
surrounding it. If the drive frequency is raised, the pulse is forced
forward into the noise in front of it (as in the NLSGA); if the fre-
quency is lowered, the pulse is forced backwards into the noise be-
hind it. In both cases, the pulse becomes subject to the same kind
of perturbations that occur in an NLSGA. The problem was espe-
cially serious when synchronously mode-locked dye lasers were
in common use for short pulse generation in the 1980s and
1990s. In synchronous mode-locking, optimal pulse shapes occur
when the pump frequency is slightly higher than perfect resonance
[3], so the pulses were vulnerable to noise encroachment on the
leading edge. However, the self-seeding technique discovered by
Beaud et al. [4] proved highly effective in protecting the pulses
from the noise around them [5–8], and was used very successfully
for stabilising laboratory systems [9].

The present paper is organised as follows. In Section 2, the ac-
tively mode-locked laser model used for the simulations is de-
scribed. This provides a convenient context for introducing the
parameters governing the behaviour of the laser and for making
connections with earlier work. Particular attention is given to the
properties of the Fabry–Perot filter. The normalised detuning
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parameter D introduced by Kartner et al. in [1] is defined and we
explain how, according to [1], the behaviour of a laser is predicted
to depend on the value of D. The formula for the steady-state pulse
width near perfect detuning is stated and explained.

In Section 3, we present a range of simulations illustrating the
physical phenomenon that destabilises mode-locked lasers de-
tuned from resonance, and results are presented that are in good
agreement with the predictions of [1].

2. Laser model

2.1. Gain, loss and modulation

The actively mode-locked laser model is based on a ring cavity
in which the electric field E is defined at N uniformly-spaced points
separated by dz in space or dt ¼ dz=c in time. The nominal round-
trip time is therefore Tcav ¼ Ndt. The ring contains a modulator, a
gain medium, and a bandwidth-limiting filter. The field transmis-
sion factor of the modulator is

mðtÞ ¼ exp �1
2

MðtÞ
� �

ð1Þ

where MðtÞ ¼ Dð1� cos xmtÞ, D is the modulation depth, and the
period of the modulator Tmod ¼ 2p=xm. The corresponding field
transmission factor of the laser material is

gðtÞ ¼ exp
1
2
ðAðtÞ � CÞ

� �
ð2Þ

The time-dependent amplification coefficient AðtÞ is governed
by the differential equation.

dA
dt
¼ Au � A

T1
� ArF ð3Þ

where Au is the unsaturated (small signal) value of A, T1 is the pop-
ulation relaxation time, r is the transition cross-section, and F is the
photon flux. The parameter C in Eq. (2) represents losses of all ori-
gins. Note that the equilibrium solution of Eq. (3) is

A ¼ Au

1þ rT1F
ð4Þ

The factors of 1
2 in Eqs. (1) and (2) appear because mðtÞ and gðtÞ

are the transmission factors for the field, whereas the coefficients
D, A, and C relate to the intensity (or photon flux).

We used a Fabry–Perot Etalon (FPE) as the bandwidth-limiting
filter since it can be implemented in the time domain simply and
without approximation; a thorough discussion is given in Section
2.2. A stochastic noise source was included to simulate spontane-
ous emission; full details can be found in [11], and references
therein.

2.2. Fabry–Perot Etalon

The Fabry–Perot Etalon (FPE) consists of a pair of identical par-
tially-reflecting plates separated by a spacing s. The device has
peak transmission at a set of equally-spaced resonance frequencies
mq ¼ qdmFSR ¼ q=te, where q is an integer, and the frequency separa-
tion dmFSR (the free spectral range) is the inverse of the etalon transit
time te ¼ 2s=c. The field reflection factor of the plates is r, and the
corresponding transmission factor is t (not to be confused with
time). The intensity reflection and transmission factors are respec-
tively R ¼ r2 and T ¼ t2, where Rþ T ¼ 1 ensures conservation of
energy.

The characteristic time of the filter tf is conveniently defined as
the impulse response time of the FPE in the equation.

R ¼ expf�te=tf g ð5Þ

so tf ¼ �te ln R. If we equate te with the unit of time in the field
mesh dt, it is easy to show that the input/output relationship of
the filter is [3,5]

