HHG in the condensed phase:

HHG spectroscopy on organic solids, PetaHertz currents in dielectrics, low energy scattering in liquids

Dr Mary Matthews

Imperial College

Why are ultrafast electonic and nuclear dynamics useful?

Basis of life:

• Ultrafast charge migration in organic systems

Photon therapies important part of health:

- \circ Photo-activation of drugs
- Photo fragmentation and ionisation of large biomolecules:
 - Damage to DNA, ultrafast electron dynamics of primary and secondary radiation
 - Effects of laser mediated surgery with ultrafast lasers

Photochemical reactions are essential for industries:

- Photolithography basis of chip manufacture
- $\circ~$ Photo-sensitive catalysts $\,$ plastic production

Ultrafast electronic and structural dynamics

coherence

EUV as a spectroscopic tool

• Element specific:

Core shells to valance band transitions, act like a fingerprint

• Sensitive to local geometry, bonding and molecular structure

EUV for time resolved spectroscopy

 $\hbar\omega_{\rm cutoff} = I_{\rm p} + 3.17U_{\rm p}$

$$U_p = \frac{e^2 E_a^2}{4m\omega_0^2}$$

Carbon, Nitrogen and Oxygen K edges at 285eV, 410eV and 555eV

Long wavelength drivers and Higher field strengths Gives access to *'water window' photons*

Time resolved transient absorption on organic P3HT:

Direct probe of the initial localisation and cooling of the hot exciton formed by the pump

Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy

D. Garratt©¹⁸³, L. Misiekis¹, D. Wood¹, E. W. Larsen©¹, M. Matthews¹, O. Alexander¹, P. Ye©¹, S. Jarosch©¹, C. Ferchaud¹, C. Strüber¹, A. S. Johnson⁰, A. A. Bakulin⁰, ², T. J. Penfold³ & J. P. Marangos⁰ Transient feature – formation of hole state associated with exciton

electrons in polymers

molecular structure

Can attosecond pulses be generated in different phases of matter?

Attoseconds from solids?

Strong field Physics in solids

Why do we need solid state attosecond sources?

Attosecond Nanophotonics

PetaHertz currents inside solids

New source of EUV and attoseconds

Sample	Thickness	Drive	Pulse	Cutoff	Ref.
	(um)	Wavelength (um)	Duration (fs)	Energy (eV)	
Solid Ar & Kr	5	1.33	50	40	[8]
Al ₂ O ₃	430	0.80	12	31	[9]
MgO	200	1.70	11	25	[10]
MgO	100	1.30	50	30	[11]
SiO ₂	0.120	0.80	~2	33	[2]
SiO ₂	0.120	0.83	~2	34	[12]

Probing the bandstructure out of equilibrium: MgO

Probing the bandstructure out of equilibrium: MgO

Probing the bandstructure out of equilibrium: MgO

Can attosecond pulses be generated in different phases of matter?

Attoscience in the liquid phase

 Intermolecular/inter-atomic distances are much less than the electron excursion length

PHYSICAL REVIEW A 87, 063811 (2013)

High-order-harmonic generation from dense water microdroplets

CEP dependent HHG in liquid Isopropanol

Simulations of HHG in liquid Isopronanol

а

Peak intensity (TW/cm²)

Peak intensity (TW/cm²)

$$A = \sigma' = k\sigma_{emp.}.$$

- Introduce macroscopic parameter 'k'
- This accounts for screening, correlation potential and exchange
- Low energy ultrafast scattering captured

Peak intensity (TW/cm²)