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MOTIVATION

• Regulators use the Eisenberg-Noe algorithm to
quantify contagion in macro stress tests.

• When accurate data on interbank liabilities is not
available, this needs to be estimated.

• Goal: We want to compute the maximal error
in the estimation of the clearing payments for a
given average estimation error in interbank lia-
bilities.

FINANCIAL NETWORKS (A, p̄, x)
Financial network: • N = {1, . . . ,N}: banks;

• xi: capital of bank i;

• lij ≥ 0 : liability of bank i to bank j;

• p̄i: total liabilities of i;

• A: relative liability matrix aij ∶=
lij
p̄i

.
Network with society: Society is modelled by

adding a node 0 to the network.
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CLEARING VECTOR

Assumptions: A solvent bank repays all of its obli-
gations. A defaulting bank repays obliga-
tions pro-rata. These rules yield a clearing
payment as a solution of the fixed point prob-
lem:

p(A) = p ∧ (x +AT p(A)).

Existence and Uniqueness: A fixed point always
exists, and under mild technical assumptions
it is unique. A simple sufficient condition for
uniqueness is that every bank has some posi-
tive equity xi > 0 for all i to begin with.

Regular Financial Network: Surplus set S ⊂ N ∶

∀(i, j) ∈ S × Sc ∶ aij = 0 and ∑i∈S xi > 0.
Risk orbit of bank i: o(i) = {j ∈

N ∣ there exists a directed path from i to j}.
Regular network: each bank’s risk orbit o(i) is
a surplus set. Ω set of all regular networks.

ESTIMATION ERRORS

LetA be the true relative liability matrix. We model
the estimation error as A + εB for some ε > 0, such
that A + εB is still an admissible relative liability
matrix.

SENSITIVITY

We prove continuity of p(A) wrt A. This allows us
to compute the directional derivative of the fixed
point (clearing vector) in direction of B:

DB(p(A)) = lim
ε→0

p(A + εB) − p(A)

ε
.

The derivative is given by a fixed point equation:

DB(p(A)) = ΛA⊺
DB(p(A)) +ΛB⊺p(A).

RESULTS: SENSITIVITY
Theorem: First order sensitivity.
In a regular financial network (A, p̄, x) ∈ Ω,
the directional derivative of the clearing
vector in direction of an error matrix B
is given, (except on the measure zero set
{(A, p̄, x) ∈ Ω ∣∃i s.t. xi +∑nj=1 ajipj(A) = pi} ),
by

DB(p(A)) = (I −ΛA⊺)
−1

ΛB⊺p(A),

where Λ is the diagonal matrix with entries
1{xi+∑n

j=1 ajipj(A)<pi}.

Theorem: Higher order derivatives.
In a regular financial network (A, p̄, x) ∈ Ω, higher
order derivatives of the clearing vector in direction
of the matrix B are given for all m ≥ 1 by

D
(m)
B (p(A)) =m(I −ΛA⊺

)
−1ΛB⊺

D
(m−1)
B (p(A))

=m! ((I −ΛA⊺)
−1

ΛB⊺
)
m

p(A).

Hence, for all ε < ε∗, we get the exact Taylor expan-
sion

p(A + εB) = (I − ε(I −ΛA⊺
)
−1ΛB⊺)

−1
p(A),

where ε∗ describes the first change in Λ, which
happens when a solvent bank becomes insol-
vent (or vice versa): ε∗ ∶= inf {t > 0 ∣∃i ∶ xi + . . .
[A⊺(I − t(I −ΛA⊺)−1ΛB⊺)−1p(A)]

i
∈ {0, p̄i}}.

EMPIRICAL APPLICATION: ROBUSTNESS & WORST CASE ERROR

Let Ω be a regular financial network with society.

Question: How far off can the estimated payout to so-
ciety be for a given average estimation error in the
relative liability matrix?

Problem formulation: We need to solve the LP

min
B
a⊺0p(A + εB) ↝min

B
a⊺0DB(p(A)) (1)

A unique solution is obtained by solving the
LP minb∈BI(A),c⊺b≤z∗ b

⊺b, where z∗ is the value
of the objective function achieved by a min-
imizer of LP (1). This corresponds to find-
ing the maximum perturbation that has mini-
mum Frobenius norm.

Figure 1: Influence of errors on shortfall.

Empirical application to European Banks: We use
bank balance sheet data from the EBA and
construct a relative liability network consis-
tent with this data using the Gandy-Veraart
MCMC algorithm. Next, we compute the
payout to society under a variety of stress
tests and for each scenario, we compute the
worst-case shortfalls to society given an av-
erage misspecification of the relative liability
matrix.

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

< 0.05% average change
0.05% - 0.15% average change
> 0.15% change

Figure 2: Kernel density estimates of the shortfall
to society for different average estimation errors
along the worst-case perturbation.

We find that a 0.15% error of the relative inter-
bank liabilities could in the worst case lead to
an additional shortfall of 2.5% to society.

CONCLUSIONS AND FUTURE RESEARCH

Structure of worst-case errors: The worst case estimation errors occur when one overestimates the liabili-
ties of well-capitalised banks, and underestimates the liabilities of weak banks.

Robustness of systemic risk assessments: The results and conclusions of a stress test can deviate sub-
stantially even for small average estimation errors, if they cluster in the direction of the worst case
estimation errors. This highlights the importance and benefits of precise data collection compared to
estimating interbank exposures.

Probability of worst case error: Quantify the probability of being “close" to a worst case shortfall error
estimation for different relative liability matrix estimation-error distributions.
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