Eout
j ¼ T

Xj

k¼�1
Rj�kEin

k ¼ TEin
j þ REout

j�1 ð6Þ

The equation is generally applicable for a time-varying complex
field exhibiting amplitude and phase fluctuations. For a monochro-
matic input field, Eq. (6) gives the filter transmission factor as

f ¼
Eout

j

Ein
j

¼ jf jei/ ¼ Tð1þ Sþ S2 þ . . .þ Sn þ . . .Þ ¼ T
ð1� SÞ ð7Þ

where / is the argument of f, S ¼ R expf�idg, d ¼ ðx�x0Þte, and x0

is an etalon resonance frequency.
Eq. (7) allows two important properties of the FPE to be calcu-

lated. The first is the group time delay of the filter which is given by

td ¼ �
d/
dx

����
d¼0
¼ teR

T
� tf �

1
2

te ð8Þ

As shown in Section 3, the delay affects the accurate tuning of
the modulator. The other key property of the FPE is the second
derivative of jf j namely

d2jf j
dx2

�����
d¼0

¼ � t2
e R

T2 ffi � t2
f �

1
4

t2
e

� �
ð9Þ

This is a measure of the bandwidth-limiting properties of the
filter which, in turn, determines the mode-locked pulse duration
in the steady-state. When tf � te, the second term in the final
bracket of Eq. (9) can be ignored.

2.3. Modulator detuning and the normalised detuning parameter

A crucial parameter determining the performance of the laser is
the modulator detuning defined as the difference between the cav-
ity transit time and the modulator period namely tm ¼ Tcav � Tmod.
However, as we saw in B above, the FPE introduces a delay td, so
the effective cavity transit time is increased to T 0cav ¼ Tcav þ td,
and the corresponding effective detuning is t0m ¼ T 0cav � Tmod. We
can expect the laser to deliver optimal performance near t0m ¼ 0,
and we will refer to this as ‘‘exact” or ‘‘perfect” tuning.

Kartner et al. [1] introduced a normalised detuning parameter D
which they argued plays a role similar to that of Reynolds’ number
in fluid dynamics. The definition was

D ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Df Ms

p Td

Ta
¼ � t0m

tf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmod

2p
ffiffiffiffiffiffiffiffi
2D
p

tf

s
ð10Þ

where the second step expresses the result in terms of parameters
defined in this paper using the links Df ¼ 1

2 t2
f , Ms ¼ p2D=T2

mod,
Ta ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Df =Ms

4
p

and Td ¼ �t0m.
In [1], it was shown that the transient gain on the wings of the

pulses scales as expf2D2g, that an actively mode-locked laser is al-
ready highly sensitive to perturbations for jDj � 3, and that the
transition to turbulence occurs near jDj ¼ 3:7. However, the
authors noted that the critical detuning falls to jDj � 2 in the pres-
ence of spontaneous emission noise, a value that is weakly depen-
dent on the strength of the noise.

2.4. Pulse width near perfect tuning

Close to perfect tuning, the steady-state pulse width Dt of the
actively mode-locked laser can be estimated from the equation.

1� Dp2Dt2

4 ln 2 T2
mod

 !
1þ

2 ln 2 t2
f

Dt2

 !
¼ 1 ð11Þ
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where the brackets represent respectively the pulse narrowing fac-
tor from a pass through the modulator (which involves Eq. (1)), and
the pulse broadening factor from a pass through the filter (which in-
volves Eq. (9)). We note that the second term on the right-hand side
of Eq. (9) has been ignored in Eq. (11).

It follows from Eq. (11) that [10].

Dt
Tcav
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
D

r
2 ln 2

p
tf

Tcav

 !vuut ð12Þ

As will be demonstrated in the Section 3, numerical simulations
based on the laser model described are in good agreement with
this equation.

3. Simulations

3.1. Parameter values

The basic parameter set used for the simulations was
A ¼ 0:5; C ¼ 0:2; D ¼ 0:2; and R ¼ 0:8: It follows that
T ¼ 1� R ¼ 0:2, the filter delay time td ¼ teR=T ¼ 4te (from Eq.
(8)), and the characteristic time tf ¼ �te ln R ¼ 4:48te (from Eq.
(5)). We divide the cavity into N ¼ 1024 equally-spaced mesh
points and, since we have chosen to identify the mesh time unit
dt with te, the parameters td and tf correspond to 4 and 4.48 mesh
units, respectively. Since the modulator period Tmod is close to Tcav ,
Eq. (10) yields D ¼ �7:58 ðt0m=tf Þ.

An important factor determining the overall dynamic properties
of the laser is the characteristic time T1 in Eq. (2). It is of course
well-known that strong Q-switching requires high values of T1,
whereas Q-switching will certainly be weak when T1 � Tcav , and
may not be achievable at all. The pulse profiles will also be strongly
influenced by gain saturation in the latter case. Given that we are
principally interested in CW mode-locking in this paper, setting
T1 too high means that the laser takes a long time (typically
T1=Tcav transits) to settle down; indeed, for large modulator detun-
ing, limit cycle behaviour can sometimes occur where no equilib-
rium state is ever reached. Fortunately, it turns out that the
value of T1 is largely irrelevant to the central issue of this paper,
and so we choose T1 ¼ 50Tcav , which is high enough to limit the
influence of gain saturation, but not so high that Q-switching insta-
bilities are encountered. We note that T1=Tcav is in the range
104 � 106 in typical solid-state lasers!

