Imperial College London

Module Specification (Curriculum Review)

Basic details Earliest cohort Latest cohort UID Cohorts covered 2023-24 Long title Advanced Classical Physics New code PHYS60005 New short title **Advanced Classical Physics** Brief description This course covers advanced concepts in classical physics. It explores rotating systems and provides the foundations for Lagrangian and Hamiltonian mechanics. This allows the student to of module (approx. 600 chars.) understand the transition from classical to quantised systems. The course also prepares the student for progression onto general relativity by introducing the classical theory of fields in covariant notation and onto field theory by introducing the Lagrangian for a vector field and the resulting Maxwell's equations. Finally, the course provides the student with an appreciation for the role played by symmetries in fundamental physics. 623 characters Available as a standalone module/ short course? Ν Statutory details CATS ECTS Non-credit Credit value 7.5 15 **HECOS** codes Ν Level 6 FHEQ level Allocation of study hours Hours Lectures 26 10 Incl. seminars, tutorials, problem classes. Group teaching Lab/ practical Other scheduled 12 Incl. project supervision, fieldwork, external visits. Incl. wider reading/ practice, follow-up work, completion of assessments, revisions. Independent study 139.5 Placement Incl. work-based learning and study that occurs overseas. Total hours 187.5 ECTS ratio 25.00 Project/placement activity Is placement activity allowed? No Module delivery Taught/ Campus Other Delivery mode Delivery term Term 1 Other Term 1, exam in term 3 **Ownership** Primary department Physics

Additional teaching departments	None
Delivery campus	South Kensington
Collaborative deliv	/ery

	Collaborative delivery?	Ν
External institution	N/A	
External department	N/A	
External campus	N/A	

Associated staff

Role	CID	Given name	Surname
Module Leader		Andrew	Tolley

Learning and teaching Module description

Learning outcomes	On completion of this module you will be able to: - Transform from a rotating frame to a static frame
	- Describe the rotation of Rigid bodies
	- Demonstrate familiarity with Lagrangian mechanics
	- Demonstrate familiarity with Hamiltonian mechanics
	- Establish the stability of a solution
	- Demonstrate familiarity with electromagnetism in relativistic notations.
Module content	• Rotating Rigid bodies: Inertia tensor, Principal moments and principal axes of inertia, Euler angles.
	Lagrangian Mechanics: Calculus of variations, Action integral, Principle of least action, Euler-Lagrange
	equation, Generalised co-ordinates and momenta, Degrees of Freedom, Constraints and Lagrange Multipliers, Conserved Quantities, Normal modes, Stability analysis.
	Hamiltonian Mechanics: Hamilton's equations, Poisson brackets, Canonical transformations, Noether's
	theorem, dynamical systems and stability analysis.
	• Relativistic Electromagnetism: Four-vectors, Lorentz transformation in tensor formulation, Minkowski
	Metric, Contravariant and covariant vectors, Lorentz tensors, relativistic formulation of Lorentz law, Field
	Strength tensor, Lorentz transformations for electromagnetic fields, Maxwell's equations in four-vector form,
	Four-vector potential, Maxwell Lagrangian.
I some in a surd	Otudente will be tought over a term wing a combination of last was affine bown and disasted evening a
Learning and	Students will be taught over a term using a combination of lectures, office hours and directed exercises on theoretical work.
Teaching Approach	
Assessment	Assessment based on final exam: 2 hour written exam that will evaluate competences in the following 4
Strategy	topics:
	•Rotating Bodies and Tensors of Inertia
	•Lagrangian Mechanics
	•Hamiltonian Mechanics
	•Relativistic Electromagnetism Questions may mix the various topics (e.g., a question may involve the moments of inertia in Lagrangian
	formulation).

Feedback	with. Out of those que their answers to those	provided weekly (9 in total) with questions a estions, one or two are marked as Rapid Fe e questions which will be reviewed and ann eviewed during a Rapid Feedback session v	eedback questions. Students can hand in otated (no formal mark). Rapid Feedback
Reading list	designated textbook suggested as supplet aspects of the course core textbooks: •Classical Mechanics •Classical Mechanics Other useful textbook •A student's guide to •Lagrangian and Han •Classical Mechanics •Mechanics (3rd Editi •Classical Electrodyn	ovided to students. The notes are designed required for this course. There are however mentary or complementary reading for thos e. All those textbooks are fully optional. The (5th Edition), Kibble & Berkshire (Imperial (3rd Edition), Goldstein, Poole & Safko (Ac ss: Lagrangians and Hamiltonians, Patrick Har niltonian Dynamics, Peter Mann, (Oxford Ur (2nd Edition), McCall (Wiley 2011), Gregory (Cambridge University Press 200 (on), Landau & Lifshitz (Elsevier 1976), amics (3rd Edition), Jackson (Wiley 1999), y of Fields, Landau & Lifshitz (Elsevier 1975)	r also some excellent textbooks that are e of you wishing to explore further some course mainly follows the following two College Press 2004), ddison-Wesley 2002). mill (Cambridge University Press 2014), niversity Press 2018), 96),
Quality assuranc	e	Office use only	/
Date of first approval Date of last revision Date of this approval		QA Lead Department staff Date of collection	
Module leader	Andrew Tolley	Date exported Date imported	
Notes/ comments			

Template version 16/06/2017

Programme structure Associated modules

UID	Legacy code	Module title	Requisite type

UID	Legacy code	Module title	Requisite type

Assessment details

Grading method Numeric

Pass mark 40%

Assessments

Assessment type	Assessment description	Weighting	Pass mark	Must pass?
Examination	2h final examination	100	% 40%	N
		100	%	