Imperial College London

Module Specification (Curriculum Review)

Basic details				Earliest cohort	Latest cohort
UID			Cohorts covered	2024-25	
l ong title	Imaging				
Long the	maging				
New code	PHYS	70024	New short title		
Brief description	The Imaging module is	s split into two parts: g	eometrical optics and v	wave optics. Geometri	cal optics introduces
(approx. 600 chars.)	optics part introduces	methods to model the	propagation of scalar	waves through optical	systems and how this
	can be used to descri	be image formation for	r both coherent and inc	oherent illumination.	445 ali ana ali an
Available	as a standalone mod	lule/ short course?	Ν	1	415 characters
Statutory details					
Statutory details	ECTS	CATS	Non-credit		
Credit value	5	10	N	HECOS codes	
FHEQ level	Level 7				
Allocation of study ho	ours				
L e eture e	Hours	1			
Croup teaching	8	Incl seminars tuto	rials problem classes		
	0	mei. seminars, tator	iais, problem classes.		
Other scheduled	10	Incl. proiect supervi	sion. fieldwork. externa	al visits.	
Independent study	91 Incl. wider reading/ practice, follow-up work, completion of assessments, revisions.				
Placement		Incl. work-based lea	nming and study that o	ccurs overseas.	
Total hours	125	I			
ECTS ratio	25.00				
Project/placement ac	tivity				
is placement at	stivity allowed?	NU	1		
Module delivery					
Delivery mode	Taught/ Campus	Other			
Delivery term		Other			
Ownership					
Primary department	Physics				
Additional teaching					
departments					
				-	
Delivery campus	South Kensington				
Collaborative delivery					
	Colla	aborative delivery?	N		
Extomal institution	Ν/Δ			1	
	IN/A				

Associated staff

Role	CID	Given name	Surname
Module Leader		Chris	Dunsby
Lecturer		James	McGinty

Learning and teaching Module description

Learning outcomes	On completion of this module students will be able to			
C C	- apply the refraction invariant, aperture and field stops and the Lagrange invariant in calculations of imaging			
	systems			
	- evaluate wave and transverse ray aberrations, use the aberration polynomial and characterise aberrations in			
	terms of the primary aberrations			
	- calculate wavefront aberrations in optical systems using Seidel sums and perform associated calculations			
	- derive and describe the field distribution in the vicinity of the back focal plane of a perfect lens under			
	coherent illumination and its relationship to the Fourier transform			
	- use the point spread function and coherent transfer function analyse to calculate the performance of			
	coherent imaging systems			
	- use the point spread function and optical/modulation transfer function to analyse and calculate the			
	performance of incoherent imaging systems			
Module content	Geometrical ontics:			
	Ideal ontical systems, cardinal points, lateral and longitudinal magnification, paravial approximation. Gaussian			
	lens formula single refracting surface refraction invariant aperture and field stops. Lagrange invariant afocal			
	systems. Caussian properties of two systems. ABCD ray tracing matrices, wave and transverse ray			
	systems, Caussian properties of two systems, ADOD ray fracing matrices, wave and transverse ray			
	Mayo optics:			
	Scalar diffraction theory, angular spectrum of plane wayes, first Payleigh Sommerfeld integral. Freshel and			
	Fraunhofor diffraction integrals, transmission function and field distribution in back feeal plane region of a thin			
	Fraumoler unraction integrals, transmission function and field distribution in back focal plane region of a trans-			
	imaging of point and extended object, echarant transfer function and echarant point arread function, transition			
	imaging of point and extended object, concretent transfer function and concretent point spread function, transition			
	from concrent to inconcrent imaging, optical/modulation transfer function and inconcrent point spread function.			
Learning and	Students will be taught through a combination of lectures and classworks (where a timetabled session is used			
Teaching Approach	for a group problem solving exercise) supported by problem sheets and office hours. Some of the material will			
	be delivered by assigning the students pre-recorded content to study, with subsequent in-person sessions			
	used to reinforce that material.			
Accoment	A 2 hour written examination provides 100% summative assessment. Examination questions are designed to			
Assessment	A 2 hour written examination provides 100% summative assessment. Examination questions are designed to			
Strategy	Exemptive assessment is provided through the problem shoets and classworks			
	i offiative assessment is provided through the problem sheets and classworks.			
Feedback	Problem sheets are provided and model solutions are provided. An office hour is provided each week during			
	the module to allow for feedback and direct interaction between students and the module lecturers. Classworks			
	provide an opportunity for group discussion and for students to receive feedback on the classwork exercises.			
	For material that is delivered using pre-recorded content, the in-person sessions allow students to discuss the			
	module material with the lecturer in small groups.			
Reading list	E. Hecht, "Optics", Addison Wesley, 4 th Edition, 2002			
5	M. Born and E. Wolf, "Principles of Optics", Cambridge, 7 th Edition, 1999			
	W. T. Welford, "Aberrations of Optical Systems", Taylor and Francis, 1996			
	J. W. Goodman, "Introduciton to Fourier Optics", Roberts and Company, 3 rd Edition, 2005			
	.1 Mertz "Introduciton to Ontical Microscopy" Roberts and Company 2010			

Date of first approval Date of last revision Date of this approval		QA Lead Department staff Date of collection	
Module leader	Chris Dunsby	Date exported Date imported	
Notes/ comments			
			Template version 16/06/2017