The level and type of noise injection are also significant issues.
Close to perfect modulator tuning, unperturbed steady-state
mode-locking is achieved whether noise is injected or not. How-
ever, when the detuning is increased to beyond about jDj ¼ 2, noise
starts to play a role, the more so as the detuning is increased fur-
ther. Depending on the precise parameter values, the laser might
switch off altogether in the absence of noise, but exhibit steady-
state mode locking if a weak coherent (i.e. non-stochastic) signal
were injected. On the other hand, in the presence of stochastic
background noise, it will exhibit the macroscopic perturbations
that are the focus of attention in this paper.

3.2. Results and discussion

Fig. 1 shows the mode-locked pulse profile (plotted on a log
scale against the left-hand axis) for the case of nominally perfect
tuning (t0m ¼ 0). Notice that the wings of the pulse are embedded
in a sea of noise. However, for this tuning condition, the pulse is
not disturbed by the noise, any more than a rocky outcrop in the
ocean is disturbed by the waves that break upon it. The abscissa
time scale is in units of Tcav , with maximum modulator transmis-
sion at the centre of the frame (=0.5) and minimum transmission

at the extremities (=0 and 1). The upper and lower dotted lines
(plotted against the right-hand axis) show the respective time vari-
ations of the gain (represented by AðtÞ � C; see Eqs. (2)–(4)), and
the modulation �MðtÞ (Eq. (1)). Careful inspection of the figure re-
veals the slight depletion in the gain caused by the passage of the
pulse, and the subsequent gain recovery. This effect becomes more
pronounced if T1=Tcav is reduced from the value of 50 used for the
figure, but progressively disappears as the value is raised. The
pulse full width at half maximum intensity is 0:0793Tcav ,which is
close to the value of 0:0781Tcav predicted by Eq. (11).

The effect of detuning on the steady-state pulse width is shown
in Fig. 2. The thick line, plotted against the left-hand axis shows the
pulse width (expressed as a fraction of Tcav ) as a function of t0m=tf .
As noted already, for small detuning, steady-state operation is
achieved irrespective of background noise, and the line is shown
as solid in this region. For larger detuning, stochastic background
noise normally prevents the realisation of steady-state operation,
and so coherent signal injection was used to create artificial stea-
dy-state pulse profiles whose widths are plotted as a dotted line.
The pulse width predicted by Eq. (11), which can be expected to
apply near perfect tuning, is shown as a circular dot. The shape
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Fig. 1. Steady-state pulse profile at nominally perfect tuning (solid line) plotted on
the left-hand log10 intensity scale. The parameter values are detailed in Section 3.1.
The upper and lower dotted lines show the respective variations of AðtÞ � C and
MðtÞ (against the right-hand axis).
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of the curve (particularly the skewing near t0m ¼ 0) parallels the
analytical result plotted in Fig. 3 of [10].

The thin dotted line in Fig. 2 (plotted against the first right-hand
axis) shows how the position of the mode-locked pulse changes
within the modulation cycle as the modulator tuning is varied.
As we have seen already, for t0m ¼ 0 the pulse is positioned near
the peak of the modulator; however, it arrives ahead of the peak
for shorter cavities, and behind the peak when the cavity is length-
ened. The curve tends to 0.25 and 0.75 in the respective limits; the
position (0.5, 0.5) is marked with a cross.

The bell-shaped thin line in the figure (plotted against the sec-
ond right-hand axis) traces the variation in the pulse energy, which
drops as the detuning is increased. This behaviour is to be expected
given that, under detuned conditions, the pulse no longer passes
through the modulator at the point of maximum transmission.

The detuning range in Fig. 2 is t0m=tf ¼ �0:8, which corresponds
to D ¼ �6:06; hence, for the larger detunings in the figure, the sys-
tem can be expected to exhibit turbulence. Fig. 3 shows what hap-
pens for D ¼ �2:0. The lower curve (plotted against the left-hand
axis) shows the variation in the peak intensity of the mode-locked
pulse over 5000 transits. Instead of settling down to a flat line, the
graph shows that the pulse experiences a random sequence of per-
turbations, each of which is accompanied by a wobble in the posi-
tion of the pulse within the modulator cycle, shown in the upper
graph (against the RH axis). The anatomy of these events has been
examined in detail elsewhere (see e.g. [3,5,7,8,11]). In each case, a
fluctuation originating in the sea of noise ahead of the pulse moves
progressively through the profile. As it moves up the leading edge
and approaches the pulse centre, a new peak emerges in front of
the existing peak, which in time usurps its partner, which then re-
treats down the trailing edge to be lost in the noise to the rear. The
sudden rise in the pulse width in the middle of each event (lower
trace) occurs at the moment when the full width at half maximum
intensity embraces a twin-peaked profile, while the corresponding
downward jump in the upper trace marks the point when the new
peak rises above the old one.

It is interesting to compare Fig. 3 with Fig. 4 where D ¼ þ2:88.
With the change of sign, the movement of noise perturbations
across the pulse profile is now from back to front. Compare the
upper traces in two figures; in Fig. 3, the movement of the peak
is normally from front to back (from lower to higher relative posi-
tions), whereas in Fig. 4, the direction is reversed. The higher mag-
nitude of D in Fig. 4 also means that the event frequency is
increased.

To verify the proposition of Kartner et al. [1] that a transition to
turbulence occurs in the vicinity of jDj � 2, it was necessary to de-
vise a numerical measure of perturbation. The procedure adopted
was based on the behaviour of the peak intensity in Figs. 3 and
4. In the interval between 1500 and 5000 transits (after the initial
transient has died away), we recorded the fraction of transits in
which the peak intensity differed from the mean value by more
than 2%. This number, averaged over 1000 different random noise
sequences and termed the perturbation factor, is plotted in Fig. 5 as
a function of D for three different values of the injected noise
intensity. The bold line (for a noise intensity of 10�10) indicates
that in the range �1:8 < D < 2:2 the perturbation factor is zero
and the system is stable. However, for even a slight increase in
the magnitude of D on either side of the stable region, the factor
rises very rapidly towards 1.

The graph in Fig. 5 is largely insensitive to the value of T1, and
only weakly dependent on the injected noise intensity. Lowering
the noise widens the region of stability, and vice versa, but the ef-
fect is relatively slight. The two thin lines in the figure are for noise
intensities of 10�6 and 10�14, four orders of magnitude above and
below the value used for the bold line. Changing the coherence
time of the noise also has very little effect. The 2% figure used to
calculate the instability factor is of course arbitrary. But raising
the percentage to 5% or 10%, while admittedly making the walls
on either side somewhat less precipitous, has little effect on the
width of the stability region.

The slight asymmetry in Fig. 5 requires comment. A remote pos-
sibility is that the apparent rightward shift of about 0.2 in D results
from a discrepancy in the formula T 0cav ¼ Tcav þ td for the effective
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Fig. 3. Peak intensity fluctuations for a detuned laser with D ¼ �2 in the presence
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cavity transit time. An increase of just 3% in td would shift the
curves in Fig. 5 leftwards by 0.2. However, close inspection of the
figure shows that the stability boundary is more sensitive to the
noise intensity for positive D than for negative D; indeed the low
noise line in the figure shows a much greater displacement than
the high noise line. We therefore conjecture that the shift may
have another cause. Two different physical processes govern the
flow of information across the mode-locked pulse. One is the
detuning of the modulator, which can be of either sign. The other
arises in the filter, and this can only result in delay. It follows that
when D is negative (t0m > 0), both flows are from front to back
whereas, when D is positive (t0m < 0), the two flows are in opposi-
tion. We suggest that this fundamental detuning asymmetry may
be responsible for the effects seen in Fig. 5.

4. Conclusion

In conclusion, we have pointed out the connection between the
work of Kartner et al. [1] and earlier work on the role of noise in
mode-locked lasers and laser amplifiers. We have also presented
numerical results that generally confirm the analytical formulae
obtained in [1]. In particular, the transition to turbulence in a de-
tuned actively mode-locked laser has been shown to be sharp,
and to occur near jDj ¼ 2 in the presence of a stochastic noise back-
ground; the width of the region of stability has been found to de-
pend on the noise level, albeit only weakly. These results are
consistent with the predictions made in [1].

As noted in the introduction, the phenomena discussed in this
paper were originally identified in swept-gain laser amplifiers
[2], and were studied in detail in the context of synchronously
mode-locked dye lasers [3–9]. Dye lasers themselves are of course
rarely used today, but it is important to recognise that the potential
for noise-induced jitter is a general feature of synchronously-

pumped devices. As far as lasers are concerned, synchronous
mode-locking is still employed in Cr:YAG and Cr:ZnSe systems.
On the other hand, synchronously-pumped optical parametric
oscillators (SPOPOs) are now in widespread use, and noise-induced
jitter is an issue there too. SPOPOs exhibit more complicated
dynamics than their laser counterparts because three interacting
pulses (pump, signal, and idler) are involved rather than two,
and because the signal is usually free to shift its wavelength to
bring its group velocity into synchronism with the pump. A de-
tailed analysis of noise in the SPOPO case can be found in [12].